NAME OF WAT	ER UTILITY	KINGSTON WATER	RDEPARTMENT	
NAME OF WAT	ER TREATMENT	PLANT: KINGS	TON WATER PLANT	
COLINITY	POANE	DWSID#		360

TENNESSEE DEPARTMENT OF ENVIRONMENT AND CONSERVATION Division of Water Supply COMPREHENSIVE MONTHLY OPERATION REPORT

MONTH OF October YEAR 2023

	r —	1	-									PHYS	ICAL A	ND CF	I-MIC	AT CH	RACI	ERIST	CS														_			CHEMIC	ITS USE	1)		_			
										(2011)	LORINE	AL	KALINI				HAR	NESS	P	04		02			GANE	SE	11 / 12	JORIC)E			POUNI	S PER 2	4 HOL	JRS	OT ILLIANO	LO GOL		ALCUL	ATED D	OSAGE		MG/L
		Ë	Ι,			TURBIL	YTIC			RESID	UAL MG/I	_	MG/L	_	p	H	M	G/L T	M	G/L	M		MG/L	^	VIG/L	-	N	VIG/L				1	7	1			_	_		T	1	т -	
	WATER TED - GALLONS	HED WATER ED TO SYSTI GALLONS	RAW WATER TEMPERATURE		TURE	FINISH BIDITY MUST 4 HOURS A AM		SURED EV		TOP FILTER	OWEST LANT FFLUENT		OLPHTHALEIN 1ED	ED .		ΉED		무	т	DISTRIBUTION		OINT RESIDUA	_		_	SYSTEM		ÆD	DISTRIBUTION SYSTEM	COAGULANT - BOOGOLANT AID	-ECTION 2.5% BLEACH	DISINFECTION POST 12.5% BLEACH pH	ADJUSTMENT -LUORIDE	AND	SAL\SOFTENIN	STABILIZATION SAND CORROSION SAND CORROSION SAND CORROSION SAND SAND SAND SAND SAND SAND SAND SAN	COAGULANT -	DISINFECTION	Hq TMENT	RIDE	E AND	OXIDATION H2O2	STABILIZATION AND CORROSION CONTROL / PO4
DATE	RAW WAT TREATED 1,000 GAL	FINISHED PUMPED 1,000 GAI	RAWV	RAW	12-4	4-8 8-1	2 12-4	4 4-8	8-12	ON TO	LOWEST PLANT EFFLUEN	TOTAL	PHENO	TOTAL	RAW	ININI INININI INININI INININI INININI ININI ININI ININI ININI ININI ININI ININI ININI ININI ININI INININI INININI ININI ININI ININI ININI ININI ININI ININI ININI ININI ININI INININ	RAW	FINIS	FINISH	DISTR	mL/mi	ENDPOINT	FINISH	RAW	FINISH	DIST.	RAW	FINISHED	DISTR	COAG	DISIN PRE 1	POST PH	ADJUSTME FLUORIDE	TASTE	ODOR	STABILIZA AND CORR	COAG	DISIN	H C	FLUORIDE	TASTE	OXID/ H2O2	STABI AND C
14	2	3	1 4	5	6	7 8	9	110	111	12	13	14	15	16	17	18	19	20	21	22	23		25				29	30	31				5 36	3			40	41	1 42	43	44	45	46
1	510	426	25	3,60		0.07 0.0				0,7	2,5	64.0		63.0	7,5	7.6	64.0	68,0	0,4	0,3	3.8	0.2	0,00	0.06	0.01	0,01		0.5	0.5	62.0	121.0	121.0	11	0 3	4	2.6	14.6			0,6	0,16	0.81	0.7
2	610	612	25	4_92		0.07 0.0		_	_	0,9	2.7	61.0		68.0	7,3	7.5	64.0	64,0	0,4	0,4	3.8	0.2					0,1	0.5	0.5	69.0	145.0	160 0	13	_		3.2	13.6	_		0,5	0,16	0,82	0,6
3	432	438	25	3.10	-	0.06 0.0		1		0,6	2.1	60.0		65.0	7.5	7,5	60_0	64.0	0.2	0,1	3.8	0.2				_		0,5	0,5	48.0	99,0	104.0	10			2,2	13,3			0.5	0,16	0.81	0.6
4	565	566	25	3.28	-	0.06 0.0		1_	-	1,4	2.7	60.0		65.0	7,3	7,5	60.0	68,0	0,1	0.2	3.8	0.2				-		0.5	0.5	62.0	138.0	153.0	13.		-	3.0	13.2	_	_	0,5	0,16	0.82	0.6
5	490	494	. 25	3,13	_	0.06 0.0		_		1,7	2.6	60.0		60,0	7,7	7_5	60.0	60,0	0,1	0,1	3.8	0,2				_		0,5	0,5	49.0	115.0	121.0	11.	_	_	2.5	12.0			0,5	0,16	0.80	0,6
6	460	460	25	3.01		0.06 0.0		-	-	1,7	2,5	60.0	\rightarrow	64.0	7,5	7,5	60,0	70,0	0,1	0.1	3.8	0.2	_	_	_	_		0.5	0.5	45_0	112.0	125.0	10.			2,4	11.7			0,5	0,16	0.82	0.6
7	378	380	25	3.71			6 0.06	_	-	0.9	2,8	69.0		75.0	7,6	7.6	72.0	68,0	0,2	0,2	3,8	0.2	0,00			0.02		0,5	0,5	35,0	88,0	101.0	7.0	_		1.9	11,1		_	0.4	0,16	0,80	0.6
8	367	365	24	3.69	0.05	0.06 0.00		_	-	1.2	2.8	68.0		71.0	7.6	7.6	68.0	68.0	0.3	0,2	3.8	0.2	0.00	0.06	0.01	0.02		0.5	0.6	35.0	90.0	101.0	8.0			1.9	11.4			0,5	0.16	0.82	0.6
9	608	617	24	3,46	0.07	0.00		0.07		1.0	2.8	70.0		76.0	7,5	7.5	74.0	68.0	0.2	0,2	3.8	0,2	_	-		_	0.0	0,5	0.5	58.0	143.0	164.0	13.	_		3,1	11.4		_	0.5	0,16	0.81	0.6
10	602 344	508	24	3.62	_	0.10	0 0 08		_	1.1	2.8	73,0		75.0	7,5	7,5	74.0	70.0	0,1	0,2	3.8	0,2	-	-	-	-		0,5	0,5	58.0	148.0	154.0	12,	_		3,2	11.6		_	0,5	0,17	0,83	0.8
	419	349	24	3.91		0.00	7 0.07	0.08	_	0,6	2.6	68,0		70.0	7,4	7,5	70.0	70.0	0.1	0,1	3.8	0,2	_	-		_	_	0,5	0.7	32.0	82.0	83.0	7.0			1,8	11.2			0.4	0,16	0.81	0.6
12	683	690	24	3.72	-	0.0	_	-	0.07	0.5	2.7	70,0 75.0		70.0	7.6	7.7	72,0 78.0	70.0	0.1	0,2	3.8	0.2	-	-	-	-	_	0.5	0.6	40.0	102.0	120.0 187.0	10.			3,5	11.4			0.5	0.17	0.83	0.6
14	682	686	24	3.87	0.07	0.0	0.07	_	0.07	0.8	2.5	76.0	-	77.0	7.5	7.6	76.0	78.0	0.1	0,2	3.8	0.2	0.00	0.06	0.01 0	0.02	-	0.5	0.5	66.0	161.0	182.0	13			3.5	11.6		_	0.4	0.16	0.82	0.6
15	478	486	24	3.97	0.07	0.09	_	-	0.08	0.9	2.3	75.0	-	74.0	7.5	7.6	76.0	76.0	0.2	0.2	3.8	0,2	0.00	_	_	0.02	-	0,5	0.5	43.0	119.0	132.0	10	_	-	2.5	10.8			0.4	0.16	0.82	0.6
16	594	599	23	4.18	-1,	0.07 0.0		_	0.07	0,9	3.0	75.0	_	75.0	7.5	7.5	76.0	78.0	0.2	0.2	3.8	0,2	0.01	0,00	0.01	2.01	0.1	0.5	0.5	55.0	157.0	171.0	13.	_		3.1	11.1	8.3		0.5	0.18	0.83	0.6
17	511	415	21	4.16	-	0.08 0.08	_	-	+	1.1	2.7	78.0		80.0	7.6	7.6	80.0	82.0	0.3	0.4	3.8	0.2	_	-	-	_	0.1	0.6	0.6	49.0	132.0	126.0	10.			2.6	11.5	_		0.5	0.16	0.81	0.8
18	528	532	21	4.15	-	0.08 0.09	_	1	-	1.3	2.7	75.0		75.0	7.6	7.6	80.0	80,0	0.1	0.1	3.8	0.2		-+	-	-	-	0.6	0.6	39.0	136.0	151.0	12	_		2.8	8.9	8.1		0.5	0.17	0.82	0.6
19	534	543	21	3.46		0.08 0.08			\vdash	1.4	2.6	80.0		81.0	7.7	7.6	84.0	88,0	0.1	0.2	3.8	0.2		-	-			0,5	0.5	5B.0	138.0	153.0	11.	_		2,8	13.0	_		0.4	0.16	0.81	0.6
20	466	470	21	3.35		0 07 0 06		+		1.4	2.9	80.0	-	80.0	7.7	7,5	80.0	80.0	0.1	0.2	3.8	0.2		\rightarrow	\rightarrow	\rightarrow	-	0,5	0.6	49.0	114.0	136.0	11.	_		2.5	12.6			0.5	0.17	0.83	
21	543	551	21	3.47	-	0.07			_	1.2	3,3	78.0		77.0	7.6	7.6	80.0	78,0	0.2	0.2	3.8	0.2	0.01	0.06	0.01 0	0.01	-	0.5	0.6	57.0	133.0	148.0	113	$\overline{}$		2.8	12.6			0.4	0.16	0.81	0.6
22	420	422	21	3.31	-	0.03		_	-	1.3	3.0	82.0	-	81.0	7.7	7.7	78.0	82,0	0.3	0.2	3.8	0.2	0.01	-		10.0		0,6	0.6	46.0	104.0	118.0	9.0		_	2.2	13.1	7.9		0.5	0.16	0.82	0.6
23	602	612	21	2.97		0.07 0.08		+	-	0.6	3.1	80.0		80.0	7.7	7.6	82.0	84.0	0.1	0.1	3.8	0.2	0,01	0,00	0.01	7.01	0.1	0,6	0.6	64.0	142.0	164.0	13.			3.1	12,7			0,5	0.16	0.81	0.6
24	688	585	21	3 04		0.10 0.11	_	\vdash	-	0.3	2.8	79.0		81.0	7.9	7.7	86.0	86.0	0.3	0.2	3.8	0.2	-	\neg	_	\rightarrow	0,1	0,6	0.5	83.0	161.0	177.0	14	_	-	3.6	14.5		_	0.5	0.17	0.83	0.7
25	479	487	21	3.34		0.08 0.08		-	-	0.9	2.6	80.0		80,0	7.9	7.7	80.0	80.0	0.2	0,1	3.8	0.2			_	_		0,6	0.7	54.0	111.0	131.0	11.			2.5	13.5			0.5	0.16	0.81	0.6
26	529	534	21	3.31		0.07 0.07				1.3	2.7	80.0	-	80,0	7.8	7.7	80.0	80.0	0.1	0.2	3.8	0.2	-	\neg		-		0.6	0.6	60.0	122.0	146.0	11.			2.8	13.6			0.4	0.17	0.83	0.6
27	510	519	21	2.94		007 007				1.3	2.5	80.0		80.0	7.8	7.7	80.0	80.0	0.1	0.1	3.8	0.2						0.6	0.6	58.0	116.0	136.0	11.			2.6	13.6	_		0.5	0.16	0.81	0.6
28	515	518	21	3.01		0.07 0.07		\top		1.0	2.7	80.0		80.0	7.8	7.7	80.0	80.0	0.2	0,2	3.8	0.2	0.00	0.06	0.01 0	0.01		0.6	0.6	59.0	119.0	140.0	11.		_	2.7	13.7			0,5	0.16	0.82	0,6
29	491	498	22	3.02		0.08				1.1	2,5	81.0	- 1	83.0	8.0	7.8	84.0	86.0	0.2	0.2	3.8	0.2				0.01		0.6	0.5	58.0	105.0	130.0	11.			2.5	14.2	_		0.5	0,16	0.81	0,6
30	684	594	21	3.27	0	0.09 0.10	0.09			0.7	2.7	81.0		80.0	7.6	7.6	82.0	80.0	0.2	0.2	3.8	0.2					0.1	0.5	0.5	73.0	152.0	171.0	13.			3.6	12.8	_		0.5	0.17	0.83	0.7
31	359	364	21	3.41	0	0.09 0.09				0.8	2.3	BO.0		80.0	7.5	7.7	80.0	80.0	0.1	0.1	3.8	0.2						0.5	0.5	34.0	77.0	99.0	8.0	_		1.9	11.4			0.5	0.16	0.81	0.6
TOTAL	16081	15741	706	109 44	0.14 1	52 2 15	1.50	0.39	0.52	31.7	83,1	2278.0		2325.0	235.7	235.5	2320.0	2346.0	5.3	5.4	116.3	6.2	0.04	0.54	0.11 0	0.11	0.3	16.4	16.8	1664.0	3808.0	4305.0	342	0 10	0.5	83,7	383.3	234	7 0.0	14.8	5.1	25.3	19.8
AVE.	519	508	23	3.53	0.07	0.07 0.07	0.08	0.08	0.07	1.0	2.7	73.5		75.0	7.6	7,6	74.8	75.7	0,2	0,2	3.8	0.2	0.00	0.06	0.01 0	0.01	0.1	0.5	0.5	53.7	122.8	138.9	11.0	3.	5 0	2.7	12.4	7.6	0.0	0.5	0.2	0.8	0.6
MAX.	688	690	25	4.92	0.07	0.10 0.11	0,11	0.09	0.08	1.7	3.3	82.0		83,0	8.0	7,8	86.0	88.0	0.4	0.4	3.8	0.2	0.01	0.06	0.02 0	0.02	0.1	0.6	0.7	83.0	161.0	187.0	14.0	0 4.	7 0.	3.6	14.6	8.3	0.0	0.6	0.2	0.8	0.8
MIN.	344	349	21	2.94	0.07	0.06	0.06	0.07	0.07	0.3	2.1	60.0		60.0	7.3	7.5	60.0	60.0	0.1	0,1	3.8	0.2	0.00	0.06	0.01 0	0.01	0.0	0,5	0.5	32.0	77.0	83.0	7,0	2	3 0	1.8	8.9	6.8	0.0	0.4	2 02	0.8	0,6
			T-				1		_			-																			Lee	rtify that the d	ata provide	d accur	tely repre	sents the wa	er munify	ulannilly	treatment		//		

CHEMICAL USED BRAND ANALYSIS COST
PERLIE PERMONIN

I certify that the data provided accurately represents the water quality, quagnity, treoperational practices, and other activities for the reporting period specifies herein.

CERTIFIED OPERATOR

Dolla M Hole

	T	JAR	EST D	ATA	FILTER DA	АТА	1	FILTER OPERATION DATA										DINSI	NFEC	CTION AND	CT VA	LUES			T	MICRO	BIOLOGICA	EXA	MINATI	ON AND SYSTEM PRESSURE	
																FII		SINFEC				ND DIS		TION	i o la				<u> </u>		
	ATER ED: ALLONS	COAGULANT MG/L DH ADJUSTMENT			COMPLETE APPLICAE EACH MONTH.	BLE BLANKS	R OF S USED	FILTER HOURS= COL 54 x HOURS RUN	AVERAGE LENGTH FILTER RJN - HOURS	RATE-OF-FLOW GAUGES WORKING	LOSS-OF-HEAD GAUGES WORKING	TURNIDIMETERS WORKING	ASH RATE	BACKWASH WATER USED - 1,300 gallons		FREE CH_ORINE END OF	ME	UENCE		9	FREE CHLORINE END OF SEQUENCE	SEQUE TES	щ	LATED	CT CALC.		TNE	SYSTEM FREE CHLORINE MG/L AT POINT OF	NG & DISTRIBUTIO A	ılts	Location of sampling point in distribution system. Must vary within system.
DATE	RAW WATER TREATED	COAGU MG/L PH ADJ	MG/L				NUMBER OF FILTERS US	FILTER COL 54	AVERA FILTER	RATE-C GAUGE	LOSS-C GAUGE	TURNIE	BACKW gpm/ft2	BACKW USED -		C	CONTACT II	pН	S CALCULATED	СТ	c	IN MINUT		S CALCULATED	<u>r </u>		PLANT EFFLUENT			BT Resu	
47	48	49	50 5	1 52	53		54	55	56	57	58	59	60	61	62	63	64	65	66	67	68	69	70	71 77	73	74	75	76 7	7	78	
1	510						2		6,38	ok	ok	ok	18	-							2.5	74.4				1 2420					
2	610		_		(a) Type of Fillers - Gravity	(x) gravity	0 2	10.0	7,75	ok	ok	ok	18	-							2.7	74.4	7,5	200.9	9 22.3						
3	433				Pressure	()	2	10.8	5.4	ok	ok	ok	18	-			-	_		-	2.1	74.4	7,5	156.2	9 17.3		0		2.70	_	121 Lakewood Landing
5	568		_	-	(b) Number of Filters -		2	19,9	7.2	ok	ok	ok	18	-	_	<u> </u>	+	-	_	_	2.7	74.4		200.9	9 22.3		0		2.00	_	Waterford Across City Hall
6	490		_	4			2	12.16	6.08	ok .	ok	ok .	18	\rightarrow			-	-	-	_	2.6	74.4	_	193.4	9 21.4	_	-	_	2.00	_	2623 Lawmville Rd
7	378		-	+-	(c) Filter Area - Sq. Ft (Each)	174sqft	2	2.154.7	5,87 4,68	ok ok	ok	ok ok	18 18	$\overline{}$	_		+	+	\vdash	-	2.5	74.4	_	186.0	9 20,6	-		_	2.80		Bonneyview Tank
8	367	-	_	+	() ETP. A () Et (E)	474- 0	1 2	0.00	4.67	ok	ok ok	ok ok	18	\rightarrow	-	<u> </u>	+	-	-	-	2.8	74.4			11 18.9 14 14.8	-		_	2.30	N	Kingston Hgts, Pump Statin
9	608			4-	(d) Filter Area - Sq. Ft. (Each)	174sqft	2	0.01	7.6	ok	ok	ok	18			_	1	+	\vdash	-	2,8	74.4	_		14 14.8			-	2.00	N.	166 Vancon Dr
10	602	1	-	+	(e) Total Area - Sq. Ft	348sqft	2	-	7.73	ok	ok	ok	18	-		-	+	+	-	-	2.8	74.4	_	_	14 14.6	-		_	1.80	_	181 High St
11	344		-	1	(a) Otal Mea + 1/4 7 C -	3-josqit	2	_	4.32	ok	ok	ok	18				+		1		2.6	74.4			13 14.8			_	2.20	_	391 Oak Leaf st
12	419		_	1	(f) Filter Rate ppm/ft2	4gpm/ft2	4 2	_	5.37	ok	ok	ok	18	-			+	1	_	1	2.7	74.4		200.9		_			2.30	_	161 Hartford Villiage Way
13	683		\neg		(// marrian bruna	- Spirite	2	_	8.48	ok	ok	σk	18								2.6	74.4	7.6		13 14.8				2.50		1512 Roane State Hwy
14	682				(g) Filter Rate gpm/ft2	4gpmft2	4 2	17.3	8,65	ok	ok	ok	18								2.5	74.4	7.6	183.8	13 14.1	_	0				
15	478						2	11.96	5.98	ok	ok	ok	18								2.3	74.4	7.6	173.4	13 13,3	3 345	0				
16	594				(h) Total Rated Filter Capacity	700gpm	7 2	15 24	7,62	ok	ok	ok	18								3.0	74.4	7,5	223.2	14 15.9	4 727	0				
17	511				GPM -	700gpm	7 2	12.8	6.4	ok	ok	o k	18	59							2,7	74.4	7.6	200,9	16 12.5	613	0				
18	528				(i) Ion Exchange Unit Regenerate		2	13,46	6.73	ok	ok	ok	18								2.7	74.4	7,6	200 9	16 12.5	6 411	0				
19	534				With: Sait	()	2	13.36	6.68	ok	ok	ok	18								2.6	74.4	_		13 14.8	_					
20	468				KMnO4	()	2	11.9	5,95	ok	ok	ok	18								2.9	74.4			14 15.4						
21	543	1	_	+	Acid	() __	2	13,6	6.8	ok	ok	ok	18				-	1	_	_	3,3	74.4		20.000	17 14.4						
22	420	 		-			2	10.1	5,35	ok	ok	ok	18	\vdash			-	-	-	-	3.0	74.4			17 13.1						
23	602	-		+			2	10.00	7,53	ok	ok	ok	18				+-	1		 	3.1	74.4		200,0	17 13.5	-			_	_	
24 25	688 478			+			2	17.6	8.8	ok	ok	ok	18 18	66			-	1	-	-	2.8	74.4		200.0	12.2					_	
26	529	1	_	-			2	13.54	6.77	ok ok	ok ok	ok ok	18	\vdash		_	+	1		\vdash	2.6	74.4			16 12.0 16 12.5				_		f
27	510	1	-	+			2	12.74	6.37	ok ok	ok ok	ok ok	18				_	+		-	2.7	74.4	_	_	16 11.6	_					
28	518						2	13.14	6.57	ok	ok	ok	18				1	1		1	2.7	74.4	_		16 12.5						
29	491	1-1-			λ.		2	12.26	6.13	ok	ok	ok	18					†	\vdash		2.5	74.4	_		16 11.6		_				
30	684						2	17.5	8.75	ok	ok	ok	18	55				1			2.7	74.4	_		16 12.5	_	-				
31	359						2	_	4.48	ok	ok	ok	18	\rightarrow							2.3	74.4			16 10.7						
TOTAL	16081							406.38	203.09					287							· · · · · · · · · · · · · · · · · · ·		-					22	6	Г	
AVE.	519							13:11	6.55					57														2]	
MAX.	688							12.76	6.38					57														2	8		
MIN.	344							8.64	7.75					0														1	8	1	

Remarks:	9		
	۸		

TENNESSEE DEPARTMENT OF ENVIRONMENT DIVISION OF WATER SUPPLY

COMPREHENSIVE MONTHLY OPERATION REPORT

KINGSTON WATER DEPARTMENT NAME OF WATER UTILITY 360 PWSID KINGSTON SPRING SUPPLY NAME OF WATER TREATMENT PLANT COUNTY Roane October 2023 MONTH OF Year

		7		CHL	ORINE		FLUORIDE		ALKA	INITY MG/L		pН	HARDN	ESS MG/L	PC)4		TRON		. N	IANGANE	SE	
DATE	WATER TREATED	GALLONS	FINISHED TURBIDITY NTU	POUNDS OR GALLONS USED	FREE RESIDUAL MG/L SPRING PUMPHOUSE	POUNDS OR GALLON USED	CALCULATED DOSAGE MG/L	DISTRIBUTION SYSTEM MG/L	TOTAL RAW	TOTAL FINISHED	RAW	FINISHED	RAW	FINSIHED	SPRING	DISTRIBUTION	RAW	FINISHED	DIST. SYSTEM	GRAVITY FED LINE	SPRING	DIST SYSTEM	CORROSION CONTROL
1	2		3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23
1	402	\Box	0.26	60.0	3.3	10	0.54	0.53		143		7.1		138.00	0.2	0.3		0.00	0.01		0.022	0.01	
2	429	_[0.31	60.0	2,9	11	0.56	0.50		139		7.2		138.00	0.4	0.4							
3	461	_[0.33	60.0	3.0	11	0.52	0.48		135		7,1		130.00	0.1	0.5							
4	425	┙	0.37	60.0	2.8	11	0.57	0.50		135		7.2		130.00	0.0	0.2							
5	434	┙	0.37	60.0	3.0	10	0.50	0.51		134		7.2		134.00	0.1	0.1							
6	441	_[0.31	60.0	2.6	10	0.50	0.52		130		7.1		120.00	0.1	0.1							
7	446	_	0.25	60.0	2.8	10	0.49	0.53		139		7.3		126.00	0.2	0.2		0.00	0.01		0.019	0.02	
8	472	_	0.24	60.0	2.7	10	0.46	0.55		139		7.3		140.00	0.2	0.2		0.01	0.01		0.018	0.02	
9	402	Ц	0.27	60.0	2.8	11	0.60	0.48		140		7.2		140.00	0.1	0.2							
10	456	Ц	0.26	60.0	2.7	10	0.48	0.54		139		7.2		142.00	0.2	0.2							
11	421	_	0.37	60.0	2.9			0.62		130		7.1		130.00	0.1	0.1							
12	449	4	0.25	60.0	2.7	10	0.49	0,57		129		7,2		134.00	0.1	0.2							
13	429	4	0.22	60.0	3.1	13	0.66	0.51		137		7.2		140.00	0.2	0.2							
14	494		0.23	60.0	2.5	8	0.35	0.56		136		7.2		138.00	0.1	0.2		0.01	0.00		0.019	0.02	
15	376	_	0.22	60.0	2.7	10	0.58	0.51		135		7.2		138.00	0.1	0.1							
16	435	┙	0.29	60.0	3.2	10	0.50	0.53		135		7.1		138.00	0.2	0.2							
17	437		0.24	60.0	3.6	11	0.55	0.57		140		7.2		142.00	0.3	0.4							
18	448	_	0.20	60.0	3.0	12	0.59	0.58		135		7.1		140.00	0.1	0.1							
19	431	4	0.20	60.0	2.8	11	0.56	0.53		141		7.2		150.00	0.1	0.2							
20	420	4	0.13	60.0	3,0	10	0.52	0.58		140		7.2		140.00	0.1	0.2							
21	437	1	0.20	60.0	3.4	11	0.57	0.57		140		7.2		142.00	0.2	0.2		0.01	0.00		0.017	0.01	
22	422	4	0.24	60.0	3.1	10	0,52	0.55		138		7.3		138.00	0.2	0.2		0.02	0.05		0.012	0.01	
23	437	4	0.23	60.0	3.6	11	0.55	0.57		137		7.2		138.00	0.1	0.1							
24	309	4	0.25	60.0	3.2	12	0.62	0.51		137		7.3		142.00	0.1	0.1							
25	424	4	0.27	60.0		11	0.57	0.65		130		7.2		130.00	0.1	0.2							
26	430	4	0.32	60.0	3,2	11	0.56	0.59		135		7.2		140.00	0.1	0.1							
27	431	4	0.34	60.0	3.4	10	0.51	0.55		140		7.2		140.00	0.1	0.2							
28	413	4	0.29	60.0	3.3	8	0.42	0.59		141		7.2		140.00	0.2	0.2		0.02	0.00		0.010	0.01	
29	419	4	0.27	60.0	3,3	0	0.00	0.53		137		7.4		140.00	0.1	0.2		0.03	0.00		0.018	0.01	
30	425	ļ	0.54	60.0	3.2	16		0.45		139		7.2		140.00	0.1	0.2							
31	421	_	0.37	60.0	3.1	9	0.47	0.49		130		7.2		130.00	0.2	0.1							
TOTAL	13276	1	8.64	1860.00	94,30	318.00	16.14	16.75	0.00	4235.00	0.00	223.24	0.00	4248.00	4.47	5.83	0.00	0.10	0.08	0.00	0.135	0.10	0.00
AVE	428	ļ	0.28	60.00	3.04	10.26	0.52	0.54	0.00	136.61	0.00	7.20	0.00	137.03	0.14	0.19	0.00	0.01	0.01	0.00	0.017	0.01	0.00
MAX	494	ļ	0.54	60.00		16.00	0.82	0.65	-	143.00	0.00	7.37	0.00	150.00	0.37	0.50	0.00	0.03	0.05	0.00	0.022	0.02	0.00
MIN.	309		0.13	60.00	2.50	0.00	0.00	0.45	0.00	129.00	0.00	7.08	0.00	120.00	0.04	0.05	0.00	0.00	0.00	0.00	0.010	0.01	0.00

REMARKS

Certified Operator

This form must be received by the appropriate field once by the 10th of the following

PH-0342 Rev 8/86

		BACTE	RIOLOGICAL EXAMINATION
DATE	DATE SAMPLE COLLECTED	FREE CHLORINE MG/L AT POINT OF SAMPLING	LOCATION OF SAMPLING POINT FROM DISTRIBUTION SYSTEM
24	25	26	27
1	Oct.1	2.5	1007 E. Race St.
2	Oct.2	1.7	Hwy 70 & Gallaher Rd.
3	Oct.3	2	601 N Kentucky St
4	Oct.4	2	2623 Lawnville Rd
5	Oct.5	2.9	1503 James Ferry Rd.
6	Oct.6	2	430 Ladd Landing
7	Oct.7	2.1	614 N. Kentucky St.
8	Oct.8	2	1452 Lawnville Rd.
9	Oct.9	1.8	Lakeside Dr.
10	Oct.10	2	# 2 Pump Station
11	Oct.11	2,3	505 Gallaher Rd
12	Oct.12	2.3	333 W. Race St
13	Oct.13	2.2	835 N. Kentucky St.
14	Oct.14	2.1	430 Ladd Landing
15	Oct.15	2	1007 E Race St
16	Oct.16	1.8	Pouplar Spring
17	Oct.17	1.8	900 Waterford PI
18	Oct.18	2	935 N Kentucky St
19	Oct.19	2.1	Hwy 70 & Gallaher Rd.
20	Oct.20	2.4	# 2 Pump Station
21	Oct.21	2.4	835 N. Kentucky St.
22	Oct.22	2.3	101 First St.
23	Oct.23	1.6	505 Gallaher Rd
24	Oct24.	2.3	Lakeside Dr.
25	Oct.25	2.2	Kiingston Hights Tank
26	Oct.26	2.1	Ridgecrest Tank
27	Oct.27	2.5	1503 James Ferry Rd.
28	Oct.28	2.3	614 N. Kentucky St.
29	Oct.29	2.1	430 Ladd Landing
30	Oct.30	2.4	505 Gallaher Rd
31	Oct.31	2.9	Morrison Hill Tank
TOTAL		67.1	
AVE.		2.16	
MAX.		2.9	
MIN.		1.6	

TENNESSEE DEPARTMENT OF ENVIRONMENT AND CONSERVATION DIVISION OF WATER RESOURCES – WATER SUPPLY SECTION 1 3 2023 6th Floor, L & C Tower, 401 Church Street

Floor, L & C Tower, 401 Church Stree Nashville, Tennessee 327243

MONTHLY DISTRIBUTION SYSTEM FLUORIDE SAMPLING SUMMARY and QUARTERLY CHECK SAMPLE REPORTING

PUBLIC WATER SYSTEM NAME & ADDRESS									
KINGSTON WATER DEPARTMENT									
900 WATERFORD PLACE									
	KINGSTON, TN 37763								
Contact Person:	John M. Poole								
PWS ID Number: TN0000360	County: ROANE								

	Month (1)	Average for Month mg/L ⁽²⁾	Highest Fluoride Measurement mg/L (3)	Lowest Fluoride Measurement mg/L (4)	Number of Days Fluoride Measured ⁽⁵⁾
1,	January	0.56	0.68	0.45	31
2.	February	0.50	0.60	0.40	28
3.	March	0.56	0.65	0.40	31
4.	April	0.49	0.57	0.37	30
5.	May	0.56	0.64	0.49	31
6.	June	0.54	0.61	0.46	30
7.	July	0.53	0.64	0.44	31
8.	August	0.52	0.62	0.45	31
9.	September	0.54	0.60	0.45	30
10.	October	0.54	0.69	0.45	31
11.					
12.					

Instructions:

This form is to be completed by all community water systems that add fluoride to their finished water. It may be submitted monthly or quarterly to the Division of Water Supply at the address listed below.

- (1) Enter the month for which the results are being reported.
- (2) Enter the arithmetic average of all distribution system fluoride measurements taken during the month.
- (3) Enter the highest fluoride value measured during the month in the distribution system.
- (4) Enter the lowest fluoride value measured during the month in the distribution system.
- (5) Enter the number of days fluoride samples were taken in the distribution system.
- (6) Mail form to the above address. For assistance or questions call 1-888-891-8332

Quarterly Check Samples:

Collection Date	Address	PWS Result (ppm)	Certified Lab	Certified Lab Result (ppm)
01/04/23	125 First Street	0.56	Pace Analytical / ESC Labs	0.422
04/06/23	Hwy. 70/Gallaher Road	0.50	Pace Analytical / ESC Labs	0.478
07/06/23	900 Waterford Place	0.47	Pace Analytical / ESC Labs	0.433

I certify under penalty of law that this document and all attachments were prepared by me, or under my direction	or supervision. The submitted information is to the
best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for	submitting false information, including the possibility
best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for of fine and imprisonment. As specified in Tennessee Code Annotated Section 39-16-702(a)(4), this declaration is	s made under penalty of perjury.

n. Certified Operator:	John M. Poole	Signature:	Ulkreikele	Date:	11/08/23
		Phone:	/ 865-376-7187		

TENNESSEE DEPARTMENT OF ENVIRONMENT AND CONSERVATION DIVISION OF WATER SUPPLY

NOV 1 3 2023

DISINFECTANT MONITORING AND MRDL COMPLIANCE REPORT

**************************************	ENTRY	PUBLIC WATER SYSTI	EM NAME AND ADDRESS								
PWSID#	B	KINGSTON WATE	R DPT. SPRING SI	UPPLY							
SAMPLE PE	ERIOD END DATE	900 WAT	ERFORD PLACE								
100123	1 0 3 1 2 3	KINGS	TON, TN 37763	-							
	m m d d y y	1000000									
I. SYSTEMS USING CHLO	RINE OR CHLORAMINES	(1)									
A. Distribution System											
Number of Number Samples Sample Taker	r of es Lowest Residual	Average Residual Measured (mg/L)	Number of Samples below 0.2 mg/L 0 0 0	% of Samples 0.2 mg/L or higher							
			0000	100							
Number of Days Residual Measurements Required (3) Taken 3 1 3 1	Conducted	Lowest Residual Wa	as the Continuous Chlorine rvice more than 5 consecut while this facility was in \overline{N} ("Y" for yes, or "N	tive days n operation?							
II. SYSTEMS USING CHLO	RINE DIOXIDE	CONTRACTOR OF THE STREET									
A. Entry Point Monitori	ng										
Number of Days Resi Measurements Required	dual Highest Resid Measured Taken Entering the D	Residual Me	easured Days Resid	Consecutive dual Measured RDL							
B. Distribution System	Monitoring										
1. Systems Not Utiliz	zing Disinfection Booste	r Stations									
Date E.P. Sample Exceeded MRDL	Date of Follow-Up Sampling (4)	Time of First Sample	Time of Second Sample	Time of Third Sample							
	XX.	Result (mg/L)	Result (mg/L)	Result (mg/L)							
2. Systems Utilizing	Disinfection Booster Sta		Sample Results (mg/L) at:								
Date E.P. Sample Exceeded MRDL	Date Follow-Up Sampling (5)	Closest Customer	Average Point	Maximum Residence Time							
Notes: (1) Disinfection residuals must be measured at the same frequency and locations for all total coliform samples that are taken. The number of required samples is the total number of routine and repeat total coliform samples taken during the reporting period. (2) Subpart H Systems are public water systems that treat surface water and/or ground water under the direct influence of surface water. (3) Disinfection residuals must be measured continuously for chlorine for systems serving more than 3,330 persons at the entry point to the distribution system each day of operation. Grab sampling may be conducted at the rate specified in the regulations for systems serving less than 3,300. (4) For systems using chlorine dioxide, and not utilizing booster chlorination facilities in the distribution system, if an entry point sample exceeds the MRDL, a three-sample set of measurements must be taken the day after the exceedance at a point closest to the first customer at six-hour intervals. Analysis must be by Ion Chromatography. (5) For systems using chlorine dioxide, and which utilize booster chlorination facilities in the distribution system, if an entry point sample exceeds the MRDL, a three-sample set of measurements must be taken the day after the exceedance at the following locations: 1) a point closest to the first customer, 2) a point reflecting the average residence time, and, 3) a point reflecting the maximum residence time. Analysis must be by Ion Chromatography. I CERTIFY THAT THE INFORMATION LISTED ON THIS FORM ACCURATELY CORRESPONDS TO THE OPERATION OF THIS FACILITY FOR											
THE REPORTING PERIOD SPECI				11/08/23							
		-									

TENNESSEE DEPARTMENT OF ENVIRONMENT AND CONSERVATION DIVISION OF WATER RESOURCES, WATER SUPPLY SECTION

INTERIM ENHANCED SURFACE WATER TREATMENT RULE FILTER PERFORMANCE REPORT (1)

PUBLIC WATER SYSTEM NAME AND ADDRESS KINGSTON WATER DEPARTMENT

		900 WATE	ERFORD PL	_ACE					
	-	KINGST	ON, TN 377	763	_				
PWSID # ENTRY POINT 0 0 0 0 3 6 0 A	0 8	START DATE START DATE S 0 1 2 3	END D	1 2 3	TOTAL HOU OPERATED T		0	LABORATO ID	4 2
REPORTABLE SAMPLES (2) REQUIRED TAKEN LOWER NTU ST 0 5 3 0 8 6 0 8	ESS THAN TO THE TANDARD (3)	PERCENT OF REPO SAMPLES LESS OR EQUAL TO LOWER NTU STAN 1 0 0 0	THAN S THE L VDARD	NUMBER OF REPORT AMPLES EXCEEDS JPPER NTU STAND (LIST DATES ON E	NG THE DARD ⁽⁴⁾ BACK)	WAT	EST FINISHI ER TURBIDI HIS MONTH	TY	-
Notes: (1) This form applies to fittration systems utilizing either a surface: (2) Systems utilizing cartridge filtration must at a minimum, meas highest value measured during each 4-hour period. System: (3) NTU standards vary depending on the type of filtration treatm technique violation. Use the lower NTU standard applicable (4) indicate the number of reportable samples that exceeded the exceedance.	ure turbidity once s utilizing continuo ent provided, and to this facility for t	per day while treating water. Sy ous monitoring turbidimeters shal I include a lower limit that must be this calculation.	ratems required to mi Il report the highest n a met in 95% of the n	easure and record finish ecorded value for every eportable samples, and	ned water turbidit 4 hour period, an upper limit th	nat cannot be exc	seeded without	receiving a trea	atment
Did this facility meet the CT requirements for each day it was in operation? A. FOR ALL FILTERS AT THIS FACILITY	YORN	B. FOR ANY FILTER AT Were any 2 consecutive fi taken 15 minutes apart:	ilter effluent mea	asurements	Y or N	Filter Num	bers (maxim	um of four fil	Iters)
 Was turbidity monitored continuously and the results recorded for each filter effluent line? If the answer to question number 1 is no, was 		1. Greater than 0.5 NTU a	after the first 4 ho	ours of operation?	N	0 1	0 2	Щ	
grab sampling conducted for every 4 hours the continuous monitor was out of service?	N	2. Greater than 1.0 NTU? 3. Greater than 1.0 NTU in	n each of 3 cons	ecutive months?	N	0 1	0 2		
If the answer to question number 2 is yes, was grab sampling conducted for more than 5 consecutive days on any individual filter?		4. Greater than 2.0 NTU i			N	0 1	0 2		
Note: (5) If this facility answered "Yes" to any question listed in Section	B. above, then th	ne system must submit a "Monthly	y Turbidity Exceedan	ice Report" (CN-1198) f	or the individual	filter that met at	least one of the	conditions list	ed.
I certify under penalty of law that this document and all attachme am aware that there are significant penalties for submitting false penalty of perjury.	onts were prepared Information, inclu	d by me, or under my direction o uding the possibility of fine and i	or supervision. The s imprisonment. As sp	submitted information is secified in Tennessee C	to the best of mode Annotated S	y knowledge and Section 39-16-70	i belief, true, ac 2(a)(4), this de	curate, and co claration is me	mplete. I ade under
PREPARED BY: John M. Poole DATE	E: 11/08/23 PHO	ONE: <u>(865) 376-7187</u>	APPROVED	_{BY:} John M.	Poole	DATE: 11/08/	23 PHONE:	(865) 376-	-7187

TENNESSEE DEPARTMENT OF ENVIRONMENT AND CONSERVATION DIVISION OF WATER SUPPLY

DISINFECTANT MONITORING AND MRDL COMPLIANCE REPORT NOV 1 3 2023

7786	DUDU IO MATER OVOTEM MANE AND ADDRESS				
PWSID # POINT	PUBLIC WATER SYSTEM NAME AND ADDRESS				
0 0 0 0 3 6 0 A	KINGSTON WATER DEPARTMENT				
SAMPLE PERIOD START DATE END DATE	900 WATERFORD PLACE				
1 0 0 1 2 3 m m d d y y 1 1 0 3 1 2 3	KINGSTON, TN 37763				
I. SYSTEMS USING CHLORINE OR CHLORAMINES	3 (1)				
A. Distribution System Monitoring					
Number of Number of	Average Number of % of Samples				
Samples Samples Lowest Residual	Residual Samples below 0.2 mg/L or				
Required (1) Taken Measured (mg/L)	Measured (mg/L) 0.2 mg/L higher				
010 010 1 80	2 30 000 100 0				
B. Entry Point Monitoring (For Sub Part H Systems					
Residual Measurements Conducted	Lowest Residual Measured Entering the D.S. Was the Continuous Chlorine Analyzer out of service more than 5 consecutive days while this facility was in operation? N ("Y" for yes, or "N" for no)				
II. SYSTEMS USING CHLORINE DIOXIDE	HENDRICH TO THE THE PARTY OF THE				
A. Entry Point Monitoring					
Number of Days Residual Highest Resi Measurements Measured					
Required Taken Entering the					
	mg/L				
B. Distribution System Monitoring					
1. Systems Not Utilizing Disinfection Booste	or Stations				
Date E.P. Sample Date of Follow-Up	Time of First Time of Second Time of Third				
Exceeded MRDL Sampling (4)	Sample Sample Sample				
	Result (mg/L) Result (mg/L) Result (mg/L)				
2. Systems Utilizing Disinfection Booster Sta	ations				
	Sample Results (mg/L) at:				
Date E.P. Sample Date Follow-Up Exceeded MRDL Sampling (5)	Closest Maximum Customer Average Point Residence Time				
Notes:	anticon for all Arbet an illegan acceptance that are follows:				
number of routine and repeat total coliform samples taken during the rep					
	ystems serving more than 3,330 persons at the entry point to the distribution system each day of				
(4) For systems using chlorine dioxide, and not utilizing booster chlorination	n facilities in the distribution system, if an entry point sample exceeds the MRDL, a three-sample oint closest to the first customer at six-hour intervals. Analysis must be by Ion Chromatography.				
(5) For systems using chlorine dioxide, and which utilize booster chlorination	non tactions and the last casterned at section makes as Araysis must be by for informational paper, in facilities in the distribution system, if an entry point sample exceeds the MRDL, a three-sample the following locations: 1) a point closest to the first customer, 2) a point reflecting the average				
residence time, and, 3) a point reflecting the maximum residence time.	Analysis must be by Ion Chromatography.				
I CERTIFY THAT THE INFORMATION LISTED ON THIS FORM A THE REPORTING PERIOD SPECIFIED HEREIN.	ACCURATELY CORRESPONDS TO THE OPERATION OF THIS FACILITY FOR				
PREPARED BY John M. Poole nate 11/08/23	3 APPROVED BY John M. Poole DATE 11/08/23				

TENNESSEE DEPARTMENT OF ENVIRONMENT AND CONSERVATION DIVISION OF WATER SUPPLY

L & C Tower, 6th Floor 401 Church Street Nashville, Tennessee 37243

MONTHLY MICROBIOLOGICAL and DISINFECTANT MONITORING REPORT

Public Water System Name	KINGSTON WATI	ER DEPARTMENT	Phone:	(865) 376-7187			
Addres	Address 900 WATERFORD PLACE, KINGSTON, TN 37763			ROANE			
			(1)				
		Bacteriological Monitori	ng '''				
PWSID	Contaminan ID	t Analysis Method	Begin	Sample Period	End		
0 0 0 0 3 6	0 3 1 0 0	9 2 2 3	1 0 0 1	2 3	1 0 3 1 2 3		
Total Number Of Routine Distribution Samples Analyzed	Total Number O Positive Sample Analyzed ⁽²⁾		es	oratory ID	Laboratory Name		
0 1 0	000	000	0 3	1 2 1	KINGSTON WTP		
0 1 0	0 0 0				1318 S.KENTUCKY ST		
	Date of Fir		Date of Last		KINGSTON, TN 37763		
	1 0 0	4 2 3	1 0 1 1	2 3			
Disinfectant Residual Monitoring (3)							
	est Residual	Residual Samp	mber of bles below 2 mg/L	% of Samples 0.2 mg/L or higher			
1	80	300	0 0	100.0			
		Notes					
(1) This form is to be submitt	ted for systems reporting 10	or more bacteriological compli	ance samples during	the reporting peri	od.		
(2) All positive and repeat sa	imples must be reported on I	Form CN-0800, Bacteriologica	l Analysis Detail.				
(3) Systems supplying chlorinated water must monitor disinfectant residuals at the same locations and frequencies as total coliform sampling is required.							
		Administrative Informa	tion	HE PERM			
I certify the information listed	on this form accurately corre	esponds to the operation of this	s facility for the repo	rting period specifi	ed herein.		
Responsible Official:	John M. Poole	Phone: <u>(865</u>	5) 376-7187				
Program Contact:	Phone: <u>(865</u>	5) 376-7187					
Technical Contact	John M. Poole	Phone: (86	5) 376-7187				
		Filolie <u>(000</u>	7070 . 101				