AUG 052020

Division of Water Resources
original to,
 Permits

July 30, 2020

Ms. Jessica Murphy
Manager, Compliance and Enforcement Unit
Division of Water Resources
DEC
William R. Snodgrass - Tennessee Tower
312 Rosa L. Parks Avenue, $11^{\text {th }}$ Floor
Nashville, TN 37243-1102

RE: SOP Application
 Southeastern Provision LLC
 Bean Station, Grainger County, TN 37708
 WPC18-0030

Dear Ms. Murphy:

Per recent written and email correspondence from TDEC and in accordance with the revised CAP submitted in late June 2020 attached please find an application for a new SOP for construction of a new wastewater treatment system and drip dispersal system at Southeastern Provision. The new system will be designed to handle a future flow of up to 100,000 gallons per day and will consist of the following components:

- Anoxic Pretreatment Lagoon
- Cyclic Reactor Lagoon
- Aerobic Sludge Digestion Lagoon
- Effluent Storage Lagoon
- Drip Dispersal System

We are prepared to immediately begin the preparation of detailed plans and specifications upon receipt of authorization from TDEC.

Please advise if additional information is needed at this time.
Very truly yours,

Vernon D. Rowe, P.E.

Tennessee Department of Environment and Conservation
Division of Water Resources
William R. Snodgrass - Tennessee Tower
312 Rosa L. Parks Avenue, 11th Floor
Nashville, Tennessee 37243-1102
(615) 532-0625

APPLICATION FOR A STATE OPERATION PERMIT (SOP)

Type of application: \square New Permit $\quad \square$ Permit Reissuance $\quad \square$ Permit Modification
Permittee Identification: (Name of city, town, industry, corporation, individual, etc., applying, according
to the provisions of Tennessee Code Annotated Section 69-3-108 and Regulations of the Tennessee
Water Quality Control Board.)
Permittee Southeastern Provision LLC
Name
(applicant):
Permittee 1617 Helton Road, Bean Station, TN 37708
Address:

Official Contact:	Title or Position:	
Randy Hodge	Wastewater Manager	
Mailing Address: 1617 Helton Road	City: Bean Station	$\text { State: TN Zip: } 37708$
Phone number(s): (865) 767-2300	E-mail: southeaste	rovision@yahoo.com

Optional Contact:	Title or Position:	
William J. Gilger	Chief Operating Officer	
Address: 1617 Helton Road	City: Bean Station	$\text { State: } \text { TN }_{37708}^{\text {Zip: }}$
Phone number(s): (482) 350-1127	E-mail: wgilger@g	

Application Certification (must be signed in accordance with the requirements of Rule 0400-40-05-.05)
I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gathered and evaluated the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations. As specified in Tennessee Code Annotated Section 39-16-702(a)(4), this declaration is made under penalty of perjury.
Name and title; print or type
William J. Gilger, Chief Operating Officer

Engineering Report (required for collection systems and/or land application treatment systems):

Prepared in accordance with Rule 0400-40-05-.03 and Section 1.2 of the State of Tennessee Design Criteria for Sewage Works
Attached, or Previously submitted and entitled: Approved? \square Yes. Date: \square No
Operation and Maintenance Inspection Schedule Submitted:
Approved? \square Yes. Date: \square No

Type of treatment facility preceding land application (recirculating media filters, lagoons, other, etc.): Screening, flow equalization, dissolved air flotation, anoxic pretreatment lagoon, oxic/anoxic biological treatment lagoon, etc.): storage lagoon, filtration
Attach a treatment schematic.

```
Attached
```

Describe methods to prevent and respond to any bypass of treatment or discharges (i.e., power
 failure that prevents or upsets treatment wastowater will be stored onsite. In the event of heavy rain that limits subsurface disposal wastewater will be stored onsite.

For New or Modified Projects:

Name of Developer for the project: Southeastern Provision LLC
Developer address and phone number: 1617 Helton Road, Bean Station, TN 37708; (865) 767-2300
For land application, list: Proposed acreage involved:
10.1 to 11.5 acres
*see note below
Inches/week gpd/sq.ft loading rate to be applied: 0.2 gpd/sqft
Is wastewater disinfection proposed?
Yes Describe land application area access:
FENCED WITH LOCKED GATE
No Describe how access to the land application area will be restricted:

Attach required additional Engineering Report Information (see website for more information)

Topographic map (1:24,000 scale presented at a six inch by six inch minimum size) showing the location of the project including quadrangle(s) name(s) GPS coordinates, and latitude and longitude in decimal degrees should also be included.
\triangle Scaled layout of facility showing the following: lots, buildings, etc. being served, the wastewater collection system routes, the pretreatment system location, the proposed land application area(s), roads, property boundaries, and sensitive areas such as streams, lakes, springs, wells, wellhead protection areas, sinkholes and wetlands.
\triangle Soils information for the proposed land disposal area in the form of a Water Resources Soils Map per Chapter 16 and 17 State of Tennessee Design Criteria for Sewage Work. The soils information should include soil depth (borings to a minimum of 4 feet or refusal) and soil profile description for each soil mapped.
\triangle Topographic map of the area where the wastewater is to be land applied with no greater than ten foot contours presented at a minimum size of 24 inches by 24 inches.
\triangle Describe alternative application methods based on the following priority rating: (1) connection to a municipal/public sewer system, (2) connection to a conventional subsurface disposal system as regulated by the Division of Groundwater Protection, and/or (3) land application.
(*) The facility currently has subsurface disposal areas consisting of $4,000 \mathrm{ft}$ of LPP and $11,000 \mathrm{ft}$ of chambers that were originally permitted and installed under expired Permit No. GRA0000013. An additional 5,000 feet of chamber was permitted but not installed. TDEC has expressed concern with continued use of the existing areas due to high hydraulic and organic loadings in the past. Southeastern Provision plans to work with TDEC to evaluate the existing subsurface disposal areas to determine if they can possibly be used in the future. If the existing subsurface disposal areas are determined to be usable they will be able to handle up to $12,000 \mathrm{gpd}$ at a loading of 0.2 gal per day per sf. This will reduce the requirement for drip irrigation to 10.1 acres. If the existing subsurface areas can not be used in the future a drip system of up to 11.5 acres will have to be developed.

Abstract

For Drip Dispersal Systems Only: Unless otherwise determined by the Department, sewage treatment effluent wells, i.e, large capacity treatment/drip dispersal systems after approval of the SOP Application, will be issued an UIC tracking number and will be authorized as Permit by Rule per UIC Rule 0400-45-06.14(2) and upon issue of a State Operating Permit and Sewage System Construction Approval by the Department. Describe the following:

The area of review (AOR) for each Drip Dispersal System shall, unless otherwise specified by the Department, consist of the area lying within a one mile radius or an area defined by using calculations under 0400-45-06-.09 of the Drip Dispersal System site or facility, and shall include, but not be limited to general surface geographic features, general subsurface geology, and general demographic and cultural features within the area. Attach to this part of the application a general characterization of the AOR, including the following: (This can be in narrative form)
\square A general description of all past and present groundwater uses as well as the general groundwater flow direction and general water quality.
A general description of the population and cultural development within the AOR (i.e. agricultural, commercial, residential or mixed)
Nature of injected fluid to include physical, chemical, biological or radiological characteristics.
If groundwater is used for drinking water within the area of review, then identify and locate on a topographic map all groundwater withdrawal points within the AOR, which supply public or private drinking water systems. Or supply map showing general location of publicly supplied water for the area (this can be obtained from the water provider)
If the proposed system is located within a wellhead protection area or source water protection area designated by Rule 0400-45-01-.34, show the boundary of the protection area on the facility site plan.
Description of system, Volume of injected fluid in gallons per day based upon design flow, including any monitoring wells
Nature and type of system, including installed dimensions of wells and construction materials

Pump and Haul:	$\square \mathrm{N} / \mathrm{A}$
Reason system cannot be served by public sewer:	
Distance to the nearest manhole where public sewer service is available:	
When sewer service will be available:	
Volume of holding tank: gal.	Tennessee licensed septage hauler (attach copy of agreement): Facility accepting the septage (attach copy of acceptance letter): Latitude and Longitude (in decimal degrees) of approved manhole for discharge of septage: Describe methods to prevent and respond to any bypass of treatment or discharges (i.e., power failures, equipment failures, heavy rains, etc.):\quad

Holding Ponds (for non-domestic wastewater only):	\square N/A
Pond use: \square Recirculation \square Sedimentation \square Cooling \square Other (describe):	
Describe pond use and operation:	
If the pond(s) are existing pond(s), what was the previous use?	
Have you prepared a plan to dispose of rainfall in excess of evaporation? \square Yes \square No	
If so, describe disposal plan:	
Is the pond ever dewatered? \square Yes \square No	
If so, describe the purpose for dewatering and procedures for disposal of wastewater and/or	
sludge:	
Is(are) the pond(s) aerated? \square Yes \square No	
Volume of pond(s):	
Is the pond lined (Note if this is a new pond system it must be lined for SOP coverage. Otherwise, you must apply for an Underground Injection Control permit.)? \square Yes \square Describe the liner material (if soil liner is used give the compaction specifications):	
Is there an emergency overflow structure? \square Yes \square No	
If so, provide a design drawing of structure.	
Are monitoring wells or lysimeters installed near or around the pond(s)? \square Yes \square No	
If so, provide location information and describe monitoring protocols (attach additional sheets as	
necessary):	

PRELIMINARY ENGINEERING REPORT

Preliminary Engineering Report Proposed Process Wastewater Management Sys Southeastern Provision LLC Bean Station, Tennessee

PURPOSE AND NEED FOR THE PROPOSED PROJECT

Southeastern Provision LLC (SP) operates a beef processing plant in Bean Station, Tennessee. The existing wastewater management system for the facility consists of a physical/chemical pretreatment system followed by a subsurface disposal system (low pressure pipe and chambers). The existing system is incapable of adequately treating and disposing of the process wastewater generated by the processing plant. As a result of the inadequacy of the existing system the Tennessee Department of Environment and Conservation (TDEC) has ordered SP to cease using the existing subsurface disposal system and issued a temporary State Operating Permit (SOP No. 18010) to pump and haul process wastewater offsite to a permitted facility for handling. Additionally, TDEC has issued a Consent Order requiring SP to develop a Corrective Action Plan (CAP) to apply for a new SOP to allow upgrading of the wastewater treatment system and subsurface disposal system to comply with TDEC requirements. The proposed project is needed to comply with TDEC directives and assure the long term sustainability of the SP processing plant.

DESCRIPTION OF EXISTING SYSTEM

Figure No. 1 provides a flow schematic of the existing wastewater treatment system and subsurface disposal system. The system consists of the following components:

- Primary Screen
- Transfer Pumps
- Secondary Screen
- Aerated Equalization Basin
- Dissolved Air Flotation (DAF) Feed Pumps
- Floc Tube
- Dissolved Air Flotation (DAF) unit with Primary Coagulant (metal salt) and Polymer (anionic) Feed Systems
- Effluent Storage Tanks
- Subsurface Disposal System Dosing Pumps
- Sock Filters
- Subsurface Disposal System
- DAF Skimmings Storage Tank
- DAF Skimmings Pumps

Table No. 1 provides a summary of the existing treatment components and treatment capacities.

Table No. 1
 Existing Wastewater Treatment System Components

Component	Description	Capacity
Primary Screen	$24^{\prime \prime}$ by $72^{\prime \prime}$ Hycor Rotary Drum Screen	400 gpm
Transfer Pumps	Two Summit Self Priming Centrifugal Pumps; 3 by 3; $15 \mathrm{hp} ; 1800 \mathrm{rpm}$	250 gpm
Secondary Screen	72" Parabolic Screen	600 gpm
Equalization Tank	70,000 gallon Circular Concrete Basin with diffused aeration; dual 5 hp PD Blowers	16.8 hours detention time at peak flow of $100,000 \mathrm{gpd}$
DAF Feed Pumps	Two Durco Centrifugal Pumps; 3 by 2; 15 hp ; 3600 rpm; VFD's	250 gpm
DAF Floc Tube	4" Diam; 75 ft long	250 gpm
DAF Unit	Stork; 13^{\prime} by 6^{\prime} by 6^{\prime}; recycle pressurization; 3^{\prime} by 6 ' sludge hopper	250 gpm
Effluent Storage	50,000 gallon Multi-compartment concrete tank with diffused aeration	12 hours detention time at peak flow of $100,000 \mathrm{gpd}$
Subsurface Disposal System Dosing Pumps	Two Durco Centrigufal; $3 \times 2 ; 15 \mathrm{hp} ; 3600 \mathrm{rpm}$	250 gpm
Sock Filters	Pall Filters; Dual 50 micron plus Dual 25 micron in series	250 gpm
Subsurface Disposal System (currently out of service due to excessive hydraulic and organic loadings)	$4,000 \mathrm{ft}$ of Low Pressure Pipe; 11,000 ft of Chamber installed; $5,000 \mathrm{ft}$ of chamber approved but not installed	The subsurface disposal system hydraulic loading rate is limited to $0.2 \mathrm{gpd} / \mathrm{sf}$ to assure Nitrate Nitrogen requirements are met. Trenches are 3 ft wide resulting in a total application area of $60,000 \mathrm{sf}$. Hydraulic loading capacity is limited to $12,000 \mathrm{gpd}$.
DAF Skimmings Storage Tank	5,000 gallon circular tank	2.5 days detention time at peak flow of 100,000 gallons per day

The projected peak flow to be treated by the existing components is 100,000 gallons per day. This flow can occur over a 16 hour time period resulting in an hourly flow of 6,250 gallons per hour, or 104 gallons per minute. Based on a peaking factor of two the existing wastewater pretreatment system has the capacity to pretreat projected flows and loadings upstream of the new biological treatment components that will have to be installed to meet BOD and nitrogen treatment levels. As a means of providing system reliability and redundancy the biological system will include a mixed anoxic pretreatment lagoon to provide additional BOD removal prior to the oxic/anoxic biological treatment process (cyclic reactor) that will remove BOD and nitrogen to levels acceptable for disposal by subsurface disposal.

The existing system has the following limitations that must be addressed to handle the current and future processing plant wastewater flows:

- The physical/chemical pretreatment system is not capable of meeting the BOD and Nitrogen limits required by TDEC for management in a subsurface disposal system. A biological treatment system designed to
nitrify and denitrify will be required to adequately treat processing plant wastewater upstream of subsurface disposal.
- The existing subsurface disposal system does not have the hydraulic capacity required to manage the projected processing plant treated wastewater flow. Hydraulic loading rates to the existing subsurface disposal areas (LPP and Chamber), if used, will have to be reduced to comply with nitrate nitrogen loading requirements.
- The existing subsurface disposal system has received extremely high hydraulic and organic loadings in the past and TDEC has expressed serious reservations regarding the acceptability of the existing subsurface areas to provide adequate treatment. Southeastern Provision intends to work with TDEC to assess the integrity of the existing subsurface areas with the hopes of possibly using the areas in the future to increase the overall hydraulic capacity of the entire system.

UPGRADED SYSTEM DESIGN BASIS

At peak production capacity the beef plant will process 400 head of cattle. Based on a reasonably liberal flow of $\mathbf{2 5 0}$ gallons per head per day the plant will generate approximately 100,000 gallons per day of wastewater to be handled.

Table No. 2 summarizes test data for typical samples taken from the discharge of the dissolved air flotation pretreatment system.

Table No. 2
Wastewater Characteristics (DAF Effluent)

Parameter	$\mathbf{8 / 2 / 2 0 1 8}$	$\mathbf{8 / 1 5 / 2 0 1 8}$
pH	7.4	5.5
Alkalinity, mg/l	550	151
COD, mg / l	782	
BOD5, mg / l	486	402
TSS, mg/l	75.8	18.1
TKN, mg/l	85	54.3
NH3N, mg/l	110	62.2
Total Phosphorus, mg / l	0.109	0.0928

In order to provide for a conservative design the following influent and effluent design parameters will be used for the design of the biological treatment system that will be installed upstream of the new subsurface disposal systems.

Parameter

Flow, gpd
BOD, mg/l
TSS, mg/l
Total Nitrogen, mg/I
Total Kjeldahl Nitrogen, mg/l
Total Nitrate/Nitrite Nitrogen, mg/l

Design Influent
100,000
1,000 200 150 150
0

Design Effluent
100,000

$$
<20
$$

$$
<10
$$

<20
<10
<10

DESCRIPTION OF PROPOSED SYSTEM

Figure No. 2 provides a flow schematic for the proposed upgraded wastewater treatment system and subsurface disposal system. Figure No. 3 provides a preliminary layout drawing for the lined earthen basin biological treatment system that is proposed.

The proposed upgrades will include:

- DAF effluent transfer pumps to pump from the existing DAF effluent holding basins to the new biological treatment system
- New Membrane Lined Earthen Basin Biological Treatment System consisting of:
- Lined Mixed Anoxic Lagoon for flow equalization, BOD pretreatment, organic nitrogen conversion to ammonia nitrogen, and denitrification
- Lined Mixed Oxic/Anoxic Lagoon for BOD/TSS removal and nitrification/denitrification; lagoon will operate as a continuously fed intermittently decanted reactor basin (Cyclic Reactor)
- Oxic/Anoxic Lagoon Diffused Aeration System with:
- Three Positive Displacement (PD) Blowers
- Diffused Aeration System with floating laterals and retrievable fine bubble diffusers
- Floating Decanters for Oxic/Anoxic Lagoon
- Lined Effluent Storage Lagoon
- Sludge Wasting and Recycle Pumps for Oxic/Anoxic Lagoon
- Lined Aerobic Sludge Digestion/Storage Lagoon with Supernent Return Pumps
- New Subsurface Disposal System Dosing Pumps
- Pressure filters
- Enlarged SSDS consisting of drip dispersion. The existing LPP and chamber areas may be used in the future if work with TDEC indicates the integrity of the areas is acceptable.

Table No. 3 provides a design analysis for the biological treatment system. Table No. 4 summarizes the details for the upgraded treatment system.

Table No. 3
Design Analysis
Cyclic Reactor Process - 0.1 mgd capacity
LINED Earthen Basin with Diffused Aeration
Project:
Southeastern Provision, Bean Station, TN

Project Assumptions:

1. Average wastewater characteristics to be below levels listed below.
2. Sufficient alkalinity exists in wastewater for nitrification. Supplemental alkalinity to be provided by Owner if needed.
3. No heavy metals or toxic organic compounds are present in the wastewater which will inhibit biological treatment.

Loadings/Effluent Requirements:

Loadings

DAF Effluent/	Anaerobic	Oxic/
Anaerobic	Lagoon Eff./	Anoxic
Lagoon Inf.	Oxic/Anoxic Inf.	Effluent

Flow, mgd	0.1	0.1	0.1
BOD, mg/l	1,000	20	
BOD, lbs/day	834	17	
TSS, mg/l	200	10	
TSS, lbs/day	167	8	
TKN, mg/l	150	100	10
TKN, lbs/day	125	83	8
NH3N, mg/l	100	150	10
NH3N, lbs/day	83	125	8
NO3N + NO2N, mg/l	0	150	10
NO3N + NO2N, lbs/day	0	125	8
TN, mg/l	150	0	20
TN, lbs/day	125	150	17

Table No. 3 - Design Analysis (continued)
Cyclic Reactor Process - 0.1 mgd capacity
LINED Earthen Basin with Diffused Aeration
Project:

Southeastern Provision, Bean Station, TN

Design	Anaerobic	Comments
Loading, lbs/day	834	Loading, Ibs/day $=$ Flow, mgd \times Influent BOD, $\mathrm{mg} / \mathrm{l} \times 8.34$
Design Load, Ibs BOD/day/1,000 cu ft	6.5	Normal value 5 to 20; use 6.5
Volume, gallons	960,383	Volume, gal $=$ Volume, cu ft $\times 7.485$
Detention Time, days	9.60	Detention Time, days $=$ Volume, gal $/$ Flow, gpd
Volume at High Level, cu ft	128,308	Volume $=$ Loading $\times 1000 /$ Design Load
Average Surface Area, sq ft	9,165	Avg Surface Area $=$ Volume, cu ft $/$ Depth, ft
Width to Length Ratio	0.68	Design assumption
Side Slope	2.0	Design assumption
Depth at High Level, feet	14	Design assumption
Length at High Water Level, feet	147	(*) See equation below
Width at High Water Level, feet	100	Width = Length at High Water \times Width to Length Ratio
Length at Bottom, feet	91	Length $=$ Length at High Water $-($ Depth at High Level \times Side Slope $\times 2$)
Width at Bottom, feet	44	Width $=$ Width at High Water Level - (Side Siope \times Depth at High Level $\times 2$)
Freeboard, feet	2	Design assumption
Total Depth, feet	16	Total Depth $=$ Depth at High Level + Freeboard
Length at Inside Bank, feet	155	Length $=$ Length at High Water $+($ Freeboard \times Side Slope $\times 2)$
Width at Inside Bank, feet	108	Width $=$ Width at High Water Level + (Freeboard \times Side Slope $\times 2$)

($\left.^{\star}\right)$ Length $=\left(\left(\left(\left(4 \times W: L \times \text { Avg Area) }-\left(6 \times W: L \times(\text { Slope } \times H W L)^{\wedge} 2\right)+\left(2 \times(\text { Slope } \times L W L)^{\wedge}\right)\right)^{\wedge} 0.5\right)+\left((\text { Slope } \times H W L)^{*}(1+W: L)\right)\right) /\left(2^{*} W: L\right)\right.$

Table No. 3 - Design Analysis (continued)
 Cyclic Reactor Process - 0.1 mgd capacity
 LINED Earthen Basin with Diffused Aeration
 Project:

 Southeastern Provision, Bean Station, TN

 Southeastern Provision, Bean Station, TN}

Design

Detention Time at Low Level, days
Detention Time at High Level, days
BOD Loading, Ibs/day
Food to Microorganism Ratio
MLVSS in System, Ibs
Volatile Solids, percent
MLSS in System, lbs
MLSS at Low Level, mg/l
Volume at Low Level, gallons
Cycles per day
Volume Decanted each Cycle, gallons
Excess Decant Volume Capacity, percent
Volume at High Level, gallons
Volume at High Level, cu ft
Average Surface Area, sq ft
Width to Length Ratio
Side Slope
Depth at High Level, feet
Length at High Water Level, feet
Width at High Water Level, feet
Length at Bottom, feet
Width at Bottom, feet
Freeboard, feet
Total Depth, feet
Length at Inside Bank, feet
Width at Inside Bank, feet

Cyclic Reactor Comments

9.35 Detention Time $=$ Low Volume $/$ Flow
9.60 Detention Time $=$ High Volume $/$ Flow

500 BOD Loading, lbs/day $=$ Flow, $\mathrm{mgd} \times$ BOD, $\mathrm{mg} / / \times 8.34$
0.029 Normal 0.01 to 0.1 ; use 0.22

17,553 MLVSS, lbs/day = BOD Loading / F:M Ratio
75.00 Design assumption

23,403 MLSS, Ibs/day = MLVSS / (65% Volatile Solids/100)
3,000 Design assumption
935,390 Volume, gal = MLSS, lbs / (MLSS, mg/l x 8.34)
4 Design assumption
25,000 Cycles = Flow $/$ Cycles per day
0 Design assumption
960,390 High Volume $=$ Low Vol + Decant Vol + Excess Decant Vol
128,309 Volume, cu ft = Volume, gal / 7.485
9,165 Avg Surface Area = Volume, cu ft / Depth, ft
0.68 Design assumption
2.0 Design assumption

14 Design assumption
147 (*) See equation below
100 Width $=$ Length at High Water \times Width to Length Ratio
91 Length $=$ Length at High Water $-($ Depth at High Level \times Side Slope $\times 2)$
44 Width $=$ Width at High Water Level $-($ Side Slope \times Depth at High Level $\times 2)$
2 Design assumption
16 Total Depth $=$ Depth at High Level + Freeboard
155 Length $=$ Length at High Water $+($ Freeboard \times Side Slope $\times 2)$
108 Width $=$ Width at High Water Level $+($ Freeboard \times Side Slope $\times 2)$

Table No. 3 - Design Analysis (continued)
 Cyclic Reactor Process - 0.1 mgd capacity LINED Earthen Basin with Diffused Aeration Project:
 Southeastern Provision, Bean Station, TN

Design

Depth at Low Level, feet
BOD Removal Efficiency, \%
BOD Removed, Ibs/day
TKN Removal Efficiency, \%
TKN Removed, Ibs/day
Oxygen Requirement, Ibs/lb BOD Rem
Oxygen Requirement, Ibs/lb NH3N Rem
BOD AOR, Ibs/day
TKN AOR, lbs/day
Denitrification Credit
Total AOR, Ibs/day
Temperature, deg C
Elevation, feet
Average Water Depth in Reactor, ft
Alpha
Beta
Theta
Operating DO, mg/l
C-SC, mg/l (constant)
C-DC, mg/l (saturation at site conditions)
Oxygen Transfer Adjustment Factor
SOR, Ibs/day
SOR, lbs/hr
Time of Aeration during each Cycle, hours

```
Cyclic Reactor Comments
    11.75
    96.67% BOD Rem Eff = 100 x (Inf BOD - Eff BOD) / Inf BOD
        4 8 4 ~ B O D ~ R e m o v e d ~ = ~ B O D ~ A p p l i e d ~ x ~ B O D ~ R e m ~ E f f ~
    93.33% TKN Rem Eff = 100 x (Inf TKN - Eff TKN) / Inf TKN
        117 TKN Removed = TKN Applied x TKN Rem Eff
        1.5 Normal Range = }1\mathrm{ to 1.5; use 1.5 for cyclic process
        4.6 Normal Requirement = 4.6
        7 2 6 ~ B O D ~ A O R ~ = ~ B O D ~ R e m o v e d ~ x ~ B O D ~ O x y g e n ~ R e q d ~
        5 3 7 \text { TKN AOR = TKN Removed x TKN Oxygen Reqd}
    40.00% Normal Value = 50 %; use }40
    1,048 Total AOR = BOD AOR + TKN AOR - Denitrification Credit
            28 Design assumption
        1150 Given
        12.9 Design assumption
            0.7 Normal Range = 0.7 to 0.85; use 0.7
            0.8 Normal Range = 0.8 to 1.0; use 0.8
    1.024 Constant
            2 Design assumption
        9.09 Saturation DO at standard conditions
        7.81 Saturation DO at site conditions
        0.40 Factor =(((C-DC x Beta)-Op DO) x (Theta^^(Temp -20)) x Alpha)/C-SC
    2,650 SOR = AOR / Oxygen Transfer Adjustment Factor
        110 SOR, lbs/hr = SOR, lbs/day / 24
    3.00 Design assumption
```


Table No. 3 - Design Analysis (continued) Cyclic Reactor Process - 0.1 mgd capacity LINED Earthen Basin with Diffused Aeration Project: Southeastern Provision, Bean Station, TN

Design

Total Aeration, hours per day
SOR During Aeration, lbs/hr
Aeration Type
Oxygen Transfer, lbs SOR/hp-hr (clean water)
Theoretical Brake Horsepower for Aeration, hp
Installed Aeration Brake Horsepower, hp

Design

Decant Basin Volume, gallons
Decant Basin Volume, cu ft
Average Surface Area, sq ft
Width to Length Ratio
Side Slope
Depth at High Level, feet
Length at High Water Level, feet
Width at High Water Level, feet
Length at Bottom, feet
Width at Bottom, feet
Freeboard, feet
Total Depth, feet
Length at Inside Bank, feet
Width at Inside Bank, feet

Cyclic Reactor Basis
12.0 Total Aeration, hrs $=$ Cycles per day \times Time of Aeration During Each Cycle

221 SOR During Aeration, $\mathrm{lbs} / \mathrm{hr}=\mathrm{SOR}, \mathrm{lbs} / \mathrm{hr} \times(24 /$ Total Aeration, hours/day)
Diffused Aeration Design selection
4 From equipment supplier
55.2 BHP = SOR During Aeration / Oxygen Transfer

150 Use 3 @ 50

Storage Basin Basis

$7,700,000$ Volume $=$ Design Flow, gpd
1,028,724 Volume, cu ft = Volume, gal / 7.485
57,151 Avg Surface Area = Volume, cu ft / Depth, ft
0.34 Design assumption
2.5 Design assumption

18 Design assumption
498 (*) See equation below
169 Width $=$ Length at High Water \times Width to Length Ratio
408 Length $=$ Length at High Water - (Depth at High Level \times Side Slope $\times 2$)
79 Width = Width at High Water Level - (Side Slope x Depth at High Level $\times 2$)
2 Design assumption
20 Total Depth $=$ Depth at High Level + Freeboard
508 Length $=$ Length at High Water $+($ Freeboard \times Side Slope $\times 2)$
179 Width = Width at High Water Level + (Freeboard x Side Slope $\times 2$)
$\left(^{*}\right)$ Length $=\left(\left(\left(\left(4 \times W: L \times \text { Avg Area) }-\left(6 \times W: L \times(\text { Slope } \times H W L)^{\wedge} 2\right)+\left(2 \times(\text { Slope } \times L W L)^{\wedge} 2\right)\right)^{\wedge} 0.5\right)+\left((\text { Slope } \times H W L)^{*}(1+W: L)\right)\right) /\left(2^{*} W: L\right)\right.$

Table No. 3 - Design Analysis (continued)
 Cyclic Reactor Process - 0.1 mgd capacity
 LINED Earthen Basin with Diffused Aeration
 Project:
 Southeastern Provision, Bean Station, TN

Sludge Analysis

Sludge Production, lbs/lb BOD Rem Sludge Production, Ibs/lb TKN Rem Total Sludge Production, Ibs/day Sludge Age, days
Sludge Solids Content, \%
Sludge Volume, gallons/day
Sludge Wasting Each Cycle, minutes
Sludge Wasted Each Cycle, gallons
Sludge Pump Flow Rate, gpm
Sludge Basin Detention Time, days
Sludge Basin Volume, cubic feet
Sludge Basin Volume, gallons
Average Surface Area, sq ft
Width to Length Ratio
Side Slope
Depth at High Level, feet
Length at High Water Level, feet
Width at High Water Level, feet
Length at Bottom, feet
Width at Bottom, feet
Freeboard, feet
Total Depth, feet
Length at Inside Bank, feet
Width at Inside Bank, feet

Sludge Basin Comments
0.50 Normal Range $=0.3$ to 1.0 ; use 0.50
0.15 Normal Range $=0.1$ to 0.2 ; use 0.15

346 Total Sludge Production $=($ BOD Removed $\times 0.5+$ TKN Removed $\times 0.15) / \%$ Volatile Solids
67.7 Sludge Age, days = Total Sludge in System, Ibs / Total Sludge Production, lbs/day

1 Design assumption
4,147 Sludge Volume, gpd =(Sludge Production, lbs/day /(Sludge Solids, \% / 100)) $\times 8.34$
30 Design assumption
1,037 Sludge, gal/cycle = Sludge, gal/day / Cycles per day
35 Pump Rate $=$ Gal per cycle $/$ Wasting time per cycle, min; use $2 @ 50$ gpm
65.0 Design assumption

36,010 Volume, cu ft = Volume, gal / 7.485
269,533 Volume, gal = Detention Time, days x Sludge volume, gal/day
4,501 Avg Surface Area = Volume, cu ft / Depth, ft
0.65 Design assumption
2.0 Design assumption

8 Design assumption
102 (*) See equation below
66 Width $=$ Length at High Water x Width to Length Ratio
70 Length $=$ Length at High Water - (Depth at High Level \times Side Slope $\times 2$)
34 Width $=$ Width at High Water Level $-($ Side Slope \times Depth at High Level $\times 2$)
2 Design assumption
10 Total Depth = Depth at High Level + Freeboard
110 Length $=$ Length at High Water + (Freeboard \times Side Slope $\times 2$)
74 Width $=$ Width at High Water Level $+($ Freeboard \times Side Slope $\times 2)$
$\left(^{*}\right)$ Length $=\left(\left(\left((4 \times W: L \times \text { Avg Area) })-\left(6 \times W: L \times(\text { Slope } \times H W L)^{\wedge} 2\right)+\left(2 \times(\text { Slope } \times L W L)^{\wedge} 2\right)\right)^{\wedge} 0.5\right)+\left((\text { Slope } \times H W L)^{*}(1+W: L)\right)\right) /\left(2^{*} W: L\right)$

Table No. 3 - Design Analysis (continued)
 Cyclic Reactor Process - 0.1 mgd capacity LINED Earthen Basin with Diffused Aeration Project:

 Southeastern Provision, Bean Station, TN

 Southeastern Provision, Bean Station, TN}

Sludge Analysis

Total Sludge Production, Ibs/day
Biomass in Sludge, Ibs/day
Biomass Reduced in Digester, \%
Biomass Reduced, Ibs/day
Oxygen Requirements, Ib/lb Solids
Oxygen Requirements, Ibs/day (standard conditions)
Oxygen Requirements, Ibs/day (site conditions)
Oxygen Transfer Rate, Ibs/ hp hr
Theoretical Aerator HP
Installed Aerator HP

Sludge
Basin

Comments

346 Total Sludge Production $=($ BOD Removed $\times 0.4+$ TKN Removed $\times 0.15) / \%$ Volatile Solids
259 Biomass $=$ Total Sludge Production $\times \%$ Volatile Solids
50 Design Assumption
130 Biomass Reduced $=$ Biomass in Sludge, lbs/day \times Biomass Reduced, \%
2.3 Design assumption

298 Oxygen Reg'd = Biomass Reduced, lbs/day x 02 Reg'd, lbs/lb solids
597 Air, site conditions = Air, standard conditions/Oxygen Transfer Adj. Fact. Design assumption

Aerator HP = Oxygen Reqd, lbs/day/24/Oxygen Transfer Rate
20 (USE 2 @ 10 HP)

Table No. 4 Component Details Upgraded Wastewater Management System

Component	Description
Pretreated Wastewater Transfer Pumps	Two self priming centrifugal pumps with VFD's; 250 gpm
Lined Anoxic Lagoon	960,383 gallons; 108 ft wide by 155 ft long by 16 ft deep; lined with 80 mil HDPE liner; two 30 hp floating mixers
Lined Oxic/Anoxic Lagoon	960,383 gallons; 108 ft wide by 155 ft long by 16 ft deep; lined with 80 mil HDPE liner; two 30 hp floating mixers; three 50 hp blowers with diffused aeration; two floating decanters
Lined Effluent Storage Lagoon	$7,700,000$ gallons; 179 ft wide by 508 ft long by $20 \mathrm{ft} \mathrm{deep;}$ lined with 80 mil HDPE liner
Lined Aerobic Sludge Lagoon	269,533 gallons; 74 ft wide by 110 ft long by 10 ft deep; lined with 80 mil HDPE liner; two 10 hp floating aerators
Oxic/Anoxic Lagoon Aeration System	Three 50 hp positive displacement blowers with VFD's; floating diffuser laterals with retrievable fine bubble diffusers
Oxic/Anoxic Lagoon Decant System	Two 600 gpm floating decanters
Sludge Wasting and Recycle Pumps	Two self priming centrifugal pumps with VFD's; 100 gpm
New Subsurface Disposal System Dosing Pumps	Two new centrifugal pumps will be provided for the new drip dispersal areas; new pumps will be 250 gpm with VFD's
Pressure Filters	New pressure multimedia filtration system will be installed upstream of drip system; new filters will have capacity of 250 gpm
Subsurface Disposal System	The drip dispersal system will be required to handle up to 100,000 gallons per day at peak flow if the existing subsurface disposal areas can not be used in the future. A total of up to 500,000 sf of drip area will be required. This will require up to 250,000 feet of drip tubing. See Table No. 5. The drip system will be constructed in phases with 250,000 sf installed initially followed by up to 125,000 sf in each of two more phases.

Southeastern Provision has adequate land to handle the projected peak design flow of 100,000 gallons per day plus a 100 percent reserve area. The facility is currently generating approximately 40,000 gallons per day of wastewater. The peak flow of 100,000 gallons per day will not be reached for many years depending upon market conditions. The construction of the wastewater treatment and subsurface disposal upgrades will be staged as follows within the allowable special conditions of the permit:

- \quad Phase 1 - The biological wastewater treatment and storage system will be constructed in conjunction with the addition of 250,000 sf of drip area. The wastewater system will be constructed initially to handle the peak flow of 100,000 gallons per day. This will allow for a very conservative design during startup and allow the facility to demonstrate design performance.
- Phase 2 - Addition of 125,000 sf of drip area
- \quad Phase 3 - Addition of 125,000 sf of drip area

Table No. 4

Hydraulic and Nutrient Loading Calculations
Subsurface Disposal System

Southeastern Provision, Bean Station, TN

Lwn =		Calculated Allowable Nitrate Loading Rate	Subsurface Disposal Systems will be designed based on hydraulic loading of $0.2 \mathrm{gpd} / \mathrm{sf}$. The loading is below the allowable nitrogen based loading rate.
$\operatorname{Pr}=$		5-yr return monthly precipitation (in/month)	
$\mathrm{PET}=$		Potential evapotransporation (in/month)	
$\mathrm{N}=$	Uptake	Monthly nitrogen uptake rate by vegetation (lbs/acre/month)	
F =		Applied nitrogen fraction removed by denitrification/volatization (\%)	
$C p=$	10	Maximum nitrate concentration in leachate (mg / l)	Depth to water table in the SSDS areas is greater than 200 cm .
$\mathrm{C}=$	20	Nitrogen concentration in applied wastewater (mg/l)	
	4.413	Conversion factor	
$\mathrm{U}=$	100	Annual nitrogen uptake rate for crop, variable (lbs/acre/year)	Depth to most restrictive zone in the SSDS areas is greater than 200 cm .
Ksat =	9.17	Saturated hydraulic conductivity (micrometers/sec) (NRCS)	
Ksat =	31.19	Saturated hydraulic conductivity (inches/day) (NRCS)	
Lwh (max) =	5.00	Applied effluent max loading rate (gpd/sf) (10\% NRCS Ksat)	
Lwh (max) =	0.25	Applied effluent max loading rate (gpd/sf) (TDEC max)	

$\left.\begin{array}{|c|c|c|c|c|c|c|c|c|c|}\hline \text { MONTH } & \begin{array}{c}\text { Pr, } \\ \text { in/month }\end{array} & \begin{array}{c}\text { PET, } \\ \text { in/month }\end{array} & \begin{array}{c}\text { N Uptake, } \\ \% / \text { month }\end{array} & \begin{array}{c}\text { N Uptake, } \\ \text { Ib/ac/ } \\ \text { month }\end{array} & \begin{array}{c}\text { F (Denitrification), } \\ \% / \text { month }\end{array} & \begin{array}{c}\text { Lwn, } \\ \text { in/month }\end{array} & \begin{array}{c}\text { Lwn, } \\ \text { in/week }\end{array} & \text { Lwn, in/day } & \text { Lwn, gpd/sf }\end{array} \begin{array}{c}\text { Lwh, gpd/sf(based } \\ \text { on Loam soil) }\end{array}\right]$

As has been noted, the facility currently has $15,000 \mathrm{ft}$ of existing subsurface disposal area that is being restricted from use by TDEC due to potentially excessive hydraulic and organic loading in the past. Southeaster Provision intends to work with TDEC to determine if any or all of the existing fields can be brought back on line a some point in the future. It the existing subsurface systems can be utilized the drip areas installed in Phase 2 and Phase 3 may vary.

SOLIDS HANDLING AND DISPOSAL

The facility generates or will generate the following residual solids that require handling and disposal:

- Manure
- DAF Skimmings
- Biosolids

An application for a permit by rule to allow the land application of these materials has been submitted to TDEC under separate cover.

DOMESTIC POTABLE WELLS WITHIN 1000 FEET OF FACILITY
The attached topographic map shows known potable wells within 1000 feet of the plant.

MASS BALANCE

Figure No. 4 provides a process flow diagram with mass balance data for key parameters noted.

HYDRAULIC PROFILE

Figure No. 5 provides a hydraulic profile for the total system from the existing DAF pretreatment area to the new biological treatment system and drip subsurface dispersal system.

TOPOGRAPHIC MAP

Southeastern Provision

0	950	1,900	3,800	5,700	7,600

SCALED LAYOUT OF FACILITY

The attached layout drawing is a compilation of the site plan for the existing system superimposed onto an aerial that shows the proposed wastewater treatment area and proposed drip dispersal system area.

SSDS SOILS INFORMATION

A soils map for the new proposed SSDS area is attached.

TOPOGRAPHIC MAP OF WASTEWATER TREATMENT AND SUBSURFACE DISPOSAL SYSTEM

A topographic map for the proposed new wastewater treatment and SSDS area is attached.

DESCRIPTION OF ALTERNATIVE APPLICATION METHODS

There is no municipal/public sewer system than can feasibly be connected to.
Surface land application of all wastewater is not feasible due to site topography and the requirements for wet weather storage. After the biological treatment system and initial drip dispersal system are completed Southeastern Provision intends to evaluate the feasibility of surface land application to reduce the hydraulic loadings to the drip dispersal areas. If it is determined surface application of a part of the treated wastewater is technically and cost effectively feasible the appropriate permit amendment process will be pursued.

The only feasible option for the facility at this time is to treat the wastewater to the required level and dispose of the treated wastewater through a subsurface disposal system consisting of a new drip dispersal system and the potential future use of the existing subsurface fields if they are determined to be acceptable for use.

DRIP DISPERSAL ADDITIONAL INFORMATION

GROUNDWATER

Historical usage of groundwater in the area has primarily been for residential and agricultural purposes. Groundwater generally flows south to southwest.

POPULATION AND CULTURAL DEVELOPMENT IN AOR

The area is primarily an agricultural setting. There are approximately 15 residential homes within the area. Land use is primarily cattle farming. Cherokee Lake is within a one mile radius.

NATURE OF INJECTED FLUID

The fluid to be managed in the subsurface disposal system will be treated wastewater from a beef processing facility. The wastewater will be treated using a physical/chemical pretreatment system followed by a biological treatment system to produce an advance treated effluent including nitrogen removal. The biologically treated wastewater will be filtered prior to being pumped to the subsurface disposal system(s). Treated wastewater will have the following characteristics:

- $\mathrm{pH}-6$ to 8
- BOD - less than $20 \mathrm{mg} / \mathrm{l}$
- Total Suspended Solids - less than $10 \mathrm{mg} / \mathrm{l}$
- Total Nitrogen - less than $20 \mathrm{mg} / \mathrm{l}$
- Oil and Grease - less than $10 \mathrm{mg} / \mathrm{l}$

TOPOGRAPHIC MAP SHOWING GROUNDWATER USAGE

A topo map with known well locations is attached.

WELL HEAD PROTECTION OR SOURCE WATER PROTECTION

The AOR is not located in a known well head protection or source water protection area. The topo maps shows the City of Morrisville, TN water system which is out side the AOR.

DESCRIPTION OF SYSTEM

The wastewater management system will consist of a physical/chemical pretreatment system followed by a biological treatment system. Biologically treated wastewater will be filtered and then pumped to the subsurface disposal system which will consist of drip dispersal with the possible future use of existing low pressure pipe and chamber areas in the future if determined to be effective. Wastewater flows at the time of preparation of this permit application are
approximately 40,000 gallons per day. Flows will increase to up to 100,000 gallons per day over a period of time depending on market conditions and the number of cattle processed.

NATURE AND TYPE OF SYSTEM

The biological treatment system will be a multi-basin oxic/anoxic (Cyclic Reactor) system designed to provide significant reliability and redundancy. The biological treatment system is being designed assuming limited treatment from the dissolved air flotation pretreatment system in order to provide a very conservative design as relates to hydraulic detention time, sludge age, and aeration requirements. All pumps and blowers will be designed with full standby units. The subsurface disposal system will be designed in strict accordance with TDEC regulations as relates to materials of construction. Multiple subsurface disposal areas will be provided. This will allow flexibility in how the individual areas are operated and rested . 100 percent reserve areas will be available.

