Ger Nar	erator ne: AIEXANORIA STP	Current NPDES No: 7N 0021539	Existing Tracking No:			
Owi	er or Operator: (the person or legal entity which controls the site's operation	on)				
	Official Contact Person Name: (individual responsible for a site)	Title or Position:	•			
	RICH POTTER Mailing Address:	Certified	OPERATOR			
1	102 High Street	City: AXEXANDRIA	OPERATOR State: Zip: TN 37			
	Phone: (G15) 683-5721	E-mail: Smithwaterpl	ant@dtcom.net			
ľ	Local Contact Person Name: (if appropriate, write "same as #1")	Title or Position:				
2	Site Address: (this may or may not be the same as street address)	Site City:	State: Zip: 37012			
	Phone:	E-mail:	1 1012			
	Write in the box (to the right)	or circle the number (above) to indicate w	where to send correspondence:			
A.	OPERATIONAL INFORMATION:					
	Estimated annual amount of biosolids generated (dry weig	ht basis)	ric tons (tons)			
-	Estimated annual amount of biosolids to be land applied (o	lry weight basis)	(tons)			
B.	BIOSOLIDS TREATMENT PROCESS: Please prov	ide a description of the biosolid	ls treatment process used prior to			
	biosolids being land applied (use a separate sheet, if necess pumped from the acration bas it is gerated and dewatered. It is gerated and dewatered. Is required pathogen reduction trects	sary): WASTE ACTION	Atech Sluclas is			
	it is desated And dewatered. I	t is held to a sale	s digester where			
	required pathogen reduction trect	or Attraction reduction	on permy levels			
C.	CHEWITCAL ANALYSIS: Indicate which contaminant s	tandard(s) the biosolids meet:				
	Table 1 Ceiling Contaminant Concentrations:					
	 Submit analytical results to demonstrate eligibility for and compliance with the quality criteria specified in the General Permit. 					
	Submit analytical results for PCBs and TCLP that are less five years old.					
	Submit analytical results for reds and refer that are less five years old.					
D.	PATHOGEN REDUCTION LEVEL ACHIEVED: Ind	icate alternative used to achieve	the pathogen reduction. For Class			
	A, Alternatives 5 and 6; for Class B, Alternatives 2 and 3	3, list the specific Process to Fur	ther Reduce Pathogens (PFRP) or			
1	Process to Significantly Reduce Pathogens (PSRP).					
	Class A: Alternative 1 Alternat	<u>=</u>	ernative 3			
	(List PFRP)		ernative 6q. PFRP)			
	Class B: Alternative 1 Alternat	tive 2 Alte	rnative 3			
	(List PSRP)	(List Ed	1. PSRP) ————————————————————————————————————			
	Provide a detailed description of the pathogen treatment	process. Attach laboratory ana	lytical and/or process monitoring			
	results, as appropriate, that demonstrate pathogen reduction	is being achieved:				

Appendix A – Notice of Intent (NOI)

(next page)

E.	VECTOR ATTR	RACTION REDU	CTION LEVEL ACI	HEVED: I	ndicate the option used	to achieve the	vector attraction
	Option 1 Option 5 If one of the verequirements prio Yes Provide a detailed	Optio Optio ctor attraction rec r to or at the same No	on 2 Option on 6 Option 1 - 5 time as meeting the very evector attraction reduction on the contraction of th	n 3 n 7 is selected ector attraction	Option 4 Option 8 d, do the biosolids me on reduction requirement process. Attach label duction is being achieved.	eet Class A ponts?	athogen reduction
F.	If one of the vecto	r attraction raduati	ion Outions 1 . 0 -1		erformed, indicate how		
	will be performed Option 9 (Sub	on the field as par	t of the land applicatio	n process:	ion 10 (Incorporation		ection reduction
G.	SAMPLING PLA	N. Include a det	ailed come of the him	_11.4 1	1		
0.	plan must address	sampling protoco	alled copy of the blos	onas sampi athoren rec	ing plan as specified in luction, and vector attr	the instruction	ns. The sampling
		0.28	no for contammants, p	amogen rec	idenon, and vector attr	action reduction	on quanty criteria.
	HA 33C	Ached					
H.	LAND APPLICA	TION AREA(s):	Include a list of land a	pplication a	rea(s) that will be used	for disposal o	f biosolids. Attach
	a detailed map sho	wing appropriate l	ouffers in accordance v	with section	3.2.1. (add additional p	ages if necessa	ary).
	Area Number	Area (acres)	Application Rate	e (tons/acre	per section 3.2.2.	Latitude (decimal)	Longitude (decimal)
			5	metric	tons	34.289980	-86.025332
	2		5	Metric	tons	36 293623	-86.002278
I.	CERTIFICATIO	N: I certify unde	er nenalty of law that	contaminar	nt concentrations in the	hiogolida	41
	were prepared und properly gathered	duction, and other land application of ler my direction of and evaluated the	quality criteria of the of biosolids. I further or supervision in account information submitted	biosolids st certify that rdance with ed. Based	ated in the regulations I other information in the a system designed to on my own knowledge	nave been met is document an assure that que as well as t	or, if appropriate, and all attachments relationships all industry of the singuity of the sing
	person(s) who mar	nage the system, o	r those directly respon	isible for ga	thering the information	n, the informat	tion submitted to
	the best of my kno	wiedge and belief	t, is true, accurate and	complete.	I further acknowledge	that the facilit	ty or generator of
	aware that there are	e significant penal	ties for submitting fals	se informati	ral Permit for the Land on, including possibilit	Application o	f Biosolids. I am
	knowing violations		Ioi baomining lan	o miorinati	on, morading possibilit	y or times and	imprisonment for
	Name:	ICH P	DITER		Title: Cestot	el Ols	Net
i	Signature:	Al fo	to				
,	Telephone: (65)	683- 57	21	I	Date Signed: <u>05/3</u>	0 12021	

NOTE: In evaluating NOI forms, TDEC may request additional information to complete its review to determine the eligibility for coverage under TDEC's General Permit.

Appendix B: Processes To Significantly Reduce Pathogens (PSRP)

- 1. Aerobic digestion—Sewage sludge or biosolids are agitated with air or oxygen to maintain aerobic conditions for a specific mean cell residence time at a specific temperature. Values for the mean cell residence time and temperature shall be between 40 days at 20 degrees Celsius and 60 days at 15 degrees Celsius.
- 2. Air drying—Sewage sludge or biosolids are dried on sand beds or on paved or unpaved basins. The sewage sludge or biosolids dry for a minimum of three months. During two of the three months, the ambient average daily temperature is above zero degrees Celsius.
- 3. Anaerobic digestion—Sewage sludge or biosolids are treated in the absence of air for a specific mean cell residence time at a specific temperature. Values for the mean cell residence time and temperature shall be between 15 days at 35 to 55 degrees Celsius and 60 days at 20 degrees Celsius.
- 4. Composting—Using either the within-vessel, static aerated pile, or windrow composting methods, the temperature of the sewage sludge or biosolids is raised to 40 degrees Celsius or higher and remains at 40 degrees Celsius or higher for five days. For four hours during the five days, the temperature in the compost pile exceeds 55 degrees Celsius. Passively aerated static pile composting is not an acceptable PSRP.
- 5. Lime stabilization—Sufficient lime is added to the sewage sludge or biosolids to raise the pH of the sewage sludge or biosolids to 12 after two hours of contact.

Appendix C: Processes to Further Reduce Pathogens (PFRP)

1. Composting—Using either the within-vessel composting method or the static aerated pile composting method, the temperature of the sewage sludge or biosolids is maintained at 55 degrees Celsius or higher for three days. Passively aerated static pile composting is not an acceptable PFRP.

Using the windrow composting method, the temperature of the sewage sludge or biosolids is maintained at 55 degrees or higher for 15 days or longer. During the period when the compost is maintained at 55 degrees or higher, there shall be a minimum of five turnings of the windrow.

- 2. Heat drying—Sewage sludge or biosolids are dried by direct or indirect contact with hot gases to reduce the moisture content of the sewage sludge or biosolids to 10 percent or lower. Either the temperature of the biosolids particles exceeds 80 degrees Celsius or the wet bulb temperature of the gas in contact with the biosolids as the biosolids leaves the dryer exceeds 80 degrees Celsius.
- 3. Heat treatment—Liquid sewage sludge or biosolids are heated to a temperature of 180 degrees Celsius or higher for 30 minutes.
- 4. Thermophilic aerobic digestion—Liquid sewage sludge or biosolids are agitated with air or oxygen to maintain aerobic conditions and the mean cell residence time of the sewage sludge or biosolids is 10 days at 55 to 60 degrees Celsius.
- 5. Beta ray irradiation—Sewage sludge or biosolids are irradiated with beta rays from an accelerator at dosages of at least 1.0 megarad at room temperature (ca. 20 degrees Celsius).
- 6. Gamma ray irradiation—Sewage sludge or biosolids are irradiated with gamma rays from certain isotopes, such as ⁶⁰ Cobalt and ¹³⁷ Cesium, at dosages of at least 1.0 megarad at room temperature (ca. 20 °Celsius).
- 7. Pasteurization—The temperature of the sewage sludge or biosolids is maintained at 70 degrees Celsius or higher for 30 minutes or longer.

Appendix D: Certification Statements

Certification Statement 1

"I certify, under penalty of law, that the information that will be used to determine compliance with the Class A pathogen requirements in Part 3.1.2.1. and the vector attraction reduction requirement in [insert one of the vector attraction reduction requirements in Section 3.1.3. (a) through (h)] was prepared under my direction and supervision in accordance with the system designed to ensure that qualified personnel properly gather and evaluate this information. I am aware that there are significant penalties for false certification including the possibility of fine and imprisonment."

Certification Statement 2

"I certify, under penalty of law, that the information that will be used to determine compliance with the Class A pathogen requirements in Part 3.1.2.1.1. was prepared under my direction and supervision in accordance with the system designed to ensure that qualified personnel properly gather and evaluate this information. I am aware that there are significant penalties for false certification including the possibility of fine and imprisonment."

Certification Statement 3

"I certify, under penalty of law, that the information that will be used to determine compliance with the management practices in Section 3.2. and the vector attraction reduction requirement in [insert either Section 3.1.3. (i) or (j)] was prepared under my direction and supervision in accordance with the system designed to ensure that qualified personnel properly gather and evaluate this information. I am aware that there are significant penalties for false certification including the possibility of fine and imprisonment."

Certification Statement 4

"I certify, under penalty of law, that the information that will be used to determine compliance with the Class B pathogen requirements in Part 3.1.2.2. and the vector attraction reduction requirement in [insert one of the vector attraction reduction requirements in Section 3.1.3. (a) through (h) if one of those requirements is met] was prepared under my direction and supervision in accordance with the system designed to ensure that qualified personnel properly gather and evaluate this information. I am aware that there are significant penalties for false certification including the possibility of fine and imprisonment."

Certification Statement 5

"I certify, under penalty of law, that the information that will be used to determine compliance with the management practices in Section 3.2., the site restrictions in Subsection 3.1.2.3., and the vector attraction reduction requirement in [insert either Section 3.1.3. (i) or (j) if one of those requirements is met] was prepared for each site on which bulk biosolids are applied under my direction and supervision in accordance with the system designed to ensure that qualified personnel properly gather and evaluate this information. I am aware that there are significant penalties for false certification including the possibility of fine and imprisonment."

Certification Statement 6

"I certify, under penalty of law, that the information that will be used to determine compliance with the pathogen requirements in [insert either Part 3.1.2.1. or Part 3.1.2.2.] and the vector attraction reduction requirement in [insert one of the vector attraction reduction requirements in Section 3.1.3. (a) through (h) if one of those requirements is met] was prepared under my direction and supervision in accordance with the system designed to ensure that qualified personnel properly gather and evaluate this information. I am aware that there are significant penalties for false certification including the possibility of fine and imprisonment."

Certification Statement 7

"I certify, under penalty of law, that the information that will be used to determine compliance with the requirement to obtain information in Subsection 3.1.1.1. was prepared for each site on which bulk biosolids were applied under my direction and supervision in accordance with the system designed to ensure that qualified personnel properly gather and evaluate this information. I am aware that there are significant penalties for false certification including the possibility of fine and imprisonment."

Certification Statement 8

"I certify, under penalty of law that the information that will be used to determine compliance with the management practices in Section 3.2. was prepared for each site on which bulk biosolids were applied under my direction and supervision in accordance with the system designed to ensure that qualified personnel properly gather and evaluate this information. I am aware that there are significant penalties for false certification including the possibility of fine and imprisonment."

Certification Statement 9

"I certify, under penalty of law, that the information that will be used to determine compliance with the site restrictions in Subsection 3.1.2.3. for each site on which Class B biosolids were applied was prepared under my direction and supervision in accordance with the system designed to ensure that qualified personnel properly gather and evaluate this information. I am aware that there are significant penalties for false certification including the possibility of fine and imprisonment."

Certification Statement 10

"I certify, under penalty of law, that the information that will be used to determine compliance with the vector attraction reduction requirement in [insert either Section 3.1.3. (i) or (j)] was prepared under my direction and supervision in accordance with the system designed to ensure that qualified personnel properly gather and evaluate this information. I am aware that there are significant penalties for false certification including the possibility of fine and imprisonment."

Certification Statement 11

"I certify, under penalty of law, that the information that will be used to determine compliance with the management practice in Section 3.2., the Class A pathogen requirement in Part 3.1.2.1., and the vector attraction reduction requirement in [insert one of the vector attraction reduction requirements in Section 3.1.3. (a) through (h)] was prepared under my direction and supervision in accordance with the system designed to ensure that qualified personnel properly gather and evaluate this information. I am aware that there are significant penalties for false certification including the possibility of fine and imprisonment."

Appendix E: Example of Agronomic Rate Calculation

Determine how many tons per acre of aerobically digested biosolids can be applied as dewatered cake to a hayfield (Tall Fescue) expected to yield 3 tons per acre in 2 cuttings, based upon following biosolids analysis:

Biosolids An	alysis	DRY WT	Units	
Total Kjeldahl	Nitrogen (TKN)	47,000	mg/kg	[
Ammonium ni	trogen, (NH ₄ -H)	<650	mg/kg	
Nitrate plus Ni	trite Nitrogen, (NO ₃ -N + NO ₂ -N)	22,000	mg/kg]
Сгор Туре	Tall Fescue Hay (See Table 4)	120	lb N/acre/year	
o convert mi	lligram per kilogram to pounds per ton multiply by 0.0	02.		
l. Available	nitrogen from biosolids		Calculated	Units
Available		$47,000 \times 0.002 =$	94] lbs/ton
	b. Ammonium nitrogen (NH ₄ -N) (NH ₄ -N (mg/kg) x 0.002)	<650 x 0.002 =	<1.3	lbs/ton
	c. Nitrate plus Nitrite nitrogen (NO ₃ -N + NO ₂ -N)	15.11.11	44	lbs/ton
		$22,000 \times 0.002 =$		
	d. Total available inorganic nitrogen.		45] lbs/ton
	(1b x Kv) plus 1c) (< Obtain Kv from Table 5 0.5	$1.3 \times 0.5) + 44 =$		
	e. Organic nitrogen in biosolids. (Subtract 1b from 1a.)	94 - 1.3 =	93] lbs/ton
		-lination	28	lbs/ton
	f. Available organic nitrogen for the first year of app (Multiply 1e by Fm for anaerobic or aerobic process.) Obtain F _m from Table 6 0.3	93 x 0.3 =		_ ibs/ton
	g. Total nitrogen available from biosolids. (Add 1d and 1f)	45 + 28 =	73] lbs/ton
A vailable r	nitrogen in the soil		10	lbs/acre
	a. Soil test results of background nitrogen in soil b. Or, Estimate of available nitrogen from previous	biosolids application	Default - Ex	
	(If estimate, attach explanation of how estimated.)			
3. Nitrogen si	upplied from other sources.			7
	a. Nitrogen from supplemental fertilizers (if approp	riate)	0	lbs/acre
	b. Nitrogen from irrigation water. (if appropriate)		0	lbs/acre
	c. Nitrogen from previous crop. (Unless #2 is based	in soil testing.)	0	lbs/acre

d. Other (If appropriate) (specify)		0	lbs/acre
e. Total Nitrogen from other sources: add a,b	,c, and d if available	0	lbs/acre
4. Total nitrogen available from existing sources		10	lbs/acre
Add 2 and 3e			
5. Total nitrogen requirement of crop.		120	lbs/acre
Obtain information from Table 4 or agricultural ex	tension		
agents or other agronomy professional			
6. Supplemental nitrogen needed from biosolids.	120 - 10 =	110	lbs/acre
(Subtract 4 from 5)			
7. Agronomic loading rate	110 / 73 =	1.5	tons/acre
(Divide 6 by 1g)			

Notice of Determination SOP: TNB000000

This notice summarizes the Division of Water Resources' (division) consideration of public comments received on a proposed permit reissuance. This notice also announces the division's final permit determinations. The division has determined to issue Standard Operating Permit Number TNB000000 authorizing the land application of non-exceptional quality biosolids in the State of Tennessee.

Introduction

The division appreciates everyone's participation in the public hearing as well as each public comment received. Public participation helps ensure that local factors relevant to water quality protection have been considered in the regulatory permitting process. This Notice of Determination responds to comments received through public participation in 1 public notice and 1 public hearing whose chronology is summarized below. All comments received during either comment period have been considered in the final determination.

Summary of Public Participation Opportunities

The division solicited comments March 26, 2018 on its intent to issue SOP Permit # TNB000000. This draft permit was also the subject of a public hearing conducted April 17, 2019. Public comments could be submitted electronically, in written format, or verbally at the public hearing. Comments were accepted through May 1, 2019.

Comments and Responses

The following comments have been edited and summarized from their original form to organize the presentation of content. It has not been the division's intent to omit or alter content.

1. Under Appendix A there is no longer a space to include latitude/longitude for new farms/fields. How is this information to be submitted under the new permit?

Response: Appendix A displays an example of the Notice of Intent form, it is not the official CN-1441 form required for coverage of new sites. The appendix will be changed to reflect the actual formatting of the Notice of Intent form.

2. The certification statement for Class B site restrictions was removed from 3.1.2.3 and was not added to the new location in the permit (Appendix D).

Response: It is now included, along with the other relevant certification statements, in Appendix D.

3. Request that Section 3.1.2.3 (e) be more clearly defined to state during no time while staging/storage/hauling/applying biosolids, animals shall not be allowed to graze and shall not be allowed to graze for 30 days post completion.

Response: Animals shall at no time during the staging, storing, hauling, or application of biosolids be allowed to graze on the land. Following the completion of land application, animals shall not be allowed to graze for an additional 30 days.

4. Request Table 4, "Nitrogen Requirement (lbs N per Acre per Year)" be changed to "Nitrogen Requirement (lbs Available N per Acre per Year)".

Response: The biosolids application rate calculation methodology, as shown in Appendix E, is based on University of Tennessee – Extension recommendations for crop nitrogen; and plant available nitrogen is included in the calculation.

5. Table 4 footnote 1 is unclear. How will approval of nitrogen needs for soybeans be conveyed? What is the timeframe for this? Is this per crop year or per application year? Is approval required in writing?

Response: The permittee must demonstrate that nitrogen application amounts are based on University of Tennessee - Extension recommendations for soybean production. Applicants will receive an approval letter or email associated with an NOI package listing soybeans as the crop, in the same manner that any other crop type would be approved.

6. Under section 3.2.4 Restrictive Site Conditions, will this be determined via FEMA flood maps? If not how will it be determined?

Response: The rules prevent application of biosolids in areas that are flooded. FEMA maps, soils information, and hydrologic plants can help determine areas that flood frequently.

7. Under section 3.3, Storage of non-EQ Biosolids Prior to Land Application, please define "long term" field storage of biosolids. "Must" is not defined. Is it elective or are there qualifications to be able to store? Suggest "staged" to be changed to "stored" as these are two separate terms.

Response: Long term field storage of biosolids is qualified as any solids stored on sight for a period of time up to 2 years. Once the biosolids have been stored for 2 years or more the area is then considered a surface disposal site and is subject to further requirements under 40 CFR 503. The division does not recommend that biosolids be field stored more than 2 weeks prior to application because of potential water quality (groundwater) contamination. It has not been determined the extent of nutrient loss that can take place over an extended period of stockpiling

biosolids, but based on that potential it is recommended that biosolids are spread as soon as feasibly possible.

8. Request "tracking" and "spill" be clearly defined.

Response: Tracking and spillage are common terms as referenced in the EPA Guide to Field Storage of Biosolids. While the Division strives to be reasonable, there is no basis for land application outside the approved land application areas. Best management practices to reduce or eliminate tracking and spillage can be found in the EPA Guide to Field Storage of Biosolids.

9. In regards to Section 2.2 New Land Application Sites, commenter suggests separating coverage under the GP for biosolids quality from approval of application sites. In other words, a utility may obtain coverage under the GP indicating that the biosolids quality meets the regulatory standards and, in turn, will apply separately for approval of land application sites after coverage under the GP granted by the Department.

Commenter continues that, within the currently language of proposed revisions, there is no clear indication on how a generator submits for approval for a new land application site. Suggest updating the language to the following: Section 2.2 New Applicants Seeking Coverage Under the General Permit. Commenter also suggests to include "The generator must also provide a land application plan(s) in accordance with the requirements of Rule 0400-40-15-.06(8) for any new land application sites." In this section.

Response: The division grants permit coverage concurrently with approval of initial land application sites. If a utility wishes to add additional sites under their permit they will have to supply relevant land application site information; but if their analytical information is up to date, will not require the same review process as applying for initial permit coverage.

The division acknowledges the unclear language of Section 2.2 and opts to change the section to: "Section 2.2 New Land Appliers".

The division will include "The generator must also provide a land application plan(s) in accordance with the requirements of Rule 0400-40-15-.06(8) for any new land application sites." In this section to align with the Rule.

10. In Section 3.3 Storage of Non-EQ Biosolids Prior to Land Application, The words "must be" are not well defined. Recommend substituting "are" in the place of "must be".

Response: The division will revise the section to read "Long term field storage of biosolids prior to land application is not advisable. If non-EQ 'are' field stored, they shall be staged in a manner to prevent runoff or leachate from the designated storage area".

11. The definition of liquid biosolids in Section 3.2.4 (i.e. biosolids <17% TS) directly conflicts with the definition of liquid biosolids in the definitions section (i.e. biosolids ≤8% TS). We recommend

either removing the word "liquid" from Section 3.2.4 or changing the definition of liquid biosolids.

Response: The division will remove the word "liquid" from section 3.2.4.

- 12. The permit reads "the permittee shall provide the average and maximum concentrations of ammonia (as N), total Kjeldahl nitrogen (TKN), organic nitrogen, nitrates (as N)"...

 The reporting requirement (indicated using "shall") should be changed so nitrate is not explicitly listed.
 - -Nitrate is not a required analyte in 40 CFR 503
 - -Testing for nitrate, depending on the method/matrix, returns nitrate+nitrite, which does not meet the language in the draft permit.
 - -Nitrate+nitrite in biosolids is often non-detect, and reported on order of <10 mg/kg or <100 mg/kg. TKN is general about 40,0000 mg/kg. Since TKN is commonly reported with three significant figures, nitrate is negligible, usually less than the reporting resolution of TKN itself.

Response: testing for Nitrate+Nitrite is a requirement in determining the agronomic rate for land application. The formula for determining agronomic rate is based on UT Ag Extension recommendation and considers the Nitrogen needs of the crop being grown. The specifically referenced language, regarding annual reporting, will be modified to include only the analytes required and read as follows: "In the annual report, the permittee shall provide the concentrations of ammonia (as N), total Kjeldahl nitrogen (TKN), nitrate+nitrite (as N) that were used to determine the agronomic loading rate of biosolids that were land applied during the reporting year. Total solids values should also be provided".

Conclusion

For the foregoing reasons, and for the reasons set forth in the rationale for the draft SOP permit and the public notice, the division has determined, after implementing necessary changes, to issue SOP Permit # TNB000000 authorizing the land application of non-exceptional quality biosolids in the State of Tennessee.

		`. `%
N N		
	€	

Land Application Plan

1.	Previo	ous biosolids applications where metals exceeded Table 3.
	a.	No previous applications of biosolids have been made where metals exceeded
		Table 3, or
	b .	During the date to the date, tons of
		biosolids were applied toacres of site The
		concentrations of metals which exceeded Table 3 were Table 2
		Cumulative Loading Rate records were kept.
2.	Type o	of Crops. Example Crops
	a.	Perennial grass for hay and pasture- Typically hay is harvested in May-June and
		possibly later in the summer, with grazing of livestock during the remainder of the
		year depending upon need and rainfall
	b .	Perennial grass for hay- Typically hay is harvested in May-June and later in the
		summer to fall depending upon rainfall
	c.	Corn, grain or silage- Corn is typically planted in April, silage harvested in July-
		August, or grain combined in Sept-October.
		Soybeans- Typically planted in April-July and combined Sept- November.
	e.	Wheat- Typically planted following summer harvest, may be grazed, incorporated
		or allowed to mature as grain.
	f.	Other-
3.		omic loading rate. Agronomic loading rate is calculated from nitrogen testing and
		ed crop nitrogen usage. TDEC standard form is used. Rate calculations are for the
	-	ing growing season.
4.		d of application- Biosolids are applied using (include all possible options for your
) liquid spreader truck, tractor towed liquid manure equipment, tractor towed dry
		e spreading equipment, truck mounted dry manure spreader.
5.		al biosolids applications- Biosolids may be applied in all season of the year,
	depend	ling upon weather and soil condition.

6. Biosolids are applied in Smith County.

8. See attached maps.

7. On site storage- Biosolids are/are not stored at the application site.

2		
	E.B.	

Biosolids Sampling Plan

Tennessee Rules and Regulations, 0400-40-15-.02 Table 1

Table 1
Frequency of Monitoring-Land Application

Amount of Biosolids ¹ (metric tons per calendar year)	Frequency
Greater than 0 but less than 290	Once per year
Equal to or greater than 290 but less than 1,500	Once per quarter (4 times per year)
Equal to or greater than 1,500 but less than 15,000	Once per 60 days (6 times per year)
Equal to or greater than 15,000	Once per month (12 times per year)

¹ Either the amount of bulk biosolids applied to the land or the amount of biosolids prepared for sale or give-away in a bag or other container for application to the land (dry weight basis).

Note: 290 dry metric tons would be 7.67 MG of sludge at 1% total solids.

Containers: Preferred containers are Teflon, glass or stainless steel, plastic, steel or aluminum may be used, but galvanized coatings are to be avoided because they can release zinc into the sample. Containers are thoroughly cleaned using standard lab glassware cleaning processes.

Nine Metals and Four Nitrogens

Early in the Monitoring Period or prior to a hauling event, a sample will be collected from the digester with aeration operating fully in order to have a well-mixed digester. A clean dipper is used to collect multiple aliquots that are composited in the laboratory provided container. Aliquots are collected over at least 15 minutes while the digester is mixing.

Fecal Coliform Testing

Early in the Monitoring Period or prior to a hauling event, seven samples are collected. Each sample is collected in the laboratory provided container using sterile technique.

Fecal Coliform Testing, Follow-up

Subsequent hauling events will include a single Fecal Coliform sample prior to hauling, if necessary.

Specific Oxygen Uptake Rate (SOUR) Testing

Prior to a hauling event duplicate SOUR tests will be conducted on the fully stabilized sludge. From a thoroughly mixing digester a sample of about 1 L is collected in a clean container and analyzed immediately. The duplicate test will be analyzed using a fresh sample.

Tennessee Department of Environment and Conservation - Division of Water Polluction Control Exhibit B - Agronomic Application Rate Calculations Based on Nitrogen (N)

	-			
Revis	ion	05/	'n	/14

BACKGROUND INFORMATION/QUESTIONS	FILL IN RELA	
MOSTED MANAGE	FILL IN BELO	OV STATE STATE OF
WWTP NPDES PERMIT NUMBER		
	Owens Farm 1&2	
COUNTY		
E.A.C.	Jilliui	
SITE TRACKING NUMBER		
	Paca Analytical Labo	
DATE OF ANALYSIS	Pace Analytical Labs	7/46/20
THE PARTY OF THE P	ATORY DECLUITO	7/16/20
SLUDGE/BIOSOLID ANALYSIS LABOR (Attached a copy of the laboratory analysis used for these		()
TOTAL KJELDAHL NITROGEN (TKN)	7,370	mg/kg
AMMONIUM NITROGEN (NH ₄ -N)		mg/kg
NITRATE + NITRITE NITROGEN (NO ₃ -N + NO ₂ -N)	5,030	mg/kg
NITROGEN FROM SUPPLEMENTAL FERTILIZERS (If Appropriate)		lbs/acre
NITROGEN FROM IRRIGATION WATER (If Appropriate)		lbs/acre
NITROGEN FROM PREVIOUS CROP (Unless 2 is based on soil testing)		lbs/acre
OTHER (If Appropriate) Specify	0	lbs/acre
SELECT CROP TYPE (SELECT ONLY ONE)	YES	
I - CORN (GRAIN) EXPECT YIELD 100 - 125 BUSHELS		
2 - CORN (GRAIN) EXPECT YIELD 126 - 150 BUSHELS		
3 - CORN (SILAGE) EXPECT YIELD 20 TONS		
4 - SOYBEANS EXPECT YIELD 30 BUSHELS		
5 - SOYBEANS EXPECT YIELD 40 BUSHELS		
S- SOYBEANS EXPECT YIELD 50 BUSHELS Y- WHEAT EXPECT YIELD 40 BUSHELS		
B - SUMMER ANNUAL GRASS EXPECT YIELD 6 TONS (1 CUTTINGS)		
- HYBRID HAY EXPECT YIELD 8 TONS (4 CUTTINGS)		
0 - TALL FESCUE HAY EXPECT YIELD 3 TONS (2 CUTTINGS)		
1 - ORCHARD GRASS HAY EXPECT YIELD 4 TONS (2 CUTTINGS)		
2 - SORGHUM (GRAIN) EXPECT YIELD 60 BUSHELS		
3 - COTTON EXPECT YIELD 1 BALE / ACRE		
4 - COTTON EXPECT YIELD 1.5 BALE / ACRE		
CROP TYPE (LBS N/ACRE/YEAR)		120

AGRONOMIC LOADING RATE	7.6	tons/acre
MINERALIZATION RATE F _M =		0.3
SELECTION CHOICE:	1 SELECTED	
COMPOSING		
ANAEROBIC DIGESTION		
AEROBIC DIGESTION		
NONE (Unstabilized) ALKALINE STABILIZATION		
,	SELECT PROCESS	
MINERALIZATION RATE F _M		
VOLATILIZATION FACTORS K _V =		0.5
2 - ARE BIOSOLIDS LIQUID AND INJECTED INTO SOIL? 3 - ARE BIOSOLID DEWATERED AND APPLIED IN ANY MANNER?		
1 - ARE BIOSOLIDS LIQUID AND SURFACE APPLIED?		
VOLATILIZATION FACTORS K _V (SELECT ONLY ONE)	YES	
VOLATULZATION FACTORS IX	urison eervée o avantieur	

ANALYTICAL REPORT

August 10, 2020

Alexandria Sewer Treatment Plant

Sample Delivery Group:

L1240214

Samples Received:

07/16/2020

Project Number:

sludge

Description:

Report To:

Rich Potter

Public Square

Alexandria, TN 37012

⁴Cn

⁵Sr

⁶Qc

⁷GI

s Al

Sc

Entire Report Reviewed By:

Linda Cashman
Project Manager

Results relate only to the items tested or calibrated and are reported as rounded values. This test report shall not be reproduced, except in full, without written approval of the laboratory. Where applicable, sampling conducted by Pace Analytical National is performed per guidance provided in laboratory standard operating procedures ENV-SOP-MTJL-0067 and ENV-SOP-MTJL-0068. Where sampling conducted by the customer, results relate to the accuracy of the information provided, and as the samples are received.

TABLE OF CONTENTS

ONE LAB, NATIONWIDE,

36	R.
-	р
-	

Cp: Cover Page	4
Tc: Table of Contents	2
Ss: Sample Summary	3
Cn: Case Narrative	4
Sr: Sample Results	5
ANNUAL SLUDGE L1240214-01	5
ANNUAL SLUDGE L1240214-02	6
ANNUAL SLUDGE L1240214-03	7
ANNUAL SLUDGE L1240214-04	8
Qc: Quality Control Summary	9
Total Solids by Method 2540 G-2011	9
Wet Chemistry by Method 350.1	10
Wet Chemistry by Method 4500NOrg C-2011	11
Wet Chemistry by Method 9056A	12
Mercury by Method 7470A	13
Mercury by Method 7471A	14
Metals (ICP) by Method 6010B	15
Volatile Organic Compounds (GC/MS) by Method 8260B	18
Chlorinated Acid Herbicides (GC) by Method 8151A	20
Pesticides (GC) by Method 8081B	21
Polychlorinated Biphenyls (GC) by Method 8082	22
Semi Volatile Organic Compounds (GC/MS) by Method 8270C	23
GI: Glossary of Terms	25
Al: Accreditations & Locations	26
Sc: Sample Chain of Custody	27

			Collected by	Collected date/time	Received date/time	
ANNUAL SLUDGE L1240214-01 Solid			Rich Potter	07/16/20 11:00	07/16/20 12:	52
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Total Solids by Method 2540 G-2011	WG1511168	1	07/19/20 03:27	07/19/20 03:52	TH	Mt. Juliet, TN
Wet Chemistry by Method 350.1	WG1513485	1	07/22/20 17:07	07/24/20 12:57	SDL	Mt. Juliet, TN
Wet Chemistry by Method 4500NOrg C-2011	WG1512914	1	07/22/20 11:00	07/22/20 13:40	BAM	Mt. Juliet, TN
Net Chemistry by Method 9056A	WG1511817	1	07/20/20 11:53	07/20/20 18:41	ELN	Mt. Juliet, TN
Wet Chemistry by Method 9056A	WG1511817	20	07/20/20 11:53	07/20/20 19:04	ELN	Mt. Juliet, TN
Mercury by Method 7471A	WG1511776	1	07/20/20 09:22	07/20/20 21:21	TCT	Mt. Juliet, TN
Metals (ICP) by Method 6010B	WG1511215	1	07/20/20 05:59	07/21/20 08:17	EL	Mt. Juliet, TN
Polychlorinated Biphenyls (GC) by Method 8082	WG1511338	14.6	07/18/20 20:26	07/19/20 11:04	MTJ	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
ANNUAL SLUDGE L1240214-02 Waste			Rich Potter	07/16/20 11:00	07/16/20 12:	52
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Preparation by Method 1311	WG1510327	1	07/18/20 00:42	07/18/20 00:42	JGB	Mt, Juliet, TN
Preparation by Method 1311	WG1515604	1	07/26/20 20:02	07/26/20 20:02	CGD	Mt. Juliet, TN
Mercury by Method 7470A	WG1511731	1	07/20/20 05:57	07/20/20 19:22	TCT	Mt. Juliet, TN
Metals (ICP) by Method 6010B	WG1511786	1	07/20/20 08:24	07/20/20 17:00	EL	Mt. Juliet, TN
/olatile Organic Compounds (GC/MS) by Method 8260B	WG1516074	1	07/28/20 03:36	07/28/20 03:36	ACG	Mt. Juliet, TN
			Collected by	Collected date/time	Received dat	te/time
ANNUAL SLUDGE L1240214-03 Solid			Rich Potter	07/16/20 11:00	07/16/20 12:5	52
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
licrobiology by Method EPA 1681	WG1510986	1000	07/17/20 09:34	07/17/20 09:34	JTS	Mt. Juliet, TN
			Collected by	Collected date/time	Received dat	e/time
ANNUAL SLUDGE L1240214-04 Waste			Rich Potter	07/16/20 11:00	07/16/20 12:5	2
lethod	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
reparation by Method 1311	WOAFACOTE	2217	07/20/20 44-57	07/20/20 44.57	TDW	Mt. Juliet, TN
	WG1516975	1	07/29/20 14:57	07/29/20 14:57	TDVV	
hlorinated Acid Herbicides (GC) by Method 8151A	WG1516975 WG1517676	1	07/31/20 06:55	07/31/20 17:29	RP	Mt. Juliet, TN

WG1517424

Semi Volatile Organic Compounds (GC/MS) by Method 8270C

07/30/20 11:56

07/30/20 22:54

AO

Mt. Juliet, TN

CASE NARRATIVE

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times, unless qualified or notated within the report. Where applicable, all MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

3 6 -

³Ss

sinde Cashman

ANNUAL SLUDGE

Collected date/time: 07/16/20 11:00

SAMPLE RESULTS - 01

ONE LAB NATIONWIDE

L1240214

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	5,31		1	07/19/2020 03:52	WG1511168

Wet Chemistry by Method 350.1

	Result (wet)	RDL (Wet)	Result (dry)	RDL (dry)	Qualifier	Dilution	Analysis	Batch
Analyte	mg/kg	mg/kg	mg/kg	mg/kg			date / time	
Ammonia Nitrogen	ND	10.0	ND	188		1	07/24/2020 12:57	WG1513485

Wet Chemistry by Method 4500NOrg C-2011

	Result (wet)	RDL (Wet)	Result (dry)	RDL (dry)	Qualifier	Dilution	Analysis	Batch
Analyte	mg/kg	mg/kg	mg/kg	mg/kg			date / time	
Kjeldahl Nitrogen, TKN	391	20.0	7370	377		1	07/22/2020 13:40	WG1512914

Wet Chemistry by Method 9056A

	Result (wet)	RDL (Wet)	Result (dry)	RDL (dry)	Qualifier	Dilution	Analysis	Batch
Analyte	mg/kg	mg/kg	mg/kg	mg/kg			date / time	
Nitrate	267	200	5030	3770		20	07/20/2020 19:04	WG1511817
NItrite	ND	10.0	ND	188		1	07/20/2020 18:41	WG1511817

⁸AI

Mercury by Method 7471A

	Result (wet)	RDL (Wet)	Result (dry)	RDL (dry)	Qualifier	Dilution	Analysis	Batch	
Analyte	mg/kg	mg/kg	mg/kg	mg/kg			date / time		
Mercury	0.222	0.0400	4.18	0.753		1	07/20/2020 21:21	WG1511776	

⁹Sc

Metals (ICP) by Method 6010B

	Result (wet)	RDL (Wet)	Result (dry)	RDL (dry)	Qualifier	Dilution	Analysis	Batch
Analyte mg/kg	mg/kg	mg/kg	mg/kg	mg/kg			date / time	
Arsenic	ND	2.00	ND	37.7		1	07/21/2020 08:17	WG1511215
Cadmium	ND	0.500	ND	9.42		1.	07/21/2020 08:17	WG1511215
Copper	26.8	2.00	506	37.7		1	07/21/2020 08:17	WG1511215
Lead	2.08	0.500	39.2	9.42		1	07/21/2020 08:17	WG1511215
Molybdenum	ND	0.500	ND	9.42		1	07/21/2020 08:17	WG1511215
Nickel	ND	2.00	ND	37.7		1	07/21/2020 08:17	WG1511215
Selenium	ND	2.00	ND	37.7		1	07/21/2020 08:17	- WG1511215
Silver	ND	1.00	ND	18.8		1	07/21/2020 08:17	WG1511215
Zinc	92.9	5.00	1750	94.2		1	07/21/2020 08:17	WG1511215

Polychlorinated Biphenyls (GC) by Method 8082

	Result (wet)	RDL (Wet)	Result (dry)	RDL (dry)	Qualifier	Dilution	Analysis	Batch
Analyte	mg/kg	mg/kg	mg/kg	mg/kg			date / time	
PCB 1016	ND	0.496	ND	9.34		14.6	07/19/2020 11:04	WG1511338
PCB 1221	ND	0.496	ND	9.34		14.6	07/19/2020 11:04	WG1511338
PCB 1232	ND	0.496	ND	9.34		14.6	07/19/2020 11:04	WG1511338
PCB 1242	ND	0.496	ND	9.34		14.6	07/19/2020 11:04	WG1511338
PCB 1248	ND	0.248	ND	4.67		14.6	07/19/2020 11:04	WG1511338
PCB 1254	ND	0.248	ND	4.67		14.6	07/19/2020 11:04	WG1511338
PCB 1260	ND	0.248	ND	4.67		14.6	07/19/2020 11:04	WG1511338
(S) Decachlorobiphenyl	80,7			10.0-135			07/19/2020 11:04	WG1511338
(S) Tetrachloro-m-xylene	89.7			10,0-139			07/19/2020 11:04	WG1511338

ANNUAL SLUDGE

SAMPLE RESULTS - 02

ONE LAB, NATIONWIDE,

collected date/time: 07/16/20 11:00
Preparation by Method 1311

	Result	Qualifier	Prep	Batch
Analyte			date / time	
TCLP Extraction			7/18/2020 12:42:52 AM	WG1510327
TCLP ZHE Extraction	:4:		7/26/2020 8:02:54 PM	WG1515604
Fluid	1		7/18/2020 12:42:52 AM	WG1510327
Initial pH	7.46		7/18/2020 12:42:52 AM	WG1510327
Final pH	5.03		7/18/2020 12:42:52 AM	WG1510327

Ss

	Result	Qualifier	RDL	Limit	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l		date / time	0
Mercury	ND		0.0100	0.20	1	07/20/2020 19:22	WG1511731

Metals (ICP) by Method 6010B

	Result	Qualifier	RDL	Limit	Dilution	Analysis	<u>Batch</u>
Analyte	mg/l		mg/l	mg/l		date / time	
Arsenic	ND		0.100	5	1	07/20/2020 17:00	WG1511786
Barium	0.229		0.100	100	1	07/20/2020 17:00	WG1511786
Cadmium	ND		0.100	1	1	07/20/2020 17:00	WG1511786
Chromium	ND		0.100	5	1	07/20/2020 17:00	WG1511786
Lead	ND		0.100	5	1	07/20/2020 17:00	WG1511786
Selenium	ND		0.100	1 -	1	07/20/2020 17:00	WG1511786
Silver	ND		0.100	5	1	07/20/2020 17:00	WG1511786

GI

Sc

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result	Qualifier	RDL	Limit	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l		date / time	
Benzene	ND		0.0500	0.50	1	07/28/2020 03:36	WG1516074
Carbon tetrachloride	ND		0.0500	0.50	1	07/28/2020 03:36	WG1516074
Chlorobenzene	ND		0.0500	100	1	07/28/2020 03:36	WG1516074
Chloroform	ND		0.250	6	1	07/28/2020 03:36	WG1516074
,2-Dichloroethane	ND		0.0500	0.50	1	07/28/2020 03:36	WG1516074
1-Dichloroethene	ND		0.0500	0.70	1	07/28/2020 03:36	WG1516074
-Butanone (MEK)	ND		0.500	200	1	07/28/2020 03:36	WG1516074
etrachloroethene	ND		0.0500	0.70	1	07/28/2020 03:36	WG1516074
richloroethene	ND		0.0500	0.50	1	07/28/2020 03:36	WG1516074
inyl chloride	ND		0.0500	0.20	1	07/28/2020 03:36	WG1516074
(S) Toluene-d8	103		80.0-120			07/28/2020 03:36	WG1516074
(S) 4-Bromofluorobenzene	112		77.0-126			07/28/2020 03:36	WG1516074
(S) 1,2-Dichloroethane-d4	103		70.0-130			07/28/2020 03:36	WG1516074

ANNUAL SLUDGE Collected date/time: 07/16/20 11:00

SAMPLE RESULTS - 03

ONE LAB NATIONWIDE

製

Microbiology by Method EPA 1681

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	MPN/g			date / time	
Fecal Coliform -Geom Mean	<3281.2		1000	07/17/2020 09:34	WG1510986
Fecal Coliform -1	<3279.6		1000	07/17/2020 09:34	WG1510986
Fecal Coliform -2	<3276.3		1000	07/17/2020 09:34	WG1510986
Fecal Coliform -3	<3336.4		1000	07/17/2020 09:34	WG1510986
Fecal Coliform -4	<3263.3		1000	07/17/2020 09:34	WG1510986
Fecal Coliform -5	<3263.8		1000	07/17/2020 09:34	WG1510986
Fecal Coliform -6	<3281.9		1000	07/17/2020 09:34	WG1510986
Fecal Coliform -7	<3268.0		1000	07/17/2020 09:34	WG1510986

ANNUAL SLUDGE

SAMPLE RESULTS - 04

ONE LAB_NATIONWIDE

Collected date/time: 07/16/20 11:00
Preparation by Method 1311

Treparation by tvi	cinod isti				
	Result	Qualifier	Prep	<u>Batch</u>	
Analyte			date / time		
TCLP Extraction	*		7/29/2020 2:57:41 PM	WG1516975	
Fluid	1		7/29/2020 2:57:41 PM	WG1516975	
Initial pH	7.26		7/29/2020 2:57:41 PM	WG1516975	
Final pH	5,05		7/29/2020 2:57:41 PM	WG1516975	

Cn

Chlorinated Acid Herbicides (GC) by Method 8151A

	Result	Qualifier	RDL	Limit	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l		date / time	
2,4,5-TP (Silvex)	ND		0.00200	1	1	07/31/2020 17:29	WG1517676
2,4-D	ND		0.00200	10	1	07/31/2020 17:29	WG1517676
(S) 2,4-Dichlorophenyl Acetic Acid	83.2		14.0-158			07/31/2020 17:29	WG1517676

Pesticides (GC) by Method 8081B

	Result	<u>Qualifier</u>	RDL	Limit	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l		date / time	
Chlordane	ND		0.00500	0.03	1	07/31/2020 08:07	WG1518132
Endrin	ND		0.00500	0.02	1	07/31/2020 08:07	WG1518132
Heptachlor	ND		0.00500	0.0080	1	07/31/2020 08:07	WG1518132
Lindane	ND		0.00500	0.40	1	07/31/2020 08:07	WG1518132
Methoxychlor	ND		0.00500	10	1	07/31/2020 08:07	WG1518132
Toxaphene	ND		0,0100	0.50	1	07/31/2020 08:07	WG1518132
(S) Decachlorobiphenyl	83.2		10.0-128			07/31/2020 08:07	WG1518132
(S) Tetrachioro-m-xylene	76.5		10.0-127			07/31/2020 08:07	WG1518132

Semi Volatile Organic Compounds (GC/MS) by Method 8270C

	Result	Qualifier	RDL	Limit	Dilution	Analysis	Batch
Analyte	mg/I		mg/l	mg/l		date / time	
1,4-Dichlorobenzene	ND	<u>J3</u>	0.100	7.50	1	07/30/2020 22:54	WG1517424
2,4-Dinitrotoluene	ND		0.100	0.13	1	07/30/2020 22:54	WG1517424
Hexachlorobenzene	ND		0.100	0.13	1	07/30/2020 22:54	WG1517424
Hexachloro-1,3-butadiene	ND	<u>13</u>	0.100	0.50	1	07/30/2020 22:54	WG1517424
Hexachloroethane	ND	<u> 73</u>	0.100	3	1	07/30/2020 22:54	WG1517424
Nitrobenzene	ND	73	0.100	2	1	07/30/2020 22:54	WG1517424
Pyridine	ND	<u>J3</u>	0.100	5	1	07/30/2020 22:54	WG1517424
3&4-Methyl Phenol	ND	<u>J3</u>	0.100	400	1	07/30/2020 22:54	WG1517424
2-Methylphenol	ND	<u>J3</u>	0.100	200	1	07/30/2020 22:54	WG1517424
Pentachlorophenol	ND		0.100	100	1	07/30/2020 22:54	WG1517424
2,4,5-Trichlorophenol	ND	<u>J3</u>	0.100	400	1	07/30/2020 22:54	WG1517424
2,4,6-Trichlorophenol	ND	<u>J3</u>	0.100	2	1	07/30/2020 22:54	WG1517424
(S) 2-Fluorophenol	29.1		10.0-120			07/30/2020 22:54	WG1517424
(S) Phenol-d5	19_1		10.0-120			07/30/2020 22:54	WG1517424
(S) Nitrobenzene-d5	42.8		10.0-127			07/30/2020 22:54	WG1517424
(S) 2-Fluorobiphenyl	57.5		10.0-130			07/30/2020 22:54	WG1517424
(S) 2,4,6-Tribromophenol	68.0		10.0-155			07/30/2020 22:54	WG1517424
(S) p-Terphenyl-d14	80.3		10.0-128			07/30/2020 22:54	WG1517424

WG1511168

Total Solids by Method 2540 G-2011

QUALITY CONTROL SUMMARY

ONE LAB, NATIONWIDE.

Method Blank (MB)

	MB RDL	%	
	MB MDL	%	
	MB Qualifier		
//B) R3550963-1 07/19/20 03:52	MB Result	%	0.000
(MB) R3550963-		Analyte	Total Solids

L1239836-01 Original Sample (OS) • Duplicate (DUP)

	DUP RPD Limits	%	10
	DUP Qualifier		라]
03:52	Dilution DUP RPD	%	13.6
R3550963-3 07/19/20 03:52	Dilution		
P) R3550963-	DUP Result	%	17.1
7/19/20 03:52 • (DUF	Original Result	%	1.96
(OS) L1239836-01 07/19/20 03:52 • (DUP) R3		Analyte	Total Solids

ŋ

Š

Ss

0

Oc

Ö

d

Sc

9 of 30 PAGE:

DATE/TIME: 08/10/20 09:11

SDG: L1240214

PROJECT: sludge

Alexandria Sewer Treatment Plant

ACCOUNT:

Laboratory Control Sample (LCS)

(LCS) R3550963-2 0	77/19/20 03:52					
	Spike Amount LCS Result	LCS Result	ult LCS Rec.	Rec. Limits LCS Qualifier	LCS Qualifier	
Analyte	%	%	%	%		
Total Solids	50.0	49.9	8.66	85.0-115		

വ
∞
4
m
_
S
~
(D
>
>

Wet Chemistry by Method 350.1

Method Blank (MB)

MB Result MB Qualifier MB MDL MB RDL Analyte mg/kg mg/kg Ammonia Nitrogen U 7.00 10.0	(MB) R3552882-1 07/24/2012:55	24/20 12:55			
mg/kg mg/kg a Nitrogen U 7,00 10.0		MB Result	MB MDL	MB R	
U 7,00 10.0	Analyte	mg/kg	mg/kg	тд/кд	
	Ammonia Nitrogen	n	7.00		

QUALITY CONTROL SUMMARY

L1240589-01 Original Sample (OS) • Duplicate (DUP)

	US) L1240589-U1 07/24/2012:59 • (DUP) R3552882-3 07/24/2013:00) R3552882-3	07/24/20) 13:00		
	Original Result DUP Result (dry)	DUP Result (dry)	Dilution	Dilution DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	mg/kg	mg/kg		%		%
Ammonia Nitrogen	1500	1590		5.82		20

Laboratory Control Sample (LCS)

(LCS) R3552882-2 07/24/20 12:56	7/24/20 12:56				
	Spike Amount LCS Result	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/kg	mg/kg	%	%	
Ammonia Nitrogen	200	499	7.66	90.0-110	

L1241997-01 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

ONE LAB. NATIONWIDE.

8

C

Ss

C

Ś

Oc

Ō

⋖

Sc

PROJECT: sludge

Alexandria Sewer Treatment Plant

ACCOUNT:

4	
-	
29	
51.	
-	
9	
\$	

Wet Chemistry by Method 4500NOrg C-2011

QUALITY CONTROL SUMMARY

ONE LAB. NATIONWIDE.

8

 \subseteq

ű

Š

Ss

Oc

 $\overline{\mathbb{Q}}$

Sc

<1

Method Blank (MB)

MB RDL mg/kg 20.0 MB MDL mg/kg 4.48 MB Qualifier MB Result (MB) R3552055-2 07/22/2013:36 mg/kg Kjeldahl Nitrogen, TKN Analyte

L1240293-06 Original Sample (OS) • Duplicate (DUP)

DUP RPD Limits 20 **DUP Qualifier** Dilution DUP RPD (OS) L1240293-06 07/22/20 13:53 • (DUP) R3552055-8 07/22/20 13:55 0.000 Original Result DUP Result (dry) (dry) mg/kg 2 mg/kg 2 Kjeldahl Nitrogen, TKN Analyte

Laboratory Control Sample (LCS)

	LCS Qualifier		
	Rec. Limits LCS Qualifier	%	75.2-121
	LCS Rec.	%	93.2
	LCS Result	mg/kg	444
22/20 13:37	Spike Amount LCS Result LCS Rec.	mg/kg	476
(LCS) R3552055-5 07/22/20 13:37		Analyte	Kjeldahl Nitrogen, TKN

L1240293-01 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1240293-01 07/22/20 13:41 • (MS) R3552055-6 07/22/20 13:43 • (MSD)	(110)	3552055-6 0,	7/22/20 13:43 •	(MSD) R3552	2055-7 07/22/20 13:44	2/20 13:44						
	Spike Amount (dry)	Spike Amount Original Result MS Result (dry) (dry) (dry)	MS Result (dry)	MSD Result (dry)	MS Rec.	MSD Rec.	Dilution	Dilution Rec. Limits	MS Qualifier	MSD Qualifier RPD	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%
Kjeldahl Nitrogen, TKN	471	QN	67.2	53.9	14.3	11.5	-	90.0-110	97	J3 J6	21.9	20

11 of 30 PAGE:

08/10/20 09:11 DATE/TIME:

0

Ss

Ŋ

တင

Ū

₹

Š

Sc

NATIONWIDE.	i	P
NATIONWID		шì
NATION		9
NATIC		Ž
Z		Ę
		Ž

Method Blank (MB)

Wet Chemistry by Method 9056A

WG1511817

(MB) R3551448-1 07/20/20 12:39	20 12:39				
	MB Result	MB Qualifier	MB MDL	MB RDL	
Analyte	mg/kg		mg/kg	пд/кд	
Nitrate as (N)	Π		0.557	10,0	
Nitrite as (N)	Ω		0.505	10.0	

L1240208-01 Original Sample (OS) • Duplicate (DUP)

	Original Resu (dry)	Original Result DUP Result (dry) (dry)	Dilution	Dilution DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	mg/kg	mg/kg		%		%
Nitrate as (N)	QN	ND	-	0.000		15
Nitrite as (N)	QN	ND	**	0.000		15

L1241317-03 Original Sample (OS) • Duplicate (DUP)

221	(DUP) R		DUP RPD Laiffier Limits	%	15	15
	t5 - (DUP) K3551448-6 O ginal Result DUP Result /kg mg/kg ND	7/21/20 02:1	_	6		-
	ginal Resu	7) K3551448-6 0	ift DUP Result	mg/kg	ND	QN
05:	07:20 01:4 0 nj 0 ND	21/20 01:45 • (DUP	Original Resu	mg/kg	ND	N

Laboratory Control Sample (LCS)

(LCS) R3551448-2 07/20/20 13:01	7/20/20 13:01				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits LCS Qualifier	LCS Qualifier
Analyte	mg/kg	mg/kg	%	%	
Nitrate as (N)	20.0	19.1	95.7	80.0-120	AND THE RESIDENCE OF THE PARTY
Nitrite as (N)	20.0	19.8	8 86	80.0-120	

L1240407-01 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1240407-01 07/20/20 19:27 • (MS) R3551448-4 07/20/20 19:50 • (MSD) R3551448-5 07/20/20 20:13	7/20/20 19:27 • (MS) i	R3551448-4 0.	7/20/20 19:50	. (MSD) R3551	448-5 07/20	/20 20:13							
	Spike Amount	Spike Amount Original Result MS Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Dilution Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits	
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%	
Nitrate as (N)	50.0	ND	59,5	56,1	109	102	-	80.0-120			5,87	15	
Nitrite as (N)	50.0	ND	51.8	48.8	104	97.5	-	80.0-120			6.05	15	

12 of 30	08/10/20 09:11	L1240214	elpnis	Alexandria Sewer Treatment Plant
PAGE	DATE/TIME:	SDG;	PROJECT:	ACCOUNT:

	i
	1
3	:
~	
~	
$\mathbf{\Omega}$	•
$\overline{}$	
Ú	
v.	
~	_
≥	- 2

Mercury by Method 7470A

QUALITY CONTROL SUMMARY

ONE LAB, NATIONWIDE.

Ľ

Ss

ر ت

Š

Oc

G

N

SC

Method Blank (MB)

	MB RDL	ηβm	0.0100
	MB MDL	l/gm	0.00330
	MB Qualifier		
(MB) R3551349-1 07/20/20 18:47	MB Result	l/gm	n
(MB) R3551349		Analyte	Mercury

Laboratory Control Sample (LCS)

	Rec. Limits LCS Qualifier		80.0-120
	LCS Rec.	%	109
	LCS Result	l/gm	0.0326
/20/20 18:48	Spike Amount LCS Result	l/gm	0.0300
(LCS) R3551349-2 07/20/20 18:48		Analyte	Mercury

		D Qualifier RPD RPD Limits		0.938 20
		MS Qualifier MSD Qualifier RPD		
		Dilution Rec. Limits N	%	75.0-125
(OS)		Dilution		æ
uplicate (M	0/20 18:54	MSD Rec.	%	108
ix Spike D	51349-4 07/20	MS Rec.	%	109
MS) • Matr	2 • (MSD) R35!	MSD Result	l/gm	0.0324
trix Spike (I	07/20/20 18:52	MS Result	₩g/I	0.0327
(OS) • Mar) R3551349-3	Spike Amount Original Result MS Result	l/gm	Q
riginal Sample	//20/20 18:50 · (MS,	Spike Amount	l/gm	0.0300
L1240786-02 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)	(OS) L1240786-02 07/20/20 18:50 • (MS) R3551349-3 07/20/20 18:52 • (MSD) R3551349-4 07/20/20 18:54		Analyte	Mercury

,	á	á	6
	i	į	Ŗ
		i	
		17.4	2
		2	2

QUALITY CONTROL SUMMARY

ONE LAB, NATIONW

WG1511776 Mercury by Method 7471A Method Blank (MB)

(MB) R3551356-1	(MB) R3551356-1 07/20/20 20:34				
	MB Result	MB Qualifier	MB MDL	MB RDL	
Analyte	mg/kg		mg/kg	mg/kg	
Mercury	n		0.0180		

Laboratory Control Sample (LCS)

	S Qualifier		
	Rec. Limits LCS	%	80.0-120
	LCS Rec.	%	88.7
	LCS Result	mg/kg	0.443
5	Spike Amount LCS Result	mg/kg	0.500
(LOS) 133331330-2 07/20/20 20:30			

Ŋ

Š

SS

Öc

Ō

1

Sc

L1239861-06 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Dunlinate (MS)

1	_		_	l L
	1	RPD Limits	*	20
		r RPD	%	10.0
		MSD Qualifier		
		MS Qualifier		
		Dilution Rec. Limits	%	75.0-125
207		Dilution		-
uplicate (IVI	20/20 20:43	MSD Rec.	%	82,3
X UDIKE L	51356-4 07/;	MS Rec.	%	92.5
(IND) . INDUIT	0:41 • (MSD) R355	Spike Amount Original Result MS Result (dry) MSD Result (dry) (dry)	mg/kg	0.515
N OPIKE	07/20/20	t MS Result (mg/kg	0.569
(C2) • IMIG	3) R3551356-3	Original Resul (dry)	mg/kg	0_0784
riginal Janipia	7/20/20 20:38 • (MS	Spike Amount (dry)	mg/kg	0.531
Lizador-do Original Sarripre (OS) • Matrix Spike (MS) • Matrix Spike Dupircate (MSD)	(OS) L1239861-06 07/20/20 20:38 • (MS) R3551356-3 07/20/20 20:41 • (MSD) R3551356-4 07/20/20 20:43		Analyte	Mercury

PROJECT:	sludge

Alexandria Sewer Treatment Plant ACCOUNT:

SDG:	L1240214

WG1511215	Matale (ICD) by Mothad coton

ONE LAB, NATIONWIDE.

9

0

Ss

Metals (ICP) by Method 6010B Method Blank (MB)

(MB) R355174	MB) R3551741-1 07/21/20 07:29				
	MB Result	MB Qualifier	MB MDL	MB RDL	
Analyte	mg/kg		mg/kg	mg/kg	
Arsenic	n		0.460	2.00	
Cadmlum	Π		0.0810		
Copper	U		905.0		
Lead	Π		0.208		
Molybdenum	n		0.200	0.500	
Nickel	ħ		0.490	2.00	
Selenium	n		0.617	2,00	
Silver	Ð		0,228	1,00	
Zinc	Ð		0.939	5,00	

CJ.

Š

Öc

<u>(D</u>

<u>a</u>

Sc

Laboratory Control Sample (LCS)

(LCS) R3551741-2 07/21/	/21/20 07:32					
	Spike Amount LCS Result	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier	
Analyte	mg/kg	mg/kg	%	%		
Arsenic	100	95.5	95.5	80,0-120		
Cadmium	100	9.96	9.96	80.0-120		
Copper	100	8.96	8.96	80.0-120		
Lead	100	97.2	97.2	80.0-120		
Molybdenum	100	101	101	80.0-120		
Nickel	100	6.86	6.86	80.0-120		
Selenium	100	95.7	95.7	80.0-120		
Silver	20.0	18.6	93.0	80.0-120		
Zinc	100	95.9	95.9	80.0-120		

L1240208-05 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

US) LIZ4UZUQ-US L	OS) [1240206-03 07/21/20 07:34 • (MS) R3551/41-5 07/21/20 07:42 • (MSD) R3551/	K3551/41-5 U	- 74:70 07/17/	עככצא (שכואו)	41-6 01/21/20 01:44	7 0 7:44							
	Spike Amount (dry)	Original Result (dry)	Spike Amount Original Result MS Result (dry) MSD Result (dry) (dry)	MSD Result (dry)	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits	
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	96	
Arsenic	#	ND	107	7.76	95,1	87.0	-	75.0-125			8.78	20	
Cadmium	#	ON	108	101	97.2	90.2	÷	75.0-125			7.49	20	
Copper	111	ND	115	106	102	94.6	-	75.0-125			77.7	20	
Lead	Ш	1.34	112	104	9"66	92.4	-	75.0-125			7.43	20	
Molybdenum	111	ND	100	92.8	8.68	83.3	-	75.0-125			7.50	20	
Nickel	111	NO	116	108	103	96.1	-	75.0-125			6.84	20	
Selenium	111	ND	106	97.2	95.1	87.2	Æ	75.0-125			8.63	20	
Silver	22.3	NO	20.8	19.3	93.3	86.5		75.0-125			7.61	20	

15 of 30 PAGE:

08/10/20 09:11 DATE/TIME:

L1240214

PROJECT: sludge

Alexandría Sewer Treatment Plant

ACCOUNT:

ONE LAB, NATIONWIDE,

Ŋ

Š

Ss

U

တိ

 $\overline{\mathbb{Q}}$

<1

SC

L1240208-05 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

Metals (ICP) by Method 6010B

WG1511215

(OS) L1240208-05 07/21/20 07:34 • (MS) R3551741-5 07/21/20 07:42 • (MSD) R3551741-6 07/21/20 07:44

	D RPD Limits	%	20
	MSD Qualifier RPD	%	8.58
	MS Qualifier		
	Dilution Rec. Limits	%	75.0-125
	Dilution		
t+: /O O Z	MSD Rec.	%	90.1
17170 011	MS Rec.	%	98.3
COCCY (CICINI) . Pt. C	Spike Amount Original Result MS Result (dry) MSD Result (dry) (dry)	mg/kg	102
0021711	t MS Resul	mg/kg	112
01110000	Original Resul (dry)	mg/kg	QN
(CIVI) - +C.10 02/12/1	Spike Amount (dry)	mg/kg	111
th://o 02/2//o 04th/0000/(000) • 2t://o 02/2//o 04th/0000/(000) • to://o 02/2//o 00-0020trial/(00)		Analyte	Zinc

SDG:	11240214

PROJECT: sludge

Alexandria Sewer Treatment Plant

ACCOUNT:

16 of 30

08/10/20 09:11 DATE/TIME:

ONE LAB, NATIONWIDE

í

S

C

Ss

oc

5

Š

Sc

₹

Method Blank (MB)

MB RDL 0.100 0.100 0.100 0.100 0,100 0.100 0.100 l/gm MB MDL 0.0333 0.0333 0.0333 0.0333 0.0333 0,0333 mg/l MB Qualifier MB Result 0.0488 0.0640 mg/l (MB) R3551333-1 07/20/20 16:17 Сһғотіит Cadmium Selenium Analyte Arsenic Barlum Lead

Laboratory Control Sample (LCS)

Analyte mg/l mg/l Rec. Limits LCS Qualifier Arsenic ng/l mg/l % % Arsenic 10.0 9.53 80.0-120 Barium 10.0 9.51 80.0-120 Cadmium 10.0 9.51 80.0-120 Chromium 10.0 9.30 80.0-120 Lead 10.0 9.62 96.2 80.0-120 Selenium 10.0 9.81 80.0-120 Silver 2.00 1.78 89.1 80.0-120						
mg/l mg/l % % 10.0 9.53 95.3 80.0-120 10.0 9.72 97.2 80.0-120 10.0 9.51 95.1 80.0-120 10.0 9.30 93.0 80.0-120 10.0 9.62 96.2 80.0-120 10.0 9.81 98.1 80.0-120 2.00 1.78 89.1 80.0-120		Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
10.0 9.53 95.3 10.0 9.72 97.2 10.0 9.51 95.1 10.0 9.30 93.0 10.0 9.62 96.2 10.0 9.81 98.1 2.00 1.78 89.1	Analyte	l/gm	l/gm	%	%	
10.0 9.72 97.2 10.0 9.51 95.1 10.0 9.30 93.0 10.0 9.62 96.2 10.0 9.81 98.1 2.00 1.78 89.1	Arsenic	10.0	9.53	95.3	80.0-120	
10.0 9.51 95.1 10.0 9.30 93.0 10.0 9.62 96.2 10.0 9.81 98.1 2.00 1.78 89.1	Barium	10.0	9.72	97.2	80.0-120	
10.0 9.30 93.0 10.0 9.62 96.2 10.0 9.81 98.1 2.00 1.78 89.1	Cadmium	10.0	9.51	95.1	80.0-120	
10.0 9.62 96.2 10.0 9.81 98.1 2.00 1.78 89.1	Chromium	10.0	9.30	93.0	80.0-120	
10.0 9.81 98.1 2.00 1.78 89.1	Lead	10.0	9.62	96.2	80.0-120	
2.00 1.78 89.1	Selenium	10.0	9.81	98.1	80.0-120	
	Silver	2.00	1.78	1.68	80.0-120	

L1239973-02 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(-a) - 12222 - 12202 -	(1)	000000	01/20/20 10:2:	1000110011	333-3 01/20	720 10.50						
	Spike Amount Original Result MS Result	Original Resul	t MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	l/gm	l/ɓm	mg/l	l/gm	%	%		%			₉₆	%
Arsenic	10.0	QN.	9.80	9.53	97.3	94.7	-	75.0-125			2.71	20
Barium	10.0	0.366	10.3	10.0	99.1	2.96	-	75.0-125			2.37	20
Cadmium	10:0	QN	9.62	9.44	96.2	94.4	***	75.0-125			1.88	20
Chromium	10.0	Q	9.41	9.26	94.1	92.6		75.0-125			1.63	20
-ead	10.0	ON.	9.76	9.56	97.6	95.6		75.0-125			2.14	20
Selenium	10.0	N _O	9.84	9.74	98.4	97.4	-	75.0-125			976.0	20
Silver	2.00	ND	1.80	1.77	90.2	88.6	_	75 0-125			171	20

PROJECT: sludge

08/10/20 09:11

Volatile Organic Compounds (GC/MS) by Method 8260B

Method Blank (MB)

WG1516074

(MB) R3553780-3 07/28/20 02:54	/20 02:54					
	MB Result	MB Qualifier	MB MDL	MB RDL		
Analyte	l/gm		mg/l	l/gm		
Benzene	ח		0.0167	0.0500	To the control of the	
Carbon tetrachloride	n		0.0167	0.0500		
Chlorobenzene	n		0,0167	0.0500		
Chloroform	Π		0.0833	0.250		
1,2-Dichloroethane	Π		0.0167	0.0500		
1,1-Dichloroethene	Π		0.0167	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		
2-Butanone (MEK)	Π		0.167	0.500		
Tetrachloroethene	Π		0.0167	0.0500		
Trichloroethene	Π		0.0167	0.0500		
Vinyl chloride	Π		0.0167	0.0500		
(S) Toluene-d8	102			80.0-120		
(S) 4-Bromofluorobenzene	109			77.0-126		
(S) 1,2-Dichloroethane-d4	103			70.0-130		

Ö

Ō

~(

Sc

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3553780-1 07/27/20 23:30 • (LCSD) R3553780-2 07/28/20 02:05	7/20 23:30 • (LCSD) R3	D) R3553780	1-2 07/28/20 02	2:05						
	Spike Amount LCS Result	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier RPD	RPD Limits	
Analyte	mg/l	mg/l	mg/l	%	%	%		%	%	
Benzene	0.250	0.240	0.250	0.96	100	70.0-123		4.08	20	
Carbon tetrachloride	0,250	0.285	0.304	114	122	68.0-126		6.45	20	
Chlorobenzene	0.250	0.236	0.254	94.4	102	80.0-121		7.35	20	
Chloroform	0,250	0.247	0.270	8'86	108	73.0-120		8.90	20	
1,2-Dichloroethane	0.250	0,249	0,259	9.66	104	70.0-128		3.94	20	
1,1-Dichloroethene	0.250	0,254	0.284	102	114	71.0-124		11.2	20	
2-Butanone (MEK)	1.25	1.08	1.05	86.4	84.0	44.0-160		2.82	20	
Tetrachloroethene	0.250	0.268	0.304	107	122	72.0-132		12.6	20	
Trichloroethene	0.250	0.265	0.247	106	8.86	78.0-124		7.03	20	
Vinyl chloride	0.250	0.221	0.236	88.4	94.4	67.0-131		6.56	20	
(S) Toluene-d8				103	102	80.0-120				
(S) 4-Bromofluorobenzene				108	109	77.0-126				
(S) 1,2-Dichloroethane-d4				103	104	70.0-130				

G

Ss

Ŋ

Ś

08/10/20 09:11 DATE/TIME:

L1240214

PROJECT: sludge

WG1516074

QUALITY CONTROL SUMMARY

ONE LAB. NATIONWIDE.

Volatile Organic Compounds (GC/MS) by Method 8260B

L1240214-02 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD) (OS) 1740214_07 07/28/20 03:36 . (MS) B3EE3780 4 07/28/2010:04

(00) 12:40 01:20 01:20 03:30 (MIS) 13:33:40 01:26 (MIS) 13:33:40-5 01/28/20 10:25	20/20 03:30 · (IVIS)	4-00/00cc	0//28/20 10:0	4 • (MSD) K355	3/80-5 0//28	\$/50 IO:25						
	Spike Amount	Spike Amount Original Result MS Result	t MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits N	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	l/gm	mg/l	mg/l	l/gm	%	%					%	%
Benzene	0.250	N	0.260	0.238	104	95.2	_	17.0-158			8.84	27
Carbon tetrachloride	0.250	QN	0.315	0.283	126	113	+	23.0-159			10.7	28
Chlorobenzene	0.250	QN	0.263	0.266	105	106	-	33.0-152			1.13	27
Chloroform	0.250	QN	0.282	0.262	113	105	_	29,0-154			7.35	28
1,2-Dichloroethane	0.250	ND	0.312	0.294	125	118	شو	29,0-151			5.94	27
1,1-Dichloroethene	0,250	ND	0.278	0.225	111	0.06	-	11.0-160			21.1	29
2-Butanone (MEK)	1,25	QN	1.37	1.30	110	104	-	10.0-160			5.24	32
Tetrachloroethene	0,250	QN	0.308	0.289	123	116	-	10.0-160			6.37	27
Trichloroethene	0,250	N Q	0.298	0.261	119	104	-	10.0-160			13.2	25
Vinyl chloride	0.250	QN	0.230	0.198	92.0	79.2	_	10.0-160			15.0	27
(S) Toluene-d8					101	102		80.0-120				
(S) 4-Bromofluorobenzene	Э				103	104		77.0-126				
(S) 1,2-Dichloroethane-d4	4				108	107		70.0-130				

٦ ت

Ss

 \Box

Oc

0

₹

Ś

Sc

L1240214

PROJECT: sludge

ONE LAB. NATIONWIDE.

8

0

Ss

S

Š

Oc

 $\overline{\mathbb{Q}}$

₹

Sc

Chiorinated Acid Herbicides (GC) by Method 8151A

Method Blank (MB)

0//3//2	KES KESPESSON 1/31/20 16:19			
	MB Result	MB Qualifier MB MDL	MB MDL	IL MB RDL
	mg/l		l/ɓw	ηβιμ
	n		0.000667	967 0,00200
2,4,5-TP (Silvex)	n		0.000667	967 0.00200
henyl Acet	(S) 2,4-Dichlorophenyl Acetic 85.4 Acid			14.0-158

Laboratory Control Sample (LCS)

(LCS) R3555356-2 07/31/20 16:30	0 16:30				
	Spike Amount		LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/l mg/l	mg/l	%	%	
2,4D	0.0500	0.0426	85.2	50.0-120	
,4,5-TP (Silvex)		0.0399	79.8	50.0-125	
(S) 2,4-Dichlorophenyl Acetic Acid			85.0	14.0-158	

L1243172-01 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1243172-01 07/31/20 17:44 • (MS) R3555356-3 07/31/20 17:58 • (MSD) R3555356-4 07/31/20 18:13	31/20 17:44 • (MS) R.	3555356-3 07	//31/20 17:58 •	(MSD) R35553	56-4 07/31/2	0 18:13							
	Spike Amount	Spike Amount Original Result MS Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Dilution Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits	
Analyte	∥/gш	mg/l	mg/l	√gm	%	%		%			%	%	
2,4D	0.0500	ND	0.0435	0.0417	87.0	83.4	-	50.0-120			4.23	20	
2,4,5-TP (Silvex)	0.0500	QN	0.0402	0.0376	80.4	75.2	-	50,0-125			89.9	20	
(S) 2,4-Dichlorophenyl Acetic Acid	Acetic				84.4	82,2		14.0-158					

ONE LAB, NATIONWIDE

đ

E

SS

ر ت

Š

OC

 $\overline{\mathbb{Q}}$

Z

Method Blank (MB)

7/31/2	(MB) R3555068-1 07/31/20 07:42				
	MB Result	MB Qualifier	MB MDL	MB RDL	
	l/gm		∥g/l	mg/l	
	n		0.00167	0.00500	
	n		0.00167		
	ם		0.00167		
	n		0.00167	0.00500	
	n		0.00167	0.00500	
	n		0.00333	0.0100	
(S) Decachlorobiphenyl	89.7			10,0-128	
(S) Tetrachloro-m-xylene	77.2			10,0-127	

Laboratory Control Sample (LCS)

(LCS) R3555068-2 07/31/20 07:55	1/20 07:55					
	Spike Amount LCS Result	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier	
Analyte	l/gm	l/gm	%	%		
Gатта ВНС	0.0100	0.00938	93.8	55.0-129		
Endrin	0.0100	0.0100	100	57.0-134		
Heptachior	0.0100	0.8800	88.0	27.0-132		
Methoxychlor	0.0100	0.00958	95.8	54.0-155		
(S) Decachlorobiphenyl			94.9	10.0-128		
(S) Tetrachloro-m-xylene			83.6	10,0-127		

L1240214-04 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(US) L1240214-04 07/31/20 08:07 • (MS) R3555068-3 07/31/20 08:20 • (MSD) R3555068-4 07/31/20 08:32	31/20 08:07 • (MS) I	7 5-8905555	7//31/20 08:2C	1 • (MISD) K355	5068-4 07/31	1/20 08:32						
	Spike Amount	Spike Amount Original Result MS Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	l/gm	mg/l	mg/l	Mg∕I	%	96		%			%	%
Gamma BHC	0.0100	ND	0.00947	0.00895	94.7	89.5	-	14.0-141			5.65	40
Endrin	0,0100	ND	0.00974	0.00953	97.4	95.3	-	10.0-160			2.18	39
Heptachlor	0,0100	ND	0.00880	0.00779	88.0	77.9		16.0-136			12.2	40
Methoxychlor	0.0100	ND	0.00950	0.00949	95,0	94.9	-	10.0-160			0.105	34
(S) Decachlorobiphenyl					56.2	78.5		10.0-128				
(S) Tetrachloro-m-xylene					54.2	81.2		10.0-127				

PROJECT: sludge

L1240214

QUALITY CONTROL SUMMARY L1240214-01

ONE LAB, NATIONWIDE.

Method Blank (MB)

Analyte MB Result MB ADUalifier MB ADL MB RDL Analyte mg/kg mg/kg mg/kg PCB 1016 U c) 0.0118 0,0340 PCB 1221 U c) 0.0118 0,0340 PCB 1232 U c) 0.018 0,0340 PCB 1248 U c) 0.0138 0,0170 PCB 1254 U c) 0.0738 0,0170 PCB 1254 U c) 0.0738 0,0170 PCB 1260 U c) 0.0738 0,0170 PCB 1260 U c) 0.0738 0,0170 PCB 1260 U c) 0.0738 0,0170 S(5) Pecachlorobiphenyl 8.74 10,0-139 (5) Fetrachloro-m-xylene 92.8 10,0-139	(MB) R35508 / /-1 0 / /19/20 10:09	50.10:09					
mg/kg mg/kg mg/kg U 0.0118 0,0340 U 0.0118 0,0340 U 0.0118 0,0340 U 0.0118 0,0340 U 0.00738 0,0170 U 0,00738 0,0170 U 0,00738 0,0170 U 0,00738 0,0170 N 0,0073 0,0170 Horon-xylene 92.8 10,0-139		MB Result	MB Qualifier	MB MDL	MB RDL		
U 0.0118 0.0340 U 0.0118 0.0340 U 0.0118 0.0340 U 0.0118 0.0340 U 0.00738 0.0170 U 0.00738 0.0170 U 0.00738 0.0170 hlorobiphenyl 87.4 10.0-135 hlorom-xylene 92.8 10.0-139	Analyte	mg/kg		mg/kg	Ď.		
U 0.0118 0,0340 U 0.0118 0,0340 U 0.0118 0,0340 U 0.00738 0,0170 U 0,00738 0,0170 hlorobiphenyl 87.4 10,0-135 hlorom-xylene 92.8 10,0-139	PCB 1016	n		0.0118			
U 0.0118 0,0340 U 0.0118 0,0340 U 0.00738 0,0170 U 0,00738 0,0170 U 0,00738 0,0170 hlorobiphenyl 87.4 10,0-135 hlorom-xylene 92.8 10,0-139	PCB 1221	n		0.0118			
U 0.0118 0.0340 U 0.00738 0.0170 U 0.00738 0.0170 Inforobiphenyl 87.4 10.0-135 Inforom-xylene 92.8 10.0-139	PCB 1232	ח		0.0118			
U 0.00738 0,0170 U 0.00738 0,0170 U 0.00738 0,0170 nlorobiphenyl 87.4 10,0-135 nloror-xylene 92.8 10,0-139	PCB 1242	Ω		0.0118			
U 0.00738 0.0170 U 0.00738 0.0170 nlorobiphenyl 87.4 10.0-135 nloror-xylene 92.8 10.0-139	PCB 1248	Π		0.00738			
U 0.00738 0,0170 achlorobiphenyl 87.4 10.0-135 achloro-m-xylene 92.8 10.0-139	PCB 1254	ח		0.00738			
87.4 10.0-135 5 92.8 10.0-139	PCB 1260	ח		0.00738			
92.8	(S) Decachlorobiphenyl	87.4			- 20		
	(S) Tetrachloro-m-xylene	92.8			139		

Oc

5

A

Sc

Ss

<u>____</u>

٦ ت

Š

Laboratory Control Sample (LCS)

(LCS) R3550877-2 07/19/20 10:22	/20 10:22				
	Spike Amount LCS	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/kg	mg/kg	%	%	
PCB 1260	0.167	0,147	88.0	37.0-145	
PCB 1016	0.167	0.156	93.4	36.0-141	
(S) Decachlorobiphenyl			88.6	10.0-135	
(S) Tetrachloro-m-xylene			92.3	10,0-139	

L1240728-01 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1240728-01 07/19/20 14:44 • (MS) R3550877-3 07/19/20 14:57 • (MSD) R3550877-4 07/19/20 15:11

	Spike Amount (dry)	Spike Amount Original Result MS Result (dry) MSD Result (dry) (dry)	MS Result (dry)	MSD Result (dry)	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%
PCB 1260	0.180	ND	0.150	0.208	83.2	116	-	10.0-160			32.5	38
PCB 1016	0.180	ND	0.255	0.988	142	549	-	10.0-160	<u>a.</u>	J3 J5 P	118	37
(S) Decachlorobiphenyl					85.4	101		10.0-135	ı			
(S) Tetrachloro-m-xylene					979	78.5		10.0-139				

ONE LAB, NATIONWIDE

Method Blank (MB)

	07:17 07:00:10 7 10:000:10:10:10				
	MB Result	MB Qualifier	MB MDL	MBRDL	
Analyte	∥gm		∏g/I	l/gm	
1,4-Dichlorobenzene	Π		0.0333	0.100	
2,4-Dinitrotofuene	Π		0.0333	0,100	
Hexachlorobenzene	n		0.0333	0,100	
Hexachloro-1,3-butadiene	Π		0.0333	0.100	
Hexachloroethane	Π		0.0333	0.100	
Nitrobenzene	Π		0.0333	0,100	
2-Methylphenol	Ω		0.0333	0.100	
3&4-Methyl Phenol	n		0.0333	0,100	
Pentachlorophenol	Π		0.0333	0,100	
2,4,5-Trichlorophenol	n		0.0333	0,100	
2,4,6-Trichlorophenol	Π		0.0333	0,100	
Pyridine	Ω		0.0333	0,100	
(S) 2-Fluorophenol	31.2			10.0-120	
(S) Phenol-d5	18.9			10.0-120	
(S) Nitrobenzene-d5	42.9			10.0-127	
(S) 2-Fluorobiphenyl	55.1			10.0-130	
(S) 2,4,6-Tribromophenol	61.5			10,0-155	
(S) p-Terphenyl-d14	78.6			10 0-128	

C

Š

Ss

 \vdash

QC

5

Sc

<1

Laboratory Control Sample (LCS)

	(LCS) R3555161-1 07/30/20 21:07					
	Spike Amount LCS Result	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier	
Analyte	mg/l	mg/l	%	%		
1,4-Dichlorobenzene (0.500	0.233	46.6	18.0-120		
2,4-Dinitrotoluene (0.500	0,431	86.2	49.0-124		
Hexachlorobenzene (0-500	0.375	75.0	44.0-120		
Hexachloro-1,3-butadiene	0.500	0.232	46.4	19.0-120		
Hexachloroethane (0-500	0.224	44.8	15.0-120		
Nitrobenzene (0.500	0.245	49.0	27.0-120		
2-Methylphenol (0.500	0.234	46.8	28.0-120		
3&4-Methyl Phenol (0.500	0.258	51.6	31.0-120		
Pentachlorophenol (0.500	0.332	66.4	23.0-120		
2,4,5-Trichlorophenol (0.500	0.385	77.0	44.0-120		
2,4,6-Trichlorophenol (0.500	0.356	71.2	42.0-120		
Pyridine	0.500	0.167	33.4	10.0-120		
(S) 2-Fluorophenol			30.6	10.0-120		
(S) Phenol-d5			20.7	10.0-120		
(S) Nitrobenzene-d5			45.2	10.0-127		

PAGE: 23 of 30

08/10/20 09:11 DATE/TIME:

L1240214

PROJECT: sludge

Alexandria Sewer Treatment Plant ACCOUNT:

Semi Volatile Organic Compounds (GC/MS) by Method 8270C

Laboratory Control Sample (LCS)

WG1517424

(LCS) R3555161-1 07/30/20 21:07	20 21:07					
	Spike Amount LCS Result LCS Rec.	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier	
Analyte	∥g/l	ng/l	%	%		
(S) 2-Fluorobiphenyl			61.0	10.0-130		
(S) 2,4,6-Tribromophenol			85.0	10.0-155		
(S) p-Terphenyl-d14			81.1	10.0-128		

Ŋ

Š

Ss

C

Öc

<u>5</u>

<

	0/20 22:54 · (MS)) R3555161-	(OS) L1240214-04 07/30/20 22:54 • (MS) R3555161-3 07/30/20 23:16 • (MSD) R3555161-4 07/30/20 23:37	· · (MSD) R3555	161-4 07/30/	20 23:37						
	Spike Amount	Original Re	Spike Amount Original Result MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	l/gm	mg/l	l/gm	mg/l	%	%		%			%	%
1,4-Dichlorobenzene	0.500	Q	0.294	0,170	58.8	34.0	-	17.0-120		55	53.4	40
2,4-Dinitrotoluene	0.500	9	0.446	0,381	89.2	76.2	-	39.0-125			15.7	25
Hexachlorobenzene	0.500	QN	0.406	0,337	81.2	67.4	-	35.0-122			18.6	24
Hexachloro-1,3-butadiene	0.500	QN	0.297	0.181	59.4	36.2	-	12.0-120		5.	48.5	34
Hexachloroethane	0.500	QN	0.290	0,170	58.0	34.0	-	10.0-120		J3	52.2	40
Nitrobenzene	0.500	QN	0.290	0.169	58.0	33.8	-	12.0-120		୯ ୮	52.7	30
2-Methylphenol	0.500	Q	0.290	0,158	58.0	31.6	-	10.0-120		୍ଟା	58.9	30
3&4-Methyl Phenol	0.500	N	0.306	0,177	61.2	35.4	-	10.0-120		er 	53.4	36
Pentachlorophenol	0.500	Q	0,360	0,327	72.0	65.4	-	10.0-128			9.61	37
2,4,5-Trichlorophenol	0.500	Q	0.422	0.300	84.4	0.09	-	33.0-120		el	33.8	31
2,4,6-Trichlorophenol	0.500	9	0.410	0.261	82.0	52.2	-	26.0-120		er]	44.4	31
Pyridine	0.500	9	0.121	ND	24.2	13.4	-	10.0-120		er	57.4	37
(S) 2-Fluorophenol					38.6	19.1		10,0-120				
(S) Phenol-d5					25.4	12.5		10.0-120				
(S) Nitrobenzene-d5					52.7	28.7		10.0-127				
(S) 2-Fluorobiphenyl					73.9	45.5		10.0-130				
(S) 2,4,6-Tribromophenol					91.0	73.5		10.0-155				
ISI n. Tornhoovy dt/					828	79.4		10.0-128				

Sc

08/10/20 09:11

24 of 30

slùdge

Guide to Reading and Understanding Your Laboratory Report

The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. intended as a comprehensive explanation, and if you have additional questions please contact your project representative. This is not

Results Disclaimer - Information that may be provided by the customer, and contained within this report, include Permit Limits, Project Name, Sample ID, Sample Matrix, Sample Preservation, Field Blanks, Field Spikes, Field Duplicates, On-Site Data, Sampling Collection Dates/Times, and Sampling Location. Results relate to the accuracy of this information provided, and as the samples are received.

Abbreviations and Definitions

7 IBBI C VIGHOUS G	Tra Definitions
(dry)	Results are reported based on the dry weight of the sample. [this will only be present on a dry report basis for soils],
MDL	Method Detection Limit,
ND	Not detected at the Reporting Limit (or MDL where applicable).
RDL	Reported Detection Limit:
RDL (dry)	Reported Detection Limit.
Rec.	Recovery
RPD	Relative Percent Difference.
SDG	Sample Delivery Group,
(S)	Surrogate (Surrogate Standard) - Analytes added to every blank, sample, Laboratory Control Sample/Duplicate and Matrix Spike/Duplicate; used to evaluate analytical efficiency by measuring recovery. Surrogates are not expected to be detected in all environmental media.
U	Not detected at the Reporting Limit (or MDL where applicable).
Analyte	The name of the particular compound or analysis performed, Some Analyses and Methods will have multiple analytes reported.
Dilution	If the sample matrix contains an interfering material, the sample preparation volume or weight values differ from the standard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis, if a value different than 1 is used in this field, the result reported has already been corrected for this factor.
Limits	These are the target % recovery ranges or % difference value that the laboratory has historically determined as normal for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or duplicated within these ranges.
Original Sample	The non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality control sample. The Original Sample may not be included within the reported SDG.
Qualifier	This column provides a letter and/or number designation that corresponds to additional information concerning the result reported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable.
Result	The actual analytical final result (corrected for any sample specific characteristics) reported for your sample, If there was no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL" (Below Detectable Levels). The information in the results column should always be accompanied by either an MDL (Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detect or report for this analyte.
Uncertainty (Radiochemistry)	Confidence level of 2 sigma.
Case Narrative (Cn)	A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.
Quality Control Summary (Qc)	This section of the report includes the results of the laboratory quality control analyses required by procedure or analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not being performed on your samples typically, but on laboratory generated material.
Sample Chain of Custody (Sc)	This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of the samples from the time of collection until delivery to the laboratory for analysis.
Sample Results (Sr)	This section of your report will provide the results of all testing performed on your samples. These results are provided by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section for each sample will provide the name and method number for the analysis reported.

-			_	_
12				
100	7	m,	m	

Qualifier	Description	
J	The identification of the analyte is acceptable; the reported value is an estimate.	
J3	The associated batch QC was outside the established quality control range for precision.	
J5	The sample matrix interfered with the ability to make any accurate determination; spike value is high.	
J6	The sample matrix interfered with the ability to make any accurate determination; spike value is low,	
Р	RPD between the primary and confirmatory analysis exceeded 40%	

Sample Summary (Ss)

times of preparation and/or analysis,

This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates and

ACCREDITATIONS & LOCATIONS

ONE LAB, NATIONWIDE,

Pace National is the only environmental laboratory accredited/certified to support your work nationwide from one location. One phone call, one point of contact, one laboratory. No other lab is as accessible or prepared to handle your needs throughout the country. Our capacity and capability from our single location laboratory is comparable to the collective totals of the network laboratories in our industry. The most significant benefit to our one location design of our laboratory campus. The model is conducive to accelerated productivity, decreasing turn-around time, and preventing cross contamination, thus protecting sample integrity. Our focus on premium quality and prompt service allows us to be YOUR LAB OF CHOICE.

* Not all certifications held by the laboratory are applicable to the results reported in the attached report.

* Accreditation is only applicable to the test methods reportified on each person of accreditation held by the Pace National.

* Accreditation is only applicable to the test methods specified on each scope of accreditation held by Pace National,

State Accreditations

Alabama	40660	Nebraska	NE-OS-15-05
Alaska	17-026	Nevada	TN-03-2002-34
Arizona	AZ0612	New Hampshire	2975
Arkansas	88-0469	New Jersey-NELAP	TN002
California	2932	New Mexico 1	n/a
Colorado	TN00003	New York	11742
Connecticut	PH-0197	North Carolina	Env375
Florida	E87487	North Carolina 1	DW21704
Georgia	NELAP	North Carolina 3	41
Georgia ¹	923	North Dakota	R-140
Idaho	TN00003	Ohio-VAP	CL0069
Illinois	200008	Oklahoma	9915
Indiana	C-TN-01	Oregon	TN200002
Iowa	364	Pennsylvania	68-02979
Kansas	E-10277	Rhode Island	LA000356
Kentucky 16	90010	South Carolina	84004
Kentucky ²	16	South Dakota	n/a
Louisiana	Al30792	Tennessee 14	2006
Louisiana ¹	LA180010	Texas	T104704245-18-15
Maine	TN0002	Texas ^s	LAB0152
Maryland	324	Utah	TN00003
Massachusetts	M-TN003	Vermont	VT2006
Michigan	9958	Virginia	460132
Minnesota	047-999-395	Washington	C847
Mississippi	TN00003	West Virginia	233
Missouri	340	Wisconsin	9980939910
Montana	CERTO086	Wyoming	A2LA

Third Party Federal Accreditations

A2LA – ISO 17025	1461.01	AIHA-LAP,LLC EMLAP	100789
	HOLOI	AITA-LAF, LLC LIVILAF	100769
A2LA - ISO 17025 5	1461.02	DOD	1461.01
Canada	1461.01	USDA	P330-15-00234
EPA-Crypto	TN00003		

¹ Drinking Water ² Underground Storage Tanks ³ Aquatic Toxicity ⁴ Chemical/Microbiological ⁵ Mold ⁶ Wastewater n/a Accreditation not applicable

Our Locations

Pace National has sixty-four client support centers that provide sample pickup and/or the delivery of sampling supplies. If you would like assistance from one of our support offices, please contact our main office. Pace National performs all testing at our central laboratory.

Ss

Alexandria Sewer Treatment Plant	ment Plan		Accounts Payable	Payable		P. R.			Answers		Container / Preservative	8A	Chain of Custody	2º 3 R.C. stanton C.S. correction
Public Square Alexandria, TN 37012		- A	Alexandria, TN 37	a, TN 37012	2]							Newwood A	ACCAN ICAN INCAN
Report to: Rich Potter		1.55	nall To: sm	Email To: smithwaterplant@dtccom.net	t@dtccom.n) a						(A) (23)	12065 Leberon Rd Mount Juffet, TN 37122 Phonon 616, 506, 506	
Project Description:	0 0	City/State Collected:			Please PT MT	Please Circle: 17 MT CT ET			\$50.00	all all		1954	From: 800-757-5859 Fax: 615-758-5859	
C15-6835721	Client Project #	Ų.		Lab Project#	CL# -ANNUAL SLUDGE	JDGE		0.00) #spa -	U240214 E183
KICHT POTTER	Site/Facility ID #			р О			fea	PECONS.	9000				Acetnum: ALEXOZ	X0X
Collected by (signature):	Rush? (Lat	Rush? (Lab MUST Be Notified)		Quote #			igolo		SHIR				Template T62977	977
Immediately Packed on Ire N Y	Next Day Two Day	S Day (Rad Only) 10 Day (Rad Only)	id Only] ad Only)	Date Rec	Results Needed	No.	Microbio	SlefeN	ON,EH				PM: 616 - Stacy Kennedy	y Kennedy 6-220
Sample 1D	Comp/Grab	Matrix *	Depth	Date	Time	100		100	HUSE				Shipped Via: Fe	Shipped Viz: FedEX Ground Remarks Sample # (lab only)
ANNUAL SUDGE SILLDER 7357	4	×		711	20 110	2 00	4	+	100					10 -
ANNUAL SLUBGE FOX	1000000	SS		-		-		×						101
MNUAL SLUDGE		\$\$		3	-	60	×					10		0,
PcBS					-			Page 1			TO SECOND			
TCLP					/				1020	08				
7 FECALS					3	÷		ESL	100					The state of the s
TKN/NH3					į				183		0000		ju:	The state of the s
NITAATE/NITAITE						-		986				96		
CFALSOI AS	- F				3				201				1100	70000
3 mistars	.1			- Age				(T) (A)						
F. Filter 8 · Bioassay	Remarks:							7-5	- E	PH Flow	Temp	000 00 00 00 00 00 00 00 00 00 00 00 00	Sampin Receipt, eal Present/Inta- igned/Accurate. es arilbe intacti	7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.
	Samples returned via: UPS FedEx	Courier	OH	Tra	Tracking #	192	2 0	p 70	0	9015	5	Sull	ficient volume sent: If Amplicabl Zero Meadupace!	2 2 2 2
Reinquished by Asignatura	Date	16/20	Time:	SAM Rec	Received by (Sig	(Signature)	non	12	E C	frip Blank Received:	ved: Yes/(No) HCL/MeoH TER	Pre Pre	Screen Co.5 MR/hrs	ookedt Zi I K
Rélinquished by ; (Signature)	Date		Time:	a.	Received by. (Signature)	nature)			Тетр:	14	8		f preservation required by Login: Date/Time	in: Date/Time
Relinquished by : (Signature)	Date:		Time:	Rec	Received for lab by Tagnature)	by Ggnature	ture)		Date:	4	Time:	Hold:	200	Condition:

CLIENT: Alexandra Sewer ESC L# L1240214-03 DATE ON: 7/17/2020 DATE OFF: 7/18/2020 Data entered into excel spreadsheet by: **Plate** mi filtered BE A 0.001 <--- Largest Volumn Tested В 0.0001 **Enter data into areas that are in blue font. C 0.00001 D 0.000001

sample type:

MPN/mL From Table 4 Method 1681

Sample No.	Combination	n of Positives		MPN/mL	Dilution	MPN Result	Log Values
1	0	0	0	く 0.1803	0,001	∠ 3279.61	3.51582204
2	0	0	0	4 0.1803	0.001	∠ 3276.32	3.5153866
3	0	0	0	< 0.1803	0.001	₹ 3336.40	3.52327849
4	0	0	0	4 0.1803	0.001	< 3263.27	3.51365254
5	0	0	0	4 0.1803	0.001	< 3263.80	3.51372327
6	0	0	0	4 0.1803	0.001	∠ 3281.85	3.51611926
7	0	0	0	4 0.1803	0.001	4. 3268.01	3.51428289

3.51603787

< 3281.24 **GEO MEAN**

(MPN/1mL) from Table 4 [FCMPN/g]= (Largest Vol tested) X (% total solids-expressed as a decimal)

> % Total Solids = Dry wt - Initial wt (expressed as a decimal) Wet wt - Initial wt

	Percent	Solids		To Sometimes
Sample #	Initial Weight of Boat	Wet Weight	Dry weight	% Total Solids expressed as a decimal
1	1.25149	7.05165	1.57036	0.05498
2	1.2424	6.55811	1.53493	0.05503
3	1.2447	6.42769	1.52479	0.05404
4	1.25458	6.64268	1.55228	0.05525
5	1.2603	6.62665	1.55675	0.05524
6	1.24113	6.37178	1.523	0.05494
7	1.23612	6.69766	1.53744	0.05517

Class B Fecal Coliform Analysis by MPN- EPA 1681

Client Name:				(Minisperalise of 100,000s)	(tons, per tube of 1,000,000s)	(10rol. per tubu of 10,000,000)	Final pH must be bet - must not use more s or NaOH) po	han 15mL of (HCI w 800mit
Set up 35 deg	Move to 44.5 deg	Test end info	1,000x	10,000x	100,000x	1,000,000x	Initial pH	7.9 011
111120 @9:34	The second second second		D	0	0	0	Final pH	7.2 IN
Temp: 35	Temp: 44 5	Temp: 44.5	1	7 76 LW	1-0-2	- 1	Method Blank	010
Analyst: JSV	Analyst: 05V	Analyst: JSV	40.0	500 - S			Negative Con	0
7/16/20@1100	Combination of Pos	0-0-00	A 756		¥		Positive Con	Y
	MPN/mil from tab		1	1	15		MPN Result	1 2 220
Set up 35 deg	Move to 44.5 deg	Test end info	1,000x	10,000m	100,000x	1,000,000x	Initial pH	8.000
Date/Time:	Date/Time:	Date/Time:	7)	0	0	1,000,000	Final pH	
Temp:	Temp:	Temp:	1	-	1 1 7 h	1 4		
Analyst:	Analyst:	Analyst:					Method Blank	010
SAMPLE COLLECTION:	Combination of Post						Negative Con	0
	MON/m fen	100.000 col	- 1		1,3%	100	Positive Con	X
S-1 - 25 /	MPN/mL from tab	40,100	W	W)	V	Ψ	MPN Result	1 < 3, 276.
Set up 35 deg	Move to 44.5 deg	Test end info	1,000x	10,000x	100,000x	1,000,000x	Initial pH	7.9 0.11
24/24/02/	Date/Ime.	Date/Time:	_0_	~ 0	0	0	Final pH	7.4 IN +
Temp:	Temp:	Temp:	W .	N 1 € 83	- 1		Method Blank	010
Analyst:	Analyst:	Analyst:	107	2	77 N		Negative Con	0
and the same of th	Combination of Posit	tive: 0-00 excel	3			57 50	Positive Čon	χ ,,
	MPN/m L from tabl		t di		1	di	MPN Result :	1 (3
Set up 35 deg	Move to 44.5 deg	Test end info	1,000x	10,000x	100.000	4 000 000		-
ate/Nme:	Date/Time:	Date/Time:	D	0	100,000x	1,000,000x	Initial pH	79 00
emp:	Temp:	Temp:	<u> </u>			. 0	Final pH	III IN
Analyst:	Analyst:	Analyst:					Method Blank	010
AMPLE COLLECTION:	Combination of Posit		A. 1				Negative:Con	0
		6-0-000				2.5	Positive Con	X
	MPN/mL from table	<0.1803		V	V	W.	MPN Result	13,263.3
et up 35 deg	Move to 44.5 deg	Test end Info	1,000x	10,000x	100,000x	1,000,000x	Initial pH	800
77	Determe:	Date/Time:	_ 0	0	0	0	Final pH	7.3 IN
emp:	Temp:	Temp:			1	4	Method Blank	010
nalyst:	Analyst:	Analyst:					Negative Con	0
The second secon	Combination of Positi	100-0-0 ecc)					Positive Con	X
	MPN/roL from table:	<0.1803		1)	J)	1	MPN Result	₹3,263.8
et up 35 deg	Move to 44.5 deg	Test end info	1,000x	10,000x	100,000x	1,000,000x	Initial pH	
	Date/Time:	Date/Time:	0	()	0	1,000,000x	Final pH	79
emp:	Temp:	Temp:	Ť	<u> </u>	7	7	Method Blank	070 IN
naket.	Amelian			-+			Negative Con	0
MPLE COLLECTION:	Combination of Positi	ve: A A A A = 1			_		H-Bative COII	-
	MPN/mL from table	Ve: O-O-O-C-COI					Positive Con	X
	Parallel and the property of t	CO 1803	Ψ	h	Ψ	W	MPN Result	23,281.9
	Move to 14.5 deg	Test end info	1,000x	10,000x	100,000x	1,000,000x	Initial pH	80 01
34 / 1 / 1 / 1 / 1 / 1 / 1 / 1 / 1 / 1 /			_0	0	0	0	Final pH	7.3 INL
	Temp:	Temp:					Method Blank	010
	Analyst: V	Analyst:					Negative Con	0
oners and	Combination of Positi	10000 cm					Positive Con	X
itive tube	MPN/mL from table	<0.1803	1	\rightarrow	1	V	. Saide Con	23,068.0

Total Solids Analysis

Total Solids	Analysis			Dry wt (g)	%Tot Solids	Amt used (g)
Sample	Dish Label	Initial wt (g)	Wet wt (g)	101	- D	
Sample #1	Alx -1	1.25149	7.05/65	1.57034	0.05503	11/
Sample #2	A1x-2	1,24240	6.55811	1,52479	0.05404	
Sample #3	A1X-3	11.24470	6.42769	1.55028	0.05535	I
Sample #4	AIX 4	1.25458	11 1 2 1 1 00	100176	005524	1/A
Sample #5	Alx-5	1.26030	6.37178	1 52300	0.05494	
Sample #6	A\x-6	1.23612	6.69766	1.53744	1 0.05517	¥
Sample #7	A-1x-7					

Media/Reagents Lot #	Lot:	Exp date
A1 medium Lot #:	ESC 4414D	3/31/2021
Phosphate Buffer:	ESC 43851	10/31/2021
NaOH Lot:	INA	I NA
HC) Lot:	42277	4/2/2021
Positive Control: E. coli	071620	12/17/20
Negative Control: E.aerogenes	062520	09/25/20
^(only need for OPR or MS)		-
^TSA Slant Lot #:	I V	N/
^1% LTB Lot #:	A	A

Alexandria WWTP 11/24/2020 Volatile Solids Reduction

1 WASTE (INTO DIG) 1.4084 1.4488 0.0404 8,080 TSS	Initial Final	Z Digester 1.4146 1.5115 0.0969 19,380 TSS
1.4488 -1.4199 0.0289 5,780 VS = 71.5% VSS	In Furnace Out Furnace	1.5/15 -1.4535 0.0580 11,600 V5 = 59.9% V55

$$\frac{71.5 - 59.9}{71.5 - (71.5 \times 59.9)} \times 100 = \frac{.715 - .599}{.715 - (.715 \times .599)} \times 100$$

$$\frac{0.116}{.287} \times 100 = \frac{.70.4\%}{.287} \times 100$$

£		

×		
		1.0
		*

			V.
8			