

# STATE OF TENNESSEE

# DEPARTMENT OF ENVIRONMENT AND CONSERVATION DIVISION OF WATER RESOURCES

William R. Snodgrass - Tennessee Tower 312 Rosa L. Parks Avenue, 11<sup>th</sup> Floor Nashville, Tennessee 37243-1102

October 25, 2017

Mr. Bob Cass Town Manager 501 Chestuee Street Englewood, TN

Subject: Modified NPDES Permit No. TN0021938

**Englewood STP** 

Englewood, McMinn County, Tennessee

Dear Mr. Cass:

In accordance with the provisions of "The Tennessee Water Quality Control Act" (Tennessee Code Annotated, Sections 69-3-101 through 69-3-120) the above referenced NPDES Permit is hereby modified by the Division of Water Resources. The continuance and/or reissuance of this NPDES Permit is contingent upon your meeting the conditions and requirements as stated therein.

This minor modification revises **Section 1.1** (Numeric and Narrative Effluent Limitations), **Section 2.3.3** (Overflow), and **Section 4.1** (Definitions). In Section 1.1 the monitoring for nutrients (nitrogen and phosphorus) has been switched from influent to effluent and the new requirements for Sanitary Sewer Overflows (SSO's) and Releases has been added and the old requirements have been deleted. Additionally, the language in Section 2.3.3 has been changed to reflect the differentiation between Overflows and Releases and the definition of "Release" has been added to Section 4.1.

Please be advised that a petition for permit appeal may be filed, pursuant to T.C.A. Section 69-3-105, subsection (i), by the permit applicant or by any aggrieved person who participated in the public comment period or gave testimony at a formal public hearing whose appeal is based upon any of the issues that were provided to the commissioner in writing during the public comment period or in testimony at a formal public hearing on the permit application. Additionally, for those permits for which the department gives public notice of a draft permit, any permit applicant or aggrieved person may base a permit appeal on any material change to conditions in the final permit from those in the draft, unless the material change has been subject to additional opportunity for public comment. Any petition for permit appeal under this subsection (i) shall be filed with the Technical Secretary of the Water Quality, Oil and Gas Board within thirty (30) days after public notice of the commissioner's decision to issue or deny the permit. A copy of the filing should also be sent to TDEC's Office of General Counsel.

If you have questions, please contact the Chattanooga Environmental Field Office at 1-888-891-TDEC; or, at this office, please contact Mr. Robert O'Dette, P.E. at (615) 253-5319 or by E-mail at *Robert.Odette@tn.gov*.

Sincerely.

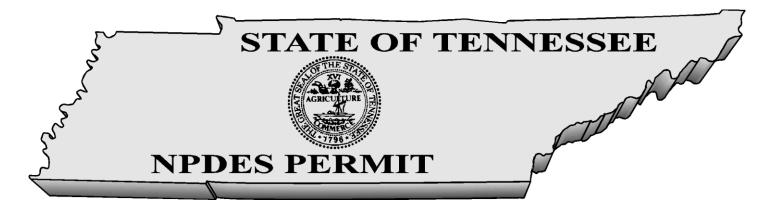
Vojin Janjić

Banut

Manager, Water-Based Systems

Enclosure

cc: Permit File


Chattanooga Environmental Field Office

Mr. Jamie Carden, McGill & Associates, jamie.carden@mcgillengineers.com

Mr. William J. Meinert, PE, Vice President, O'Brien & Gere, bill.meinert@obg.com

 $Mr.\ Curtis\ Runkles,\ WWTP\ Chief\ Operator,\ ,\ crunkles@hotmail.com$ 

Mr. Joe Cline, Public Works Director, Englewood STP, townmanager@townofenglewood.com



# No. TN0021938

Authorization to discharge under the National Pollutant Discharge Elimination System (NPDES)

Issued By

# STATE OF TENNESSEE DEPARTMENT OF ENVIRONMENT AND CONSERVATION DIVISION OF WATER RESOURCES William R. Snodgrass - Tennessee Tower 312 Rosa L. Parks Avenue, 11<sup>th</sup> Floor Nashville, Tennessee 37243-1102

Under authority of the Tennessee Water Quality Control Act of 1977 (T.C.A. 69-3-101 <u>et seq.</u>) and the delegation of authority from the United States Environmental Protection Agency under the Federal Water Pollution Control Act, as amended by the Clean Water Act of 1977 (33 U.S.C. 1251, et seq.)

Discharger: Englewood STP

is authorized to discharge: treated municipal wastewater from Outfall 001

from a facility located: in Englewood, McMinn County, Tennessee

to receiving waters named: Chestuee Creek Mile 42.4

in accordance with effluent limitations, monitoring requirements and other conditions set forth herein.

This permit shall become effective on: September 1, 2017

This permit shall expire on: August 31, 2022

Issuance date: August 1, 2017

for Tisha Calabrese Benton Director

Tamuk

CN-0759 RDA 2366

# **TABLE OF CONTENTS**

|        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <u>Page</u> |
|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| 1.0. E | EFFLUENT LIMITATIONS AND MONITORING REQUIREMENTS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1           |
| 1.1.   | NUMERIC AND NARRATIVE EFFLUENT LIMITATIONS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1           |
| 1.2.   | MONITORING PROCEDURES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 6           |
| 1.2.   | 1. Representative Sampling                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 6           |
| 1.2.   | .2. Sampling Frequency                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 6           |
| 1.2.   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |
| 1.2.   | 4. Recording of Results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 7           |
| 1.2.   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |
| 1.3.   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | _           |
| 1.3.   | · · · · <b>9</b> · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |             |
| 1.3.   | 3 ·, · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |             |
| 1.3.   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |
| 1.3.   | /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             |
| 1.3.   | 7,1 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |             |
| 1.3.   | , , , , , , ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |             |
| 1.4.   | COMPLIANCE WITH SECTION 208                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |             |
| 1.5.   | REOPENER CLAUSE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10          |
| 2.0.   | GENERAL PERMIT REQUIREMENTS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 11          |
| 2.1.   | GENERAL PROVISIONS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 11          |
| 2.1.   | .1. Duty to Reapply                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 11          |
| 2.1.   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |
| 2.1.   | 3. Availability of Reports                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 11          |
| 2.1.   | The state of the s |             |
| 2.1.   | 5. Treatment Facility Failure (Industrial Sources)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 12          |
| 2.1.   | 6. Property Rights                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 12          |
| 2.1.   | .7. Severability                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 12          |
| 2.1.   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |
| 2.2.   | CHANGES AFFECTING THE PERMIT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |             |
| 2.2.   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |
| 2.2.   | - · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |             |
| 2.2.   | 9y r                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |             |
| 2.2.   | 4. Change of Mailing Address                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 14          |
| 2.3.   | NONCOMPLIANCE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |             |
| 2.3.   | ,, ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |             |
| 2.3.   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |
| 2.3.   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |
| 2.3.   | - 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |             |
| 2.3.   | <b>F</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |             |
| 2.3.   | 71                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |             |
| 2.3.   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |
| 2.4.   | LIABILITIES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |             |
| 2.4.   | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             |
| 2.4.   | .2. Liability Under State Law                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 17          |

| 3.0.       | PERMIT SPECIFIC REQUIREMENTS                                              | 18 |
|------------|---------------------------------------------------------------------------|----|
| 3.1.       | CERTIFIED OPERATOR                                                        | 18 |
| 3.2.       | POTW PRETREATMENT PROGRAM GENERAL PROVISIONS                              | 18 |
| 3.3.       | BIOSOLIDS MANAGEMENT PRACTICES                                            | 19 |
| 3.4.       | PLACEMENT OF SIGNS                                                        | 19 |
| 3.5.       | ANTIDEGRADATION                                                           | 20 |
| 4.0.       | DEFINITIONS AND ACRONYMS                                                  | 21 |
| 4.1.       | DEFINITIONS                                                               | 21 |
| 4.2.       | ACRONYMNS AND ABBREVIATIONS                                               | 24 |
| RATION     | NALE                                                                      | 26 |
| 1.         | FACILITY INFORMATION                                                      | 26 |
| 2.         | RECEIVING STREAM INFORMATION                                              | 26 |
| 3.         | CURRENT PERMIT STATUS                                                     | 28 |
| 4.         | COMPLIANCE SCHEDULE SUMMARY                                               | 28 |
| 5.         | PREVIOUS PERMIT DISCHARGE MONITORING REPORT REVIEW                        | 28 |
| 6.         | PROPOSED EFFLUENT LIMITS AND RATIONALE                                    | 29 |
| 6.         | 1. BOD <sub>5</sub> , Dissolved Oxygen, and Percent Removals Requirements | 30 |
| 6.         | 2. NH <sub>3</sub> -N toxicity                                            | 30 |
| 6.         | 3. Chlorination                                                           | 32 |
| 6.         | 4. Total Nitrogen and Total Phosphorus monitoring/reporting               | 32 |
| 6.         | 5. E. coli Requirements                                                   | 33 |
| 6.         | 6. Overflow and Bypass Reporting                                          | 33 |
| 7.         | OTHER PERMIT REQUIREMENTS AND CONDITIONS                                  | 33 |
| 7.         | 1. Certified Wastewater Treatment Operator                                | 33 |
| 7.         | 2. Collection System Certified Operator                                   | 34 |
| <i>7</i> . | 3. Pretreatment Program                                                   | 34 |
| <i>7.</i>  | 4. Biosolids MANAGEMENT PRACTICES                                         | 34 |
| <i>7</i> . | 5. Permit Term                                                            | 35 |
| 7.         | 6. ELECTRONIC REPORTING                                                   | 35 |
| 8.         | ANTIDEGRADATION STATEMENT/WATER QUALITY STATUS                            | 35 |
| APPEN      | DIX 1                                                                     | 36 |
| APPEN      | DIX 2                                                                     | 39 |

RGO TN0021938PMT.DOC

# 1.0. EFFLUENT LIMITATIONS AND MONITORING REQUIREMENTS

# 1.1. NUMERIC AND NARRATIVE EFFLUENT LIMITATIONS

The City of Englewood is authorized to discharge treated municipal wastewater from Outfall 001 to the Chestuee Creek Mile 42.4. Discharge 001 consists of municipal wastewater from a treatment facility with a design capacity of 0.25 MGD. Discharge 001 shall be limited and monitored by the permittee as specified below:

| Description | Description: External Outfall, Number: 001, Monitoring: Effluent Gross, Season: All Year |              |       |      |             |                         |                          |  |  |
|-------------|------------------------------------------------------------------------------------------|--------------|-------|------|-------------|-------------------------|--------------------------|--|--|
| Code        | Parameter                                                                                | Qualifier    | Value | Unit | Sample Type | Monitoring<br>Frequency | Statistical Base         |  |  |
| 00300       | Oxygen, dissolved (DO)                                                                   | >=           | 1.0   | mg/L | Grab        | Five Per Week           | Instantaneous<br>Minimum |  |  |
| 00310       | BOD, 5-day, 20 C                                                                         | <=           | 63    | lb/d | Composite   | Three Per Week          | Monthly Average          |  |  |
| 00310       | BOD, 5-day, 20 C                                                                         | <=           | 45    | mg/L | Composite   | Three Per Week          | Daily Maximum            |  |  |
| 00310       | BOD, 5-day, 20 C                                                                         | <b>\</b> =   | 83    | lb/d | Composite   | Three Per Week          | Weekly Average           |  |  |
| 00310       | BOD, 5-day, 20 C                                                                         | <b>\</b> =   | 40    | mg/L | Composite   | Three Per Week          | Weekly Average           |  |  |
| 00310       | BOD, 5-day, 20 C                                                                         | <=           | 30    | mg/L | Composite   | Three Per Week          | Monthly Average          |  |  |
| 00400       | рН                                                                                       | >=           | 6.0   | SU   | Grab        | Five Per Week           | Minimum                  |  |  |
| 00400       | рН                                                                                       | <b>&lt;=</b> | 9.0   | SU   | Grab        | Five Per Week           | Maximum                  |  |  |
| 00530       | Total Suspended<br>Solids (TSS)                                                          | <=           | 63    | lb/d | Composite   | Three Per Week          | Monthly Average          |  |  |
| 00530       | Total Suspended<br>Solids (TSS)                                                          | <b>&lt;=</b> | 30    | mg/L | Composite   | Three Per Week          | Monthly Average          |  |  |
| 00530       | Total Suspended<br>Solids (TSS)                                                          | <b>\</b> =   | 40    | mg/L | Composite   | Three Per Week          | Weekly Average           |  |  |
| 00530       | Total Suspended<br>Solids (TSS)                                                          | <=           | 45    | mg/L | Composite   | Three Per Week          | Daily Maximum            |  |  |
| 00530       | Total Suspended<br>Solids (TSS)                                                          | <=           | 83    | lb/d | Composite   | Three Per Week          | Weekly Average           |  |  |
| 00545       | Settleable Solids                                                                        | <=           | 1.0   | mL/L | Grab        | Five Per Week           | Daily Maximum            |  |  |

| Description | n : External Outfall,          | , Number : 001 | , Monitor | ing : Effluent G | iross, Season : A | II Year                 |                            |
|-------------|--------------------------------|----------------|-----------|------------------|-------------------|-------------------------|----------------------------|
| Code        | Parameter                      | Qualifier      | Value     | Unit             | Sample Type       | Monitoring<br>Frequency | Statistical Base           |
| 00600       | Total Nitrogen (as N)          | Report         |           | mg/L             | Composite         | Quarterly               | Daily Maximum              |
| 00665       | Total Phosphorus<br>(as P)     | Report         |           | mg/L             | Composite         | Quarterly               | Daily Maximum              |
| 50050       | Flow                           | Report         |           | Mgal/d           | Continuous        | Daily                   | Monthly Average            |
| 50050       | Flow                           | Report         |           | Mgal/d           | Continuous        | Daily                   | Daily Maximum              |
| 50060       | Chlorine, total residual (TRC) | <=             | 0.3       | mg/L             | Grab              | Five Per<br>Week        | Daily Maximum              |
| 51040       | E. coli                        | <=             | 941       | #/100mL          | Grab              | Three Per<br>Week       | Daily Maximum              |
| 51040       | E. coli                        | <=             | 126       | #/100mL          | Grab              | Three Per<br>Week       | Monthly Geometric<br>Mean  |
| Description | n : External Outfall,          | Number : 001,  | Monitorii | ng : Percent Re  | moval, Season :   |                         |                            |
| Code        | Parameter                      | Qualifier      | Value     | Unit             | Sample Type       | Monitoring<br>Frequency | Statistical Base           |
| 81010       | BOD, 5-day, % removal          | >=             | 40        | %                | Calculated        | Three Per<br>Week       | Daily Minimum              |
| 81010       | BOD, 5-day, % removal          | >=             | 85        | %                | Calculated        | Three Per<br>Week       | Monthly Average<br>Minimum |
| 81011       | TSS, % removal                 | >=             | 85        | %                | Calculated        | Three Per<br>Week       | Monthly Average<br>Minimum |
| 81011       | TSS, % removal                 | >=             | 40        | %                | Calculated        | Three Per<br>Week       | Daily Minimum              |

| Descripti | Description: External Outfall, Number: 001, Monitoring: Raw Sewage Influent, Season: All Year |             |          |              |                  |                         |                  |  |  |  |  |
|-----------|-----------------------------------------------------------------------------------------------|-------------|----------|--------------|------------------|-------------------------|------------------|--|--|--|--|
| Code      | Parameter                                                                                     | Qualifier   | Value    | Unit         | Sample Type      | Monitoring<br>Frequency | Statistical Base |  |  |  |  |
| 00310     | BOD, 5-day, 20 C                                                                              | Report      |          | mg/L         | Composite        | Three Per Week          | Daily Maximum    |  |  |  |  |
| 00310     | BOD, 5-day, 20 C                                                                              | Report      |          | mg/L         | Composite        | Three Per Week          | Monthly Average  |  |  |  |  |
| 00530     | Total Suspended Solids (TSS)                                                                  | Report      |          | mg/L         | Composite        | Three Per Week          | Monthly Average  |  |  |  |  |
| 00530     | Total Suspended Solids (TSS)                                                                  | Report      |          | mg/L         | Composite        | Three Per Week          | Daily Maximum    |  |  |  |  |
| 50050     | Flow                                                                                          | Report      |          | Mgal/d       | Continuous       | Daily                   | Monthly Average  |  |  |  |  |
| 50050     | Flow                                                                                          | Report      |          | Mgal/d       | Continuous       | Daily                   | Daily Maximum    |  |  |  |  |
| Descripti | ion: External Outfall, Numbe                                                                  | r: 001, Mon | itoring: | All Weather, | Season: All Year |                         |                  |  |  |  |  |
| Code      | Parameter                                                                                     | Qualifier   | Value    | Unit         | Sample Type      | Monitoring<br>Frequency | Statistical Base |  |  |  |  |
| 51929     | Bypass of Treatment Facility                                                                  | Report      |          | occur/mo     | Occurrences      | Continuous              | Monthly Total    |  |  |  |  |
| 51929     | Bypass of Treatment Facility                                                                  | Report      |          | gal/mo       | Estimate         | Continuous              | Monthly Total    |  |  |  |  |

|       |                                 |           | Mon   | itoring : Dry Wea                  | ther        |                         |                  |
|-------|---------------------------------|-----------|-------|------------------------------------|-------------|-------------------------|------------------|
| Code  | Parameter                       | Qualifier | Value | Unit                               | Sample Type | Monitoring<br>Frequency | Statistical Base |
| 51925 | SSO, Dry Weather                | Report    |       | gal/mo                             | Estimate    | Continuous              | Monthly Total    |
| 51925 | SSO, Dry Weather                | Report    |       | occur/12 Mo<br>Cumulative<br>Total | Calculated  | Continuous              | Total            |
| 51925 | SSO, Dry Weather                | <=        | 0     | occur/mo                           | Occurrences | Continuous              | Monthly Total    |
| 51927 | Release [Sewer], Dry<br>Weather | Report    |       | occur/mo                           | Occurrences | Continuous              | Monthly Total    |
| 51927 | Release [Sewer], Dry<br>Weather | Report    |       | gal/mo                             | Estimate    | Continuous              | Monthly Total    |
|       |                                 |           | Mon   | itoring : Wet Wea                  | nther       | _                       |                  |
| Code  | Parameter                       | Qualifier | Value | Unit                               | Sample Type | Monitoring<br>Frequency | Statistical Base |
| 51926 | SSO, Wet Weather                | Report    |       | gal/mo                             | Estimate    | Continuous              | Monthly Total    |
| 51926 | SSO, Wet Weather                | Report    |       | occur/12 Mo<br>Cumulative<br>Total | Calculated  | Continuous              | Total            |
| 51926 | SSO, Wet Weather                | <=        | 0     | occur/mo                           | Occurrences | Continuous              | Monthly Total    |
| 51928 | Release [Sewer], Wet<br>Weather | Report    |       | gal/mo                             | Estimate    | Continuous              | Monthly Total    |
| 51928 | Release [Sewer], Wet<br>Weather | Report    |       | occur/mo                           | Occurrences | Continuous              | Monthly Total    |

Notes: The permittee shall achieve % removal of CBOD<sub>5</sub> and TSS on a monthly average basis. The permittee shall report all instances of overflow and/or bypasses. See Part 2.3.3.a for the definition of overflow and Part 1.3.5.1 for reporting requirements.

See Part 1.2.3 for test procedures.

See Part 3.4 for biomonitoring test and reporting requirements. See next page for percent removal calculations.

Total residual chlorine (TRC) monitoring shall be applicable when chlorine, bromine, or any other oxidants are added. The acceptable methods for analysis of TRC are any methods specified in Title 40 CFR, Part 136 as amended. The method detection level (MDL) for TRC shall not exceed 0.05 mg/l unless the permittee demonstrates that its MDL is higher. The permittee shall retain the documentation that justifies the higher MDL and have it available for review upon request. In cases where the permit limit is less that the MDL, the reporting of TRC at less than the MDL shall be interpreted to constitute compliance with the permit.

The wastewater discharge must be disinfected to the extent that viable coliform organisms are effectively eliminated. The concentration of the *E. coli* group after disinfection shall not exceed 126 cfu per 100 ml as the geometric mean calculated on the actual number of samples collected and tested for *E. coli* within the required reporting period. The permittee may collect more samples than specified as the monitoring frequency. Samples may not be collected at intervals of less than 12 hours. For the purpose of determining the geometric mean, individual samples having an *E. coli* group concentration of less than one (1) per 100 ml shall be considered as having a concentration of one (1) per 100 ml. In addition, the concentration of the *E. coli* group in any individual sample shall not exceed a specified maximum amount. A maximum daily limit of 487 colonies per 100 ml applies to lakes and exceptional Tennessee waters. A maximum daily limit of 941 colonies per 100 ml applies to all other recreational waters.

There shall be no distinctly visible floating scum, oil or other matter contained in the wastewater discharge. The wastewater discharge must not cause an objectionable color contrast in the receiving stream.

The wastewater discharge shall not contain pollutants in quantities that will be hazardous or otherwise detrimental to humans, livestock, wildlife, plant life, or fish and aquatic life in the receiving stream.

Sludge or any other material removed by any treatment works must be disposed of in a manner that prevents its entrance into or pollution of any surface or subsurface waters. Additionally, the disposal of such sludge or other material must be in compliance with the Tennessee Solid Waste Disposal Act, TCA 68-31-101 et seq. and the Tennessee Hazardous Waste Management Act, TCA 68-46-101 et seq.

Nothing in this permit authorizes take for the purposes of a facility's compliance with the Endangered Species Act. (40 C.F.R. 125.98(b)(1))

For the purpose of evaluating compliance with the permit limits established herein, where certain limits are below the State of Tennessee published required detection levels (RDLs) for any given effluent characteristics, the results of analyses below the RDL shall be reported as Below Detection Level (BDL), unless in specific cases other detection limits are demonstrated to be the best achievable because of the particular nature of the wastewater being analyzed.

Englewood STP NPDES Permit TN0021938 Page 5

| For BOD <sub>5</sub> and TSS, the treatment facility shall demonstrate a minimum of 85% removal  |
|--------------------------------------------------------------------------------------------------|
| efficiency on a monthly average basis. This is calculated by determining an average of all daily |
| influent concentrations and comparing this to an average of all daily effluent concentrations.   |
| The formula for this calculation is as follows:                                                  |

| 1 - | average of daily effluent concentration average of daily influent concentration   | _ | x 100% | = % removal |
|-----|-----------------------------------------------------------------------------------|---|--------|-------------|
|     | atment facility will also demonstrate 40% pon each daily composite sample. The fo |   |        |             |
| 1 - | daily effluent concentration daily influent concentration                         |   | x 100% | = % removal |

#### 1.2. MONITORING PROCEDURES

# 1.2.1. Representative Sampling

Samples and measurements taken in compliance with the monitoring requirements specified herein shall be representative of the volume and nature of the monitored discharge, and shall be taken after treatment and prior to mixing with uncontaminated storm water runoff or the receiving stream. Appropriate flow measurement devices and methods consistent with accepted scientific practices shall be selected and used to insure the accuracy and reliability of measurements of the volume of monitored discharges. The devices shall be installed, calibrated and maintained to insure that the accuracy of the measurements is consistent with accepted capability of that type of device. Devices selected shall be capable of measuring flows with a maximum deviation of less than plus or minus 10% from the true discharge rates throughout the range of expected discharge volumes.

Samples and measurements taken in compliance with the monitoring requirements specified above shall be representative of the volume and nature of the monitored discharge, and shall be taken at the following location(s):

Influent samples must be collected prior to mixing with any other wastewater being returned to the head of the plant, such as sludge return. Those systems with more than one influent line must collect samples from each and proportion the results by the flow from each line.

Effluent samples must be representative of the wastewater being discharged and collected prior to mixing with any other discharge or the receiving stream. This can be a different point for different parameters, but must be after all treatment for that parameter or all expected change:

- a. The chlorine residual must be measured after the chlorine contact chamber and any dechlorination. It may be to the advantage of the permittee to measure at the end of any long outfall lines.
- b. Samples for *E. coli* can be collected at any point between disinfection and the actual discharge.
- c. The dissolved oxygen can drop in the outfall line; therefore, D.O. measurements are required at the discharge end of outfall lines greater than one mile long. Systems with outfall lines less than one mile may measure dissolved oxygen as the wastewater leaves the treatment facility. For systems with dechlorination, dissolved oxygen must be measured after this step and as close to the end of the outfall line as possible.
- d. Total suspended solids and settleable solids can be collected at any point after the final clarifier.
- e. Biomonitoring tests (if required) shall be conducted on final effluent.

#### 1.2.2. Sampling Frequency

Where the permit requires sampling and monitoring of a particular effluent characteristic(s) at a frequency of less than once per day or daily, the permittee is precluded from marking the "No Discharge" block on the Discharge Monitoring Report if there has been any

discharge from that particular outfall during the period which coincides with the required monitoring frequency; i.e. if the required monitoring frequency is once per month or 1/month, the monitoring period is one month, and if the discharge occurs during only one day in that period then the permittee must sample on that day and report the results of analyses accordingly.

#### 1.2.3. Test Procedures

- a. Test procedures for the analysis of pollutants shall conform to regulations published pursuant to Section 304 (h) of the Clean Water Act (the "Act"), as amended, under which such procedures may be required.
- b. Unless otherwise noted in the permit, all pollutant parameters shall be determined according to methods prescribed in Title 40, CFR, Part 136, as amended, promulgated pursuant to Section 304 (h) of the Act.
- c. Composite samples must be proportioned by flow at time of sampling. Aliquots may be collected manually or automatically. The sample aliquots must be maintained at ≤ 6 degrees Celsius during the compositing period.
- d. In instances where permit limits established through implementation of applicable water criteria are below analytical capabilities, compliance with those limits will be determined using the detection limits described in the TN Rules, Chapter 0400-40-03-.05(8).

# 1.2.4. Recording of Results

For each measurement or sample taken pursuant to the requirements of this permit, the permittee shall record the following information:

- a. The exact place, date and time of sampling;
- b. The exact person(s) collecting samples;
- c. The dates and times the analyses were performed;
- d. The person(s) or laboratory who performed the analyses:
- e. The analytical techniques or methods used, and;
- f. The results of all required analyses.

# 1.2.5. Records Retention

All records and information resulting from the monitoring activities required by this permit including all records of analyses performed and calibration and maintenance of instrumentation shall be retained for a minimum of three (3) years, or longer, if requested by the Division of Water Resources.

#### 1.3. REPORTING

# 1.3.1. Monitoring Results

Monitoring results shall be recorded monthly and submitted monthly using NETDMR. Submittals shall be no later than 15 days after the completion of the reporting period. If NETDMR is not functioning, a completed DMR with an original signature shall be submitted to the following address:

STATE OF TENNESSEE
DEPARTMENT OF ENVIRONMENT AND CONSERVATION
DIVISION OF WATER RESOURCES
COMPLIANCE & ENFORCEMENT SECTION
William R. Snodgrass - Tennessee Tower
312 Rosa L. Parks Avenue, 11th Floor
Nashville, Tennessee 37243-1102

If NETDMR is not functioning, a copy of the completed and signed DMR shall be mailed to the Chattanooga Environmental Field Office (EFO) at the following address:

STATE OF TENNESSEE
DEPARTMENT OF ENVIRONMENT AND CONSERVATION
DIVISION OF WATER RESOURCES
Chattanooga Environmental Field Office
1301 Riverfront Parkway, Suite 206
Chattanooga, Tennessee 37402

A copy should be retained for the permittee's files. In addition, any communication regarding compliance with the conditions of this permit must be sent to the two offices listed above.

The first DMR is due on the 15th of the month following permit effectiveness.

DMRs and any other information or report must be signed and certified by a responsible corporate officer as defined in 40 CFR 122.22, a general partner or proprietor, or a principal municipal executive officer or ranking elected official, or his duly authorized representative. Such authorization must be submitted in writing and must explain the duties and responsibilities of the authorized representative.

The electronic submission of DMR data will be accepted only if formally approved beforehand by the division. For purposes of determining compliance with this permit, data approved by the division to be submitted electronically is legally equivalent to data submitted on signed and certified DMR forms.

### 1.3.2. Additional Monitoring by Permittee

If the permittee monitors any pollutant specifically limited by this permit more frequently than required at the location(s) designated, using approved analytical methods as specified herein, the results of such monitoring shall be included in the calculation and reporting of the values required in the DMR form. Such increased frequency shall also be indicated on the form.

# 1.3.3. Falsifying Results and/or Reports

Knowingly making any false statement on any report required by this permit or falsifying any result may result in the imposition of criminal penalties as provided for in Section 309 of the Federal Water Pollution Control Act, as amended, and in Section 69-3-115 of the Tennessee Water Quality Control Act.

#### 1.3.4. Monthly Report of Operation

Monthly operational reports shall be submitted on standard forms to the appropriate Division of Water Resources Environmental Field Office in Jackson, Nashville, Chattanooga, Columbia, Cookeville, Memphis, Johnson City, or Knoxville. Reports shall be submitted by the 15th day of the month following data collection.

## 1.3.5. Bypass and Overflow Reporting

## 1.3.5.1. Report Requirements

A summary report of known or suspected instances of overflows in the collection system or bypass of wastewater treatment facilities shall accompany the Discharge Monitoring Report. The report must contain the date and duration of the instances of overflow and/or bypassing and the estimated quantity of wastewater released and/or bypassed.

The report must also detail activities undertaken during the reporting period to (1) determine if overflow is occurring in the collection system, (2) correct those known or suspected overflow points and (3) prevent future or possible overflows and any resulting bypassing at the treatment facility.

On the DMR, the permittee must report the number of sanitary sewer overflows, dry-weather overflows and in-plant bypasses separately. Three lines must be used on the DMR form, one for sanitary sewer overflows, one for dry-weather overflows and one for in-plant bypasses.

#### 1.3.5.2. Anticipated Bypass Notification

If, because of unavoidable maintenance or construction, the permittee has need to create an in-plant bypass which would cause an effluent violation, the permittee must notify the division as soon as possible, but in any case, no later than 10 days prior to the date of the bypass.

#### 1.3.6. Reporting Less Than Detection; Reporting Significant Figures

A permit limit may be less than the accepted detection level. If the samples are below the detection level, then report "BDL" or "NODI =B" on the DMRs. The permittee must use the correct detection levels in all analytical testing required in the permit. The required detection levels are listed in the Rules of the Department of Environment and Conservation, Division of Water Resources, Chapter 0400-40-03-.05(8).

For example, if the limit is 0.02 mg/l with a detection level of 0.05 mg/l and detection is shown; 0.05 mg/l must be reported. In contrast, if nothing is detected reporting "BDL" or "NODI =B" is acceptable.

Englewood STP NPDES Permit TN0021938 Page 10

Reported results are to correspond to the number of significant figures (decimal places) set forth in the permit conditions. The permittee shall round values, if allowed by the method of sample analysis, using a uniform rounding convention adopted by the permittee.

#### 1.4. COMPLIANCE WITH SECTION 208

The limits and conditions in this permit shall require compliance with an area-wide waste treatment plan (208 Water Quality Management Plan) where such approved plan is applicable.

#### 1.5. REOPENER CLAUSE

This permit shall be modified, or alternatively revoked and reissued, to comply with any applicable effluent standard or limitation issued or approved under Sections 301(b)(2)(C) and (D), 307(a)(2) and 405(d)(2)(D) of the Clean Water Act, as amended, if the effluent standard, limitation or sludge disposal requirement so issued or approved:

- a. Contains different conditions or is otherwise more stringent than any condition in the permit; or
- b. Controls any pollutant or disposal method not addressed in the permit.

The permit as modified or reissued under this paragraph shall also contain any other requirements of the Act then applicable.

# 2.0. GENERAL PERMIT REQUIREMENTS

\_\_\_\_\_

#### 2.1. GENERAL PROVISIONS

## 2.1.1. Duty to Reapply

Permittee is not authorized to discharge after the expiration date of this permit. In order to receive authorization to discharge beyond the expiration date, the permittee shall submit such information and forms as are required to the Director of the Division of Water Resources (the "director") no later than 180 days prior to the expiration date. Such forms shall be properly signed and certified.

# 2.1.2. Right of Entry

The permittee shall allow the director, the Regional Administrator of the U.S. Environmental Protection Agency, or their authorized representatives, upon the presentation of credentials:

- a. To enter upon the permittee's premises where an effluent source is located or where records are required to be kept under the terms and conditions of this permit, and at reasonable times to copy these records;
- b. To inspect at reasonable times any monitoring equipment or method or any collection, treatment, pollution management, or discharge facilities required under this permit; and
- c. To sample at reasonable times any discharge of pollutants.

# 2.1.3. Availability of Reports

Except for data determined to be confidential under Section 308 of the Federal Water Pollution Control Act, as amended, all reports prepared in accordance with the terms of this permit shall be available for public inspection at the offices of the Division of Water Resources. As required by the Federal Act, effluent data shall not be considered confidential.

#### 2.1.4. Proper Operation and Maintenance

a. The permittee shall at all times properly operate and maintain all facilities and systems (and related appurtenances) for collection and treatment which are installed or used by the permittee to achieve compliance with the terms and conditions of this permit. Proper operation and maintenance also includes adequate laboratory and process controls and appropriate quality assurance procedures. This provision requires the operation of backup or auxiliary facilities or similar systems, which are installed by a permittee only when the operation is necessary to achieve compliance with the conditions of the permit. Backup continuous pH and flow monitoring equipment are not required.

b. Dilution water shall not be added to comply with effluent requirements to achieve BCT, BPT, BAT and or other technology based effluent limitations such as those in State of Tennessee Rule 0400-40-05-.09.

# 2.1.5. Treatment Facility Failure (Industrial Sources)

The permittee, in order to maintain compliance with this permit, shall control production, all discharges, or both, upon reduction, loss, or failure of the treatment facility, until the facility is restored or an alternative method of treatment is provided. This requirement applies in such situations as the reduction, loss, or failure of the primary source of power.

# 2.1.6. Property Rights

The issuance of this permit does not convey any property rights in either real or personal property, or any exclusive privileges, nor does it authorize any injury to private property or any invasion of personal rights, nor any infringement of federal, state, or local laws or regulations.

# 2.1.7. Severability

The provisions of this permit are severable. If any provision of this permit due to any circumstance, is held invalid, then the application of such provision to other circumstances and to the remainder of this permit shall not be affected thereby.

#### 2.1.8. Other Information

If the permittee becomes aware of failure to submit any relevant facts in a permit application, or of submission of incorrect information in a permit application or in any report to the director, then the permittee shall promptly submit such facts or information.

#### 2.2. CHANGES AFFECTING THE PERMIT

# 2.2.1. Planned Changes

The permittee shall give notice to the director as soon as possible of any planned physical alterations or additions to the permitted facility. Notice is required only when:

- a. The alteration or addition to a permitted facility may meet one of the criteria for determining whether a facility is a new source in 40 CFR 122.29(b); or
- b. The alteration or addition could significantly change the nature or increase the quantity of pollutants discharged. This notification applies to pollutants, which are subject neither to effluent limitations in the permit, nor to notification requirements under 40 CFR 122.42(a)(1).

## 2.2.2. Permit Modification, Revocation, or Termination

a. This permit may be modified, revoked and reissued, or terminated for cause as described in 40 CFR 122.62 and 122.64, Federal Register, Volume 49, No. 188 (Wednesday, September 26, 1984), as amended.

- b. The permittee shall furnish to the director, within a reasonable time, any information which the director may request to determine whether cause exists for modifying, revoking and reissuing, or terminating this permit, or to determine compliance with this permit. The permittee shall also furnish to the director, upon request, copies of records required to be kept by this permit.
- c. If any applicable effluent standard or prohibition (including any schedule of compliance specified in such effluent standard or prohibition) is established for any toxic pollutant under Section 307(a) of the Federal Water Pollution Control Act, as amended, the director shall modify or revoke and reissue the permit to conform to the prohibition or to the effluent standard, providing that the effluent standard is more stringent than the limitation in the permit on the toxic pollutant. The permittee shall comply with these effluent standards or prohibitions within the time provided in the regulations that establish these standards or prohibitions, even if the permit has not yet been modified or revoked and reissued to incorporate the requirement.
- d. The filing of a request by the permittee for a modification, revocation, reissuance, termination, or notification of planned changes or anticipated noncompliance does not halt any permit condition.

# 2.2.3. Change of Ownership

This permit may be transferred to another party (provided there are neither modifications to the facility or its operations, nor any other changes which might affect the permit limits and conditions contained in the permit) by the permittee if:

- a. The permittee notifies the director of the proposed transfer at least 30 days in advance of the proposed transfer date;
- b. The notice includes a written agreement between the existing and new permittees containing a specified date for transfer of permit responsibility, coverage, and liability between them; and
- c. The director, within 30 days, does not notify the current permittee and the new permittee of his intent to modify, revoke or reissue, or terminate the permit and to require that a new application be filed rather than agreeing to the transfer of the permit.

Pursuant to the requirements of 40 CFR 122.61, concerning transfer of ownership, the permittee must provide the following information to the division in their formal notice of intent to transfer ownership: 1) the NPDES permit number of the subject permit; 2) the effective date of the proposed transfer; 3) the name and address of the transferor; 4) the name and address of the transferee; 5) the names of the responsible parties for both the transferor and transferee; 6) a statement that the transferee assumes responsibility for the subject NPDES permit; 7) a statement that the transferor relinquishes responsibility for the subject NPDES permit; 8) the signatures of the responsible parties for both the transferor and transferee pursuant to the requirements of 40 CFR 122.22(a), "Signatories to permit applications"; and, 9) a statement regarding any proposed modifications to the facility, its operations, or any other changes which might affect the permit limits and conditions contained in the permit.

#### 2.2.4. Change of Mailing Address

The permittee shall promptly provide to the director written notice of any change of mailing address. In the absence of such notice the original address of the permittee will be assumed to be correct.

#### 2.3. NONCOMPLIANCE

# 2.3.1. Effect of Noncompliance

All discharges shall be consistent with the terms and conditions of this permit. Any permit noncompliance constitutes a violation of applicable state and federal laws and is grounds for enforcement action, permit termination, permit modification, or denial of permit reissuance.

# 2.3.2. Reporting of Noncompliance

#### a. 24-Hour Reporting

In the case of any noncompliance which could cause a threat to public drinking supplies, or any other discharge which could constitute a threat to human health or the environment, the required notice of non-compliance shall be provided to the Division of Water Resources in the appropriate Environmental Field Office within 24-hours from the time the permittee becomes aware of the circumstances. (The Environmental Field Office should be contacted for names and phone numbers of environmental response team).

A written submission must be provided within five days of the time the permittee becomes aware of the circumstances unless the director on a case-by-case basis waives this requirement. The permittee shall provide the director with the following information:

- i. A description of the discharge and cause of noncompliance;
- ii. The period of noncompliance, including exact dates and times or, if not corrected, the anticipated time the noncompliance is expected to continue; and
- iii. The steps being taken to reduce, eliminate, and prevent recurrence of the noncomplying discharge.

# b. Scheduled Reporting

For instances of noncompliance which are not reported under subparagraph 2.3.2.a above, the permittee shall report the noncompliance on the Discharge Monitoring Report. The report shall contain all information concerning the steps taken, or planned, to reduce, eliminate, and prevent recurrence of the violation and the anticipated time the violation is expected to continue.

#### 2.3.3. Overflow

- a. Sanitary sewer overflows, including dry-weather overflows, are prohibited.
- b. The permittee shall operate the collection system so as to avoid sanitary sewer overflows and releases due to improper operation or maintenance. A "release" may be due to improper operation or maintenance of the collection system or may be due to other cause(s). Releases caused by improper operation or maintenance of the permittee's collection and transmission system are prohibited.
- c. The permittee shall take all reasonable steps to minimize any adverse impact associated with releases.
- d. No new or additional flows shall be added upstream of any point in the collection or transmission system that experiences greater than 5 sanitary sewer overflows or releases (greater than 5 events per year)<sup>1</sup> or would otherwise overload any portion of the system. Unless there is specific enforcement action to the contrary, the permittee is relieved of this requirement after: 1) an authorized representative of the Commissioner of the Department of Environment and Conservation has approved an engineering report and construction plans and specifications prepared in accordance with accepted engineering practices for correction of the problem; 2) the correction work is underway; and 3) the cumulative, peak-design, flows potentially added from new connections and line extensions upstream of any chronic overflow or release point are less than or proportional to the amount of inflow and infiltration removal documented upstream of that point. The inflow and infiltration reduction must be measured by the permittee using practices that are customary in the environmental engineering field and reported in an attachment to a Monthly Operating Report submitted to the local TDEC Environmental Field Office. The data measurement period shall be sufficient to account for seasonal rainfall patterns and seasonal groundwater table elevations.
- e. In the event that chronic sanitary sewer overflows or releases have occurred from a single point in the collection system for reasons that may not warrant the self-imposed moratorium of the actions identified in this paragraph, the permittee may request a meeting with the Division of Water Resources EFO staff to petition for a waiver based on mitigating evidence.

#### 2.3.4. Upset

- a. "Upset" means an exceptional incident in which there is unintentional and temporary noncompliance with technology-based effluent limitations because of factors beyond the reasonable control of the permittee. An upset does not include noncompliance to the extent caused by operational error, improperly designed treatment facilities, inadequate treatment facilities, lack of preventive maintenance, or careless or improper operation.
- b. An upset shall constitute an affirmative defense to an action brought for noncompliance with such technology-based permit effluent limitations if the permittee demonstrates, through properly signed, contemporaneous operating logs, or other relevant evidence that:

<sup>&</sup>lt;sup>1</sup> When determining if a location experiences chronic sanitary sewer overflows or releases the term "event(s)" includes dry weather overflows, wet weather overflows, dry weather releases and wet weather releases.

- i. An upset occurred and that the permittee can identify the cause(s) of the upset;
- ii. The permitted facility was at the time being operated in a prudent and workman-like manner and in compliance with proper operation and maintenance procedures;
- iii. The permittee submitted information required under "Reporting of Noncompliance" within 24-hours of becoming aware of the upset (if this information is provided orally, a written submission must be provided within five days); and
- iv. The permittee complied with any remedial measures required under "Adverse Impact."

# 2.3.5. Adverse Impact

The permittee shall take all reasonable steps to minimize any adverse impact to the waters of Tennessee resulting from noncompliance with this permit, including such accelerated or additional monitoring as necessary to determine the nature and impact of the noncomplying discharge. It shall not be a defense for the permittee in an enforcement action that it would have been necessary to halt or reduce the permitted activity in order to maintain compliance with the conditions of this permit.

# 2.3.6. **Bypass**

- a. "Bypass" is the intentional diversion of waste streams from any portion of a treatment facility. "Severe property damage" means substantial physical damage to property, damage to the treatment facilities which would cause them to become inoperable, or substantial and permanent loss of natural resources which can reasonably be expected to occur in the absence of a bypass. Severe property damage does not mean economic loss caused by delays in production.
- b. Bypasses are prohibited unless all of the following 3 conditions are met:
  - The bypass is unavoidable to prevent loss of life, personal injury, or severe property damage;
  - ii. There are no feasible alternatives to bypass, such as the construction and use of auxiliary treatment facilities, retention of untreated wastes, or maintenance during normal periods of equipment downtime. This condition is not satisfied if adequate back-up equipment should have been installed in the exercise of reasonable engineering judgment to prevent a bypass, which occurred during normal periods of equipment downtime or preventative maintenance;
  - iii. The permittee submits notice of an unanticipated bypass to the Division of Water Resources in the appropriate Environmental Field Office within 24 hours of becoming aware of the bypass (if this information is provided orally, a written submission must be provided within five days). When the need for the bypass is foreseeable, prior notification shall be submitted to the director, if possible, at least 10 days before the date of the bypass.
- c. Bypasses not exceeding permit limitations are allowed **only** if the bypass is necessary for essential maintenance to assure efficient operation. All other bypasses are prohibited. Allowable bypasses not exceeding limitations are not subject to the reporting requirements of 2.3.6.b.iii, above.

#### 2.3.7. Washout

- a. For domestic wastewater plants only, a "washout" shall be defined as loss of Mixed Liquor Suspended Solids (MLSS) of 30.00% or more. This refers to the MLSS in the aeration basin(s) only. This does not include MLSS decrease due to solids wasting to the sludge disposal system. A washout can be caused by improper operation or from peak flows due to infiltration and inflow.
- b. A washout is prohibited. If a washout occurs the permittee must report the incident to the Division of Water Resources in the appropriate Environmental Field Office within 24 hours by telephone. A written submission must be provided within five days. The washout must be noted on the discharge monitoring report. Each day of a washout is a separate violation.

#### 2.4. LIABILITIES

#### 2.4.1. Civil and Criminal Liability

Except as provided in permit conditions for "*Bypassing*," "*Overflow*," and "*Upset*," nothing in this permit shall be construed to relieve the permittee from civil or criminal penalties for noncompliance. Notwithstanding this permit, the permittee shall remain liable for any damages sustained by the State of Tennessee, including but not limited to fish kills and losses of aquatic life and/or wildlife, as a result of the discharge of wastewater to any surface or subsurface waters. Additionally, notwithstanding this Permit, it shall be the responsibility of the permittee to conduct its wastewater treatment and/or discharge activities in a manner such that public or private nuisances or health hazards will not be created.

#### 2.4.2. Liability Under State Law

Nothing in this permit shall be construed to preclude the institution of any legal action or relieve the permittee from any responsibilities, liabilities, or penalties established pursuant to any applicable state law or the Federal Water Pollution Control Act, as amended.

# 3.0. PERMIT SPECIFIC REQUIREMENTS

\_\_\_\_\_

#### 3.1. CERTIFIED OPERATOR

The waste treatment facilities shall be operated under the supervision of a certified wastewater treatment operator and the collection system shall be operated under the supervision of a certified collection system operator in accordance with the Water Environmental Health Act of 1984.

#### 3.2. POTW PRETREATMENT PROGRAM GENERAL PROVISIONS

As an update of information previously submitted to the division, the permittee will undertake the following activity.

- a. The permittee shall submit the results of an Industrial Waste Survey (IWS) in accordance with 40 CFR 403.8(f)(2)(i), including any industrial users (IU) covered under Section 301(i)(2) of the Act. As much information as possible must be obtained relative to the character and volume of pollutants contributed to the POTW by the IUs. This information will be submitted to the Division of Water Resources, Pretreatment Section within one hundred twenty (120) days of the effective date of this permit, unless such a survey has been submitted within 3 years of the effective date. Development of a pretreatment program may be required after completion of the industrial user review. All requirements and conditions of the pretreatment program are enforceable through the NPDES permit.
- b. The permittee shall enforce 40 CFR 403.5, "prohibited discharges". Pollutants introduced into the POTW by a non-domestic source shall not cause pass through or interference as defined in 40 CFR Part 403.3. These general prohibitions and the specific prohibitions in this section apply to all non-domestic sources introducing pollutants into the POTW whether the source is subject to other National Pretreatment Standards or any state or local pretreatment requirements.

Specific prohibitions. Under no circumstances shall the permittee allow introduction of the following wastes in the waste treatment system:

- i. Pollutants which create a fire or explosion hazard in the POTW;
- ii. Pollutants which will cause corrosive structural damage to the treatment works, but in no case discharges with pH less than 5.0 unless the system is specifically designed to accept such discharges.
- iii. Solid or viscous pollutants in amounts which will cause obstruction to the flow in the treatment system resulting in interference.
- iv. Any pollutant, including oxygen-demanding pollutants (BOD, etc.) released in a discharge at a flow rate and/or pollutant concentration which will cause interference with the treatment works.

- v. Heat in amounts which will inhibit biological activity in the treatment works resulting in interference, but in no case heat in such quantities that the temperature at the treatment works exceeds 40°C (104°F) unless the works are designed to accommodate such heat.
- vi. Any priority pollutant in amounts that will contaminate the treatment works sludge.
- vii. Petroleum oil, nonbiodegradable cutting oil, or products of mineral oil origin in amounts that will cause interference or pass through;
- viii. Pollutants which result in the presence of toxic gases, vapors or fumes within the POTW in a quantity that may cause acute worker health and safety problems;
- ix. Any trucked or hauled pollutants except at discharge points designated by the POTW.
- c. The permittee shall notify the Tennessee Division of Water Resources of any of the following changes in user discharge to the system no later than 30 days prior to change of discharge:
  - New introductions into such works of pollutants from any source which would be a new source as defined in Section 306 of the Act if such source were discharging pollutants.
  - ii. New introductions of pollutants into such works from a source which would be subject to Section 301 of the "Federal Water Quality Act as Amended" if it were discharging such pollutants.
  - iii. A substantial change in volume or character of pollutants being introduced into such works by a source already discharging pollutants into such works at the time the permit is issued.

This notice will include information on the quantity and quality of the wastewater introduced by the new source into the publicly owned treatment works, and on any anticipated impact on the effluent discharged from such works. If this discharge necessitates a revision of the current NPDES permit or pass-through guidelines, discharge by this source is prohibited until the Tennessee Division of Water Resources gives final authorization.

#### 3.3. BIOSOLIDS MANAGEMENT PRACTICES

All sludge and/or biosolids use or disposal must comply with 40 CFR 503 <u>et seq</u>. Biosolids shall be sampled and analyzed at a frequency dependent on the amount used annually.

Any facility that land applies non-exceptional quality biosolids must obtain an appropriate permit from the division in accordance with Chapter 0400-40-15.

#### 3.4. PLACEMENT OF SIGNS

Within sixty (60) days of the effective date of this permit, the permittee shall place and maintain a sign(s) at each outfall and any bypass/overflow point in the collection system. For the purposes of this requirement, any bypass/overflow point that has discharged five

(5) or more times in the last year must be so posted. The sign(s) should be clearly visible to the public from the bank and the receiving stream. The  $\underline{\text{minimum}}$  sign size should be two feet by two feet (2' x 2') with one-inch (1") letters. The sign should be made of durable material and have a white background with black letters.

The sign(s) are to provide notice to the public as to the nature of the discharge and, in the case of the permitted outfalls, that the discharge is regulated by the Tennessee Department of Environment and Conservation, Division of Water Resources. The following is given as an example of the minimal amount of information that must be included on the sign:

Permitted CSO or unpermitted bypass/overflow point:

UNTREATED WASTEWATER DISCHARGE POINT Englewood STP (423) 887-7224 NPDES Permit NO. TN0021938 TENNESSEE DIVISION OF WATER RESOURCES 1-888-891-8332 ENVIRONMENTAL FIELD OFFICE - Chattanooga

# **NPDES Permitted Municipal/Sanitary Outfall:**

TREATED MUNICIPAL/SANITARY WASTEWATER
Englewood STP
(423) 887-7224
NPDES Permit NO. TN0021938
TENNESSEE DIVISION OF WATER RESOURCES
1-888-891-8332 ENVIRONMENTAL FIELD OFFICE - Chattanooga

No later than sixty (60) days from the effective date of this permit, the permittee shall have the above sign(s) on display in the location specified.

#### 3.5. ANTIDEGRADATION

Pursuant to the Rules of the Tennessee Department of Environment and Conservation, Chapter 0400-40-03-.06, titled "Tennessee Antidegradation Statement," which prohibits the degradation of exceptional Tennessee waters and the increased discharges of substances that cause or contribute to impairment, the permittee shall further be required, pursuant to the terms and conditions of this permit, to comply with the effluent limitations and schedules of compliance required to implement applicable water quality standards, to comply with a State Water Quality Plan or other state or federal laws or regulations, or where practicable, to comply with a standard permitting no discharge of pollutants.

#### 4.0. DEFINITIONS AND ACRONYMS

#### 4.1. **DEFINITIONS**

"Biosolids" are treated sewage sludge that have contaminant concentrations less than or equal to the contaminant concentrations listed in Table 1 of subparagraph (3)(b) of Rule 0400-40-15-.02, meet any one of the ten vector attraction reduction options listed in part (4)(b)1, 2, 3, 4, 5, 6, 7, 8, 9, or 10 of Rule 0400-40-15-.04, and meet either one of the six pathogen reduction alternatives for Class A listed in part (3)(a)3, 4, 5, 6, 7, or 8, or one of the three pathogen reduction alternatives for Class B listed in part (3)(b)2, 3, or 4 of Rule 0400- 40-15-.04.

A "**bypass**" is defined as the intentional diversion of waste streams from any portion of a treatment facility.

A "*calendar day*" is defined as the 24-hour period from midnight to midnight or any other 24-hour period that reasonably approximates the midnight to midnight time period.

A "*composite sample*" is a combination of not less than 8 influent or effluent portions, of at least 100 ml, collected over a 24-hour period. Under certain circumstances a lesser time period may be allowed, but in no case, less than 8 hours.

The "daily maximum concentration" is a limitation on the average concentration in units of mass per volume (e.g. milligrams per liter), of the discharge during any calendar day. When a proportional-to-flow composite sampling device is used, the daily concentration is the concentration of that 24-hour composite; when other sampling means are used, the daily concentration is the arithmetic mean of the concentrations of equal volume samples collected during any calendar day or sampling period.

"Discharge" or "discharge of a pollutant" refers to the addition of pollutants to waters from a source.

A "*dry weather overflow*" is a type of sanitary sewer overflow and is defined as one day or any portion of a day in which unpermitted discharge of wastewater from the collection or treatment system other than through the permitted outfall occurs and is not directly related to a rainfall event. Discharges from more than one point within a 24-hour period shall be counted as separate overflows.

"Degradation" means the alteration of the properties of waters by the addition of pollutants, withdrawal of water, or removal of habitat, except those alterations of a short duration.

"De Minimis" - Degradation of a small magnitude, as provided in this paragraph.

# (a) Discharges and withdrawals

1. Subject to the limitation in part 3 of this subparagraph, a single discharge other than those from new domestic wastewater sources will be considered de minimis if it uses less than five percent of the available assimilative capacity for the substance being discharged.

- 2. Subject to the limitation in part 3 of this subparagraph, a single water withdrawal will be considered de minimis if it removes less than five percent of the 7Q10 flow of the stream.
- 3. If more than one activity described in part 1 or 2 of this subparagraph has been authorized in a segment and the total of the authorized and proposed impacts uses no more than 10% of the assimilative capacity, or 7Q10 low flow, they are presumed to be de minimis. Where the total of the authorized and proposed impacts uses 10% of the assimilative capacity, or 7Q10 low flow, additional degradation may only be treated as de minimis if the Division finds on a scientific basis that the additional degradation has an insignificant effect on the resource.
- (b) Habitat alterations authorized by an Aquatic Resource Alteration Permit (ARAP) are de minimis if the Division finds that the impacts, individually and cumulatively are offset by impact minimization and/or in-system mitigation, provided however, in ONRWs the mitigation must occur within the ONRW.

An "ecoregion" is a relatively homogeneous area defined by similarity of climate, landform, soil, potential natural vegetation, hydrology, or other ecologically relevant variables.

The "*geometric mean*" of any set of values is the n<sup>th</sup> root of the product of the individual values where "n" is equal to the number of individual values. The geometric mean is equivalent to the antilog of the arithmetic mean of the logarithms of the individual values. For the purposes of calculating the geometric mean, values of zero (0) shall be considered to be one (1).

A "grab sample" is a single influent or effluent sample collected at a particular time.

The "*instantaneous maximum concentration*" is a limitation on the concentration, in milligrams per liter, of any pollutant contained in the wastewater discharge determined from a grab sample taken from the discharge at any point in time.

The "*instantaneous minimum concentration*" is the minimum allowable concentration, in milligrams per liter, of a pollutant parameter contained in the wastewater discharge determined from a grab sample taken from the discharge at any point in time.

The "monthly average amount", shall be determined by the summation of all the measured daily discharges by weight divided by the number of days during the calendar month when the measurements were made.

The "monthly average concentration", other than for *E. coli* bacteria, is the arithmetic mean of all the composite or grab samples collected in a one-calendar month period.

A "one week period" (or "calendar-week") is defined as the period from Sunday through Saturday. For reporting purposes, a calendar week that contains a change of month shall be considered part of the latter month.

"Pollutant" means sewage, industrial wastes, or other wastes.

A "*quarter*" is defined as any one of the following three-month periods: January 1 through March 31, April 1 through June 30, July 1 through September 30, and/or October 1 through December 31.

A "rainfall event" is defined as any occurrence of rain, preceded by 10 hours without precipitation that results in an accumulation of 0.01 inches or more. Instances of rainfall occurring within 10 hours of each other will be considered a single rainfall event.

A "*rationale*" (or "fact sheet") is a document that is prepared when drafting an NPDES permit or permit action. It provides the technical, regulatory and administrative basis for an agency's permit decision.

A "*reference site*" means least impacted waters within an ecoregion that have been monitored to establish a baseline to which alterations of other waters can be compared.

A "*reference condition*" is a parameter-specific set of data from regional reference sites that establish the statistical range of values for that particular substance at least-impacted streams.

A "*release*" is the flow of sewage from any portion of the collection or transmission system owned or operated by the permittee other than through permitted outfalls that does not add pollutants to waters. In addition, a "release" includes a backup into a building or private property that is caused by blockages, flow conditions, or other malfunctions originating in the collection and transmission system owned or operated by the permittee. A "release" does not include backups into a building or private property caused by blockages or other malfunctions originating in a private lateral.

A "sanitary sewer overflow (SSO)" is defined as an unpermitted discharge of wastewater from the collection or treatment system other than through the permitted outfall.

- "Sewage" means water-carried waste or discharges from human beings or animals, from residences, public or private buildings, or industrial establishments, or boats, together with such other wastes and ground, surface, storm, or other water as may be present.
- "Severe property damage" when used to consider the allowance of a bypass or SSO means substantial physical damage to property, damage to the treatment facilities which causes them to become inoperable, or substantial and permanent loss of natural resources which can reasonably be expected to occur in the absence of a bypass or SSO. Severe property damage does not mean economic loss caused by delays in production.
- "Sewerage system" means the conduits, sewers, and all devices and appurtenances by means of which sewage and other waste is collected, pumped, treated, or disposed.
- "Sludge" or "sewage sludge" is solid, semi-solid, or liquid residue generated during the treatment of domestic sewage in a treatment works. Sewage sludge includes, but is not limited to, domestic septage; scum or solids removed in primary, secondary, or advanced wastewater treatment processes; and a material derived from sewage sludge. Sewage sludge does not include ash generated during the firing of sewage sludge in a sewage sludge incinerator or grit and screenings generated during preliminary treatment of domestic sewage in a treatment works.

A "**subecoregion**" is a smaller, more homogenous area that has been delineated within an ecoregion.

"Upset" means an exceptional incident in which there is unintentional and temporary noncompliance with technology-based effluent limitations because of factors beyond the

reasonable control of the permittee. An upset does not include noncompliance to the extent caused by operational error, improperly designed treatment facilities, inadequate treatment facilities, lack of preventive maintenance, or careless or improper operation.

The term, "washout" is applicable to activated sludge plants and is defined as loss of mixed liquor suspended solids (MLSS) of 30.00% or more from the aeration basin(s).

"Waters" means any and all water, public or private, on or beneath the surface of the ground, which are contained within, flow through, or border upon Tennessee or any portion thereof except those bodies of water confined to and retained within the limits of private property in single ownership which do not combine or effect a junction with natural surface or underground waters.

The "weekly average amount", shall be determined by the summation of all the measured daily discharges by weight divided by the number of days during the calendar week when the measurements were made.

The "weekly average concentration", is the arithmetic mean of all the composite samples collected in a one-week period. The permittee must report the highest weekly average in the one-month period.

#### 4.2. ACRONYMNS AND ABBREVIATIONS

1Q10 – 1-day minimum, 10-year recurrence interval

30Q20 – 30-day minimum, 20-year recurrence interval

7Q10 – 7-day minimum, 10-year recurrence interval

BAT – best available technology economically achievable

BCT – best conventional pollutant control technology

BDL - below detection level

BOD<sub>5</sub> – five day biochemical oxygen demand

BPT – best practicable control technology currently available

CBOD<sub>5</sub> – five day carbonaceous biochemical oxygen demand

CEI – compliance evaluation inspection

CFR - code of federal regulations

CFS – cubic feet per second

CFU – colony forming units

CIU – categorical industrial user

CSO – combined sewer overflow

DMR – discharge monitoring report

D.O. – dissolved oxygen

E. coli - Escherichia coli

EFO - environmental field office

LB(lb) - pound

 $IC_{25}$  – inhibition concentration causing 25% reduction in survival, reproduction and growth of the test organisms

IU - industrial user

IWS - industrial waste survey

LC<sub>50</sub> – acute test causing 50% lethality

MDL – method detection level

MGD - million gallons per day

MG/L(mg/l) – milligrams per liter

ML – minimum level of quantification

ml - milliliter

MLSS - mixed liquor suspended solids

MOR – monthly operating report

NODI - no discharge

NPDES – national pollutant discharge elimination system

PL – permit limit

POTW – publicly owned treatment works

RDL – required detection limit

SAR – semi-annual [pretreatment program] report

SIU - significant industrial user

SSO – sanitary sewer overflow

STP – sewage treatment plant

TCA – Tennessee code annotated

TDEC – Tennessee Department of Environment and Conservation

TIE/TRE – toxicity identification evaluation/toxicity reduction evaluation

TMDL – total maximum daily load

TRC - total residual chlorine

TSS – total suspended solids

WQBEL - water quality based effluent limit

#### **RATIONALE**

Englewood STP
NPDES Permit No. TN0021938
Date: October 25, 2017
Permit Writer: Robert O'Dette, P.E.

#### 1. FACILITY INFORMATION

Englewood STP
Mr. Bob Cass - Town Manager
Englewood, McMinn County, Tennessee
(423) 887-7224

Treatment Plant Average Design Flow: 0.25 MGD Percentage Industrial Flow: 0%

**Treatment Description: Oxidation ditch (modified activated sludge)** 

wastewater treatment plant with chlorination

Certified Operator Grades: STP: II; CS: I; Ref. Book: 12/15/2015

# 2. RECEIVING STREAM INFORMATION

Chestuee Creek Mile 42.4
Watershed Group: Hiwassee
Hydrocode: TN06020002082\_2000
Low Flow: 7Q10 = 4.0 MGD (6.24 CFS)

Low Flow References: USGS Water-Resource Investigation Report 95-4293 - Station #03565087 and USGS StreamStats Water Quality Designation: Unavailable conditions waters for Recreation due to *Escherichia coli* (assessed 14-MAY-15)

**Stream Classification Categories:** 

| Domestic Wtr Supply   | Industrial | Fish & Aquatic | Recreation |
|-----------------------|------------|----------------|------------|
|                       |            | Х              | Х          |
| Livestock Wtr & Wlife | Irrigation | Navigation     |            |
| X                     | Х          |                |            |

Water Quality Assessment: Not supporting of Recreation designated use due to *Escherichia coli* from animal grazing in riparian or shoreline zones.



#### StreamStats Data-Collection Station Report

USGS Station Number

03565087 CHESTUEE CREEK AT HWY 411 NR ENGLEWOOD, TN Station Name

Click here to link to available data on NWIS-Web for this site.

| Danamintina Information   |                          |
|---------------------------|--------------------------|
| Descriptive Information   |                          |
| Station Type              | Low Flow, partial record |
| Location                  |                          |
| Gage                      |                          |
| Regulation and Diversions |                          |
| Regulated?                | False                    |
| Period of Record          |                          |
| Remarks                   |                          |
| Latitude (degrees NAD83)  | 35.40618488              |
| Longitude (degrees NAD83) | -84.4968738              |
| Hydrologic unit code      | 06020002                 |
| County                    | 107-McMinn               |
| HCDN2009                  | No                       |

#### **Physical Characteristics**

| Characteristic Name               | Value  | Units         | Citation Number |
|-----------------------------------|--------|---------------|-----------------|
| Descriptive Information           |        |               |                 |
| Datum_of_Latitude_Longitude       | NAD83  | dimensionless | <u>30</u>       |
| ROI_Region_ID                     | 0      | dimensionless | <u>29</u>       |
| Climate Characteristics           |        |               |                 |
| 2_Yr_climate_factor_LK1990        | 2.3058 | dimensionless | <u>29</u>       |
| Soil Properties                   |        |               |                 |
| Soil_Infiltration                 | 24     | inches        | <u>29</u>       |
| Tennessee_Soil_Factor             | 24     | percent       | <u>83</u>       |
| Basin Dimensional Characteristics |        |               |                 |
| Drainage_Area                     | 33.5   | square miles  | <u>30</u>       |
| Regional indicators               |        |               |                 |
| Tennessee_Physiographic_Factor    | 100    | dimensionless | <u>29</u>       |

#### Streamflow Statistics

| Statistic Name         | Value            |                       | Units |
|------------------------|------------------|-----------------------|-------|
| Low-Flow Statistics    |                  |                       |       |
| 7_Day_10_Year_Low_Flow | 6.23993405519023 | cubic feet per second |       |
| 30_Day_5_Year_Low_Flow | 7.74996961877576 | cubic feet per second |       |

| ID305b (GIS Link): TN06020002082 2000, Use Desc: Fish and Aquatic Life |                                                                                                            |                  |                                        |                  |             |           |               |  |
|------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|------------------|----------------------------------------|------------------|-------------|-----------|---------------|--|
| Water Name 🚉                                                           | Location Description                                                                                       | Cause Name       | Source Name                            | Attainment Desc  | Assmnt Date | User Flag | Current cycle |  |
| Chestuee Creek                                                         | ${\it Chestuse Creek from Middle Creek upstream to headwaters. Ecoregion 67g~McMinn~County~Monroe~County}$ | -                | -                                      | Fully Supporting | 14-MAY-15   | -         | 2017          |  |
| ID305b (GIS Link): TN06020002082 2000, Use Desc: Irrigation            |                                                                                                            |                  |                                        |                  |             |           |               |  |
| Water Name                                                             | Location Description                                                                                       | Cause Name       | Source Name                            | Attainment Desc  | Assmnt Date | User Flag | Current cycl  |  |
| Chestuee Creek                                                         | ${\it Chestuee Creek from Middle Creek upstream to headwaters. Ecoregion 67g~McMinn~County~Monroe~County}$ | -                | -                                      | Fully Supporting | 14-MAY-15   | -         | 2017          |  |
| ID305b (GIS Link)                                                      | : TN06020002082 2000, Use Desc : Livestock Watering and Wildlife                                           |                  |                                        |                  |             |           |               |  |
| Water Name                                                             | Location Description                                                                                       | Cause Name       | Source Name                            | Attainment Desc  | Assmnt Date | User Flag | Current cycl  |  |
| Chestuee Creek                                                         | ${\it Chestuse Creek from Middle Creek upstream to headwaters. Ecoregion 67g~McMinn~County~Monroe~County}$ | -                | -                                      | Fully Supporting | 14-MAY-15   | -         | 2017          |  |
| ID305b (GIS Link): TN06020002082 2000. Use Desc: Recreation            |                                                                                                            |                  |                                        |                  |             |           |               |  |
| Water Name                                                             | Location Description                                                                                       | Cause Name       | Source Name                            | Attainment Desc  | Assmnt Date | User Flag | Current cycl  |  |
| Chestuee Creek                                                         | Chestuee Creek from Middle Creek upstream to headwaters. Ecoregion 67g McMinn County Monroe County         | Escherichia coli | Grazing in Riparian or Shoreline Zones | Not Supporting   | 14-MAY-15   | Partial   | 2017          |  |

#### 3. CURRENT PERMIT STATUS

| Permit Type:     | Municipal |  |  |
|------------------|-----------|--|--|
| Classification:  | Minor     |  |  |
| Issuance Date:   | 01-AUG-12 |  |  |
| Expiration Date: | 31-JUL-17 |  |  |
| Effective Date:  | 01-SEP-12 |  |  |

# 4. COMPLIANCE SCHEDULE SUMMARY

| Description of Report to be Submitted                                       | Reference Section in Permit |  |  |
|-----------------------------------------------------------------------------|-----------------------------|--|--|
| Monthly Discharge Monitoring Reports                                        | 1.3.1                       |  |  |
| Monthly Operational Reports                                                 | 1.3.4                       |  |  |
| Monthly Bypass and Overflow Summary Report                                  | 1.3.5.1                     |  |  |
| Industrial Waste Survey Report within 120 days of the effective permit date | 3.2.a                       |  |  |

It should be noted that for comparison, this rationale contains a table depicting the previous permit limits and effluent monitoring requirements in **Appendix 1**.

#### 5. PREVIOUS PERMIT DISCHARGE MONITORING REPORT REVIEW

A review of the DMR summary from June 2013 through April 2017 along with a review of the permit application summary showed no violations for the City of Englewood during this timeframe. This fact is confirmed by the EPA-ICIS Violations Report shown below:

| NPDES ID(s): TN0021938<br>State: TN<br>Major/Minor Indicator:<br>Violation Date: 06/01/2012 -<br>Violation Type(s): | Environmental Protection Agency<br>Integrated Compliance Information System<br>Violations Report |                                    |                       |                  |                      |             | Created Date: 09/15/2010<br>Refresh Date: 06/02/2017<br>Report Version 1.4, Modified: 3/29/2016 |  |  |
|---------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|------------------------------------|-----------------------|------------------|----------------------|-------------|-------------------------------------------------------------------------------------------------|--|--|
|                                                                                                                     |                                                                                                  | TN002                              | 21938                 |                  |                      |             |                                                                                                 |  |  |
| Permittee Name:                                                                                                     | ENGLEWOOD STP                                                                                    | Primary SIC Code:                  | 4952                  |                  | Permit Is            | ssued:      | 08/01/2012                                                                                      |  |  |
| Permittee Address:                                                                                                  | CHESTUEE STREET<br>ENGLEWOOD, TN 37329                                                           | Primary SIC Desc:<br>Primary NAICS | Sewerage Systems      |                  | Permit E<br>Permit E |             | 09/01/2012<br>07/31/2017                                                                        |  |  |
| Major/Minor Indicator:                                                                                              | Minor                                                                                            | Primary NAICS                      |                       |                  | Permit S             | tatus:      | Effective                                                                                       |  |  |
| Compliance Track. Status:                                                                                           | On Cognizant Official: CURTIS RUNKLES                                                            |                                    | CURTIS RUNKLES        |                  |                      |             |                                                                                                 |  |  |
| DMR Non Receipt Flag:                                                                                               | On                                                                                               | Receiving Body:                    | CHESTUEE CR @ MI 42.4 |                  |                      |             |                                                                                                 |  |  |
| RNC Tracking Flag:                                                                                                  | On                                                                                               |                                    |                       |                  |                      |             |                                                                                                 |  |  |
|                                                                                                                     |                                                                                                  | Facility In                        | formation             |                  |                      |             |                                                                                                 |  |  |
| Facility Name:                                                                                                      | cility Name: ENGLEWOOD STP County: McMinn FRS ID:                                                |                                    | FRS ID:               | 110009788907     |                      |             |                                                                                                 |  |  |
| Facility Location:                                                                                                  | CHESTUEE STREET                                                                                  | Region:                            | 04                    | Federal Facility |                      | N           |                                                                                                 |  |  |
|                                                                                                                     | ENGLEWOOD, TN 37329                                                                              | state-кедіоп:                      | <b>n</b> 1            | Type of Ownersh  | hin:                 | Municipal o | or Water District                                                                               |  |  |
|                                                                                                                     |                                                                                                  |                                    |                       |                  |                      |             |                                                                                                 |  |  |
|                                                                                                                     |                                                                                                  |                                    |                       |                  |                      |             |                                                                                                 |  |  |
|                                                                                                                     |                                                                                                  |                                    |                       |                  |                      |             |                                                                                                 |  |  |
|                                                                                                                     |                                                                                                  |                                    |                       |                  |                      |             |                                                                                                 |  |  |
|                                                                                                                     |                                                                                                  |                                    |                       |                  |                      |             |                                                                                                 |  |  |
|                                                                                                                     |                                                                                                  |                                    |                       |                  |                      |             |                                                                                                 |  |  |
|                                                                                                                     |                                                                                                  |                                    |                       |                  |                      |             |                                                                                                 |  |  |
|                                                                                                                     |                                                                                                  |                                    |                       |                  |                      |             |                                                                                                 |  |  |
|                                                                                                                     |                                                                                                  |                                    |                       |                  |                      |             |                                                                                                 |  |  |

A complete discharge monitoring report summary is located in Appendix 2.

# 6. PROPOSED EFFLUENT LIMITS AND RATIONALE

| PARAMETERS                                  | MONTHLY<br>AVERAGE<br>CONCENTRATION<br>(MG/L) | MONTHLY<br>AVERAGE<br>AMOUNT<br>(LB/DAY) | WEEKLY<br>AVERAGE<br>CONCENTRATION<br>(MG/L) | WEEKLY<br>AVERAGE<br>AMOUNT<br>(LB/DAY) | DAILY MAXIMUM<br>CONCENTRATION<br>(MG/L) | DAILY<br>MINIMUM<br>PERCENT<br>REMOVAL | RATIONALE                                                                            |  |
|---------------------------------------------|-----------------------------------------------|------------------------------------------|----------------------------------------------|-----------------------------------------|------------------------------------------|----------------------------------------|--------------------------------------------------------------------------------------|--|
| BOD₅                                        | 30                                            | 63                                       | 40                                           | 83                                      | 45                                       | 40                                     | D.O. protection, Refer to 6.1 below (or) T.C.A. 0400-40-0509 (for BOD <sub>5</sub> ) |  |
| Total Suspended Solids                      | 30                                            | 63                                       | 40                                           | 83                                      | 45                                       | 40                                     | T.C.A. 0400-40-0509                                                                  |  |
| Dissolved Oxygen (mg/L)                     | 1.0 (daily minimum)<br>Instantaneous          |                                          |                                              |                                         |                                          |                                        | D.O. protection, Refer to 6.1 below                                                  |  |
| Total Chlorine<br>Residual (mg/L)           |                                               |                                          |                                              |                                         | 0.3 (daily maximum)<br>Instantaneous     |                                        | Refer to 6.3 below                                                                   |  |
| Total Nitrogen                              |                                               |                                          |                                              |                                         | Report (qtr avg)                         | Report (qtr<br>load)                   | Refer to 6.4 below                                                                   |  |
| Total Phosphorus                            |                                               |                                          |                                              |                                         | Report (qtr avg)                         | Report (qtr<br>load)                   | Refer to 6.4 below                                                                   |  |
| E. coli<br>(colonies/100ml)                 | 126/100 ml                                    |                                          |                                              |                                         | 941/100 ml                               |                                        | T.C.A. 0400-40-0303, Refer to 6.5 below                                              |  |
| Settleable Solids (ml/L)                    |                                               |                                          |                                              |                                         | 1.0 (daily maximum)                      |                                        | T.C.A. 0400-40-0509                                                                  |  |
| pH (standard units)                         | 6.0 -9.0                                      |                                          |                                              |                                         |                                          |                                        | T.C.A. 0400-40-0303                                                                  |  |
| Flow (MGD):                                 |                                               |                                          |                                              |                                         |                                          |                                        |                                                                                      |  |
| Influent                                    | Report                                        |                                          |                                              |                                         | Report                                   |                                        | Used to quantify pollutant load                                                      |  |
| Effluent Report                             |                                               | Report                                   |                                              |                                         |                                          | Used to quantify pollutant load        |                                                                                      |  |
| Sanitary Sewer Overflows, Total Occurrences |                                               |                                          | Report                                       |                                         |                                          | Refer to 6.9 below                     |                                                                                      |  |
| Dry Weather Overflows, Total Occurrences    |                                               |                                          | Report                                       |                                         |                                          | Refer to 6.9 below                     |                                                                                      |  |
| Bypass of Treatment, Total Occurrences      |                                               |                                          |                                              | Re                                      | port                                     |                                        | Refer to 6.9 below                                                                   |  |

Note: Weekly limitations on BOD<sub>5</sub>/CBOD<sub>5</sub> and TSS concentrations are given as required per 40 CFR 133.102(a)(2) or 133.102(a)(4)(2) and 133.102 (b)(2) respectively; daily BOD<sub>5</sub>/CBOD<sub>5</sub> and TSS limitations are authorized by T.C.A. 0400-40-05-.09; monthly and weekly mass loads are limited per 40 CFR 122.45(f) and based on the design flow as per 40 CFR 122.45(b); monthly average percent removal rates for BOD<sub>5</sub>/CBOD<sub>5</sub> and TSS are required per 40 CFR 133.102(a)(3) or 133.102(a)(4)(iii) and 133.102 (b)(3) respectively. A minimum 40% daily removal rate is required as equivalent to a daily mass load limitation.

# 6.1. BOD<sub>5</sub>, DISSOLVED OXYGEN, AND PERCENT REMOVALS REQUIREMENTS

a. Biochemical oxygen demand, or BOD<sub>5</sub>, is a measure of the oxygen used when biological processes break down organic pollutants in wastewater. The amount of oxygen used is more specifically referred to as the five-day biochemical oxygen demand, or BOD<sub>5</sub>. This parameter is used in the wastewater industry to measure both the strength of wastewater and the performance of wastewater treatment processes.

Limits on the oxygen demand remaining in the treated wastewater is often necessary to prevent pollutants in the wastewater from driving oxygen in the receiving stream down below the levels necessary to support fish and aquatic life. Additionally, the breakdown of ammonia into other forms of nitrogen also requires oxygen and therefore exerts an oxygen demand on receiving wastewaters.

For this facility, the monthly average BOD<sub>5</sub> limit of 30 mg/l is a technology-based effluent limit for conventional secondary treatment plants (0400-40-05-.09).

The dissolved oxygen effluent limitation of 1.0 mg/l is a practical limit achievable by the facility rather than a water-quality based limit necessary to protect fish and aquatic life.

- b. The treatment facility is required to remove 85% of the BOD₅ and TSS that enter the facility on a monthly basis. This is part of the minimum requirement for all municipal treatment facilities contained in <u>Code of Federal Regulations</u> 40 Part 133.102. The reasons stated by the U.S.E.P.A. for these requirements are to achieve these two basic objectives:
  - (1) To encourage municipalities to correct excessive inflow and infiltration (I/I) problems in their sanitary sewer systems, and
  - (2) To help prevent intentional dilution of the influent wastewater as a means of meeting permit limits.

The treatment facility is required to remove 40% of the BOD $_5$  and TSS that enter the facility on a daily basis. This percent removal will be calculated three times per week and recorded on the Monthly Operation Report. The number of excursions (days when BOD $_5$  and/or TSS removal is less than 40%) will be reported on the Discharge Monitoring Report.

# 6.2. NH<sub>3</sub>-N TOXICITY

To access toxicity impacts, the state utilizes the EPA document, 1999 Update to Ambient Water Quality Criteria for Ammonia, pursuant to 0400-40-03-.0-3(3)(j), and assumed stream temperatures of 25°C and 15°C and pH of 8.0 to derive an allowable instream protection value protective of chronic exposure to a continuous discharge. A mass balance equation with sewage treatment facility and stream flows and this allowable value determines the monthly average permit limit. The criteria document states that a 30Q5 flow value is protective in deriving allowable values.

Where the division has 30Q5 flow values, the division may use them. Otherwise, the division utilizes the available 7Q10 or 1Q10 values that are generally more conservative. The criteria continuous concentrations (CCC) derived from assumed temperature and pH values are as follows:

#### CCC values based on temperature and pH, in mg/L:

| Temperature (°C) | 7.5 pH | 8.0 pH |
|------------------|--------|--------|
| 25               | 2.22   | 1.24   |
| 27               | 1.94   | 1.09   |
| 30               | 1.61   | 0.90   |

| Temperature (°C) | 7.5 pH | 8.0 pH |
|------------------|--------|--------|
| 15               | 4.22   | 2.36   |
| 17               | 3.72   | 2.07   |
| 20               | 3.06   | 1.71   |

The mass balance equation is as follows:

$$CCC = \frac{Q_{S}C_{S} + Q_{STP}C_{STP}}{Q_{S} + Q_{STP}} \qquad \text{or,} \qquad C_{STP} = \frac{CCC(Q_{S} + Q_{STP}) - (Q_{S}C_{S})}{Q_{STP}}$$

where:

CCC = Criteria continuous concentration (mg/l)

 $Q_S = 7Q10$  flow of receiving stream (MGD)

 $Q_{STP}$  = Design flow of STP (MGD)

C<sub>S</sub> = Assumed/Measured instream NH<sub>3</sub> (mg/l)

C<sub>STP</sub> = Allowable STP discharge of NH<sub>3</sub> (mg/l)

$$C_{STP} = 2.36 \text{ mg/L} (4.0 \text{ MGD} + 0.25 \text{ MGD}) - (4.0 \text{ MGD x } 0.1 \text{mg/L}) = 38.25 \text{ mg/L (summer)}$$
  
0.25 MGD

$$C_{STP} = \frac{1.24 \text{ mg/L } (4.0 \text{ MGD} + .25 \text{ MGD}) - (4.0 \text{ MGD x } 0.1 \text{mg/L})}{0.25 \text{ MGD}} = 19.48 \text{ mg/L (winter)}$$

Based upon the  $NH_3$ -N concentration limits calculated above for chronic toxicity there is no reasonable potential for  $NH_3$ -N toxicity. The primary reason for this is that the summer (38.25 mg/L) and winter (19.48 mg/L) toxicity values are considerably above what would be expected to be discharged from a wastewater treatment plant with an oxidation ditch. Oxidation ditches generally achieve complete or close to complete nitrification. The three samples collected, analyzed and reported in the permit renewal application showed the absence of ammonia (as N). (See **Appendix 2**)

#### 6.3. CHLORINATION

The residual chlorine limit is derived using the mass balance formula and the EPA instream protection value of 0.019 mg/l for fish and aquatic life. Applying this formula yields the following calculation:

$$\frac{0.019 \, (\text{Qd} + \text{Qs})}{\text{Qd}} = \text{Limit (mg/L)} = \frac{0.019 (0.25 + 4.0)}{0.25} = 0.323 \, \text{mg/L} \approx 0.3 \, \text{mg/l}$$

$$\text{where:}$$

$$\frac{0.019}{0.25} = \text{instream protection value (acute)}$$

$$\frac{0.25}{4.0} = \text{Qd, design flow of STP (MGD)}$$

$$\frac{0.019}{0.25} = \frac{0.019 (0.25 + 4.0)}{0.25} = 0.323 \, \text{mg/L} \approx 0.3 \, \text{mg/l}$$

#### 6.4. TOTAL NITROGEN AND TOTAL PHOSPHORUS MONITORING/REPORTING

Nutrients are naturally occurring and essential components of healthy aquatic systems. Excessive amounts of nutrients, however, can impact water quality. The enrichment of a waterbody with nutrients, called eutrophication, can result in dense, rapidly multiplying growths, or blooms, of algal species and other nuisance aquatic plants. These have potential for negatively impacting the habitat for fish and aquatic life and degrading the water guality for drinking water supply and recreation uses. These impacts can present both locally from an individual activity and much further downstream from the cumulative impact of multiple activities. The division has therefore developed and begun to implement a strategy to accomplish long-term nutrient reduction in Tennessee waters. The document referred to as the Tennessee Nutrient Reduction Framework (NRF), contains proposed rationale and the methodology for implementing the strategy within a watershed area. Consequently, the framework considers impacts from both point and non-point sources of nutrients and potentially recommends reduction goals for both point and non-point sources. The NRF approach to nutrient reduction is intended to utilize an adaptive management approach in consideration of the facts presenting within a watershed and reevaluation of the effectiveness of progress being made. Regular reassessments of goals and action plans will be conducted by reviewing monitoring data, modeling results and other measures of success. As additional data becomes available (such as WWTP effluent characterization and instream water quality data). model results can be re-evaluated. Therefore, for purposes of implementing this strategy, the division is imposing a minimum of quarterly effluent characterization for total nitrogen and total phosphorus on all discharges of treated domestic wastewater. These values will be used to reevaluate the nutrient loads from discharges within a watershed over time for comparison with those loads from non-point sources. The framework may be reviewed on the division's webpage at:

http://www.tn.gov/environment/article/wr-ws-tennessee-nutrient-reduction-framework.

#### 6.5. E. COLI REQUIREMENTS

Disinfection of wastewater is required to protect the receiving stream from pathogenic microorganisms. Fecal coliform and *E. coli* are indicator organisms used as a measure of bacteriological health of a receiving stream and the effectiveness of disinfection.

As of September 30, 2004, the criterion for fecal coliform has been removed from the State's Water Quality Standards. Thus, the division imposes an *E. coli* limit on discharges of treated sewage for the protection of recreational use of the stream in lieu of the fecal coliform limit. The *E. coli* daily maximum limit of 487 colonies per 100 ml applies to lakes and exceptional Tennessee waters. A maximum daily limit of 941 colonies per 100 ml applies to all other recreational waters.

#### 6.6. OVERFLOW AND BYPASS REPORTING

For the purposes of demonstrating proper operation of the collection, transmission, and treatment system, the permit defines overflow as any release of sewage other than through permitted outfalls. This definition includes, but is not necessarily limited to, sanitary sewer overflows and dry weather overflows as defined. For example, a collection system blockage or hydraulic overload that causes backup and release of sewage into a building during a wet weather event may not clearly fit either the definition of a sanitary sewer overflow or a dry weather overflow. Still, any unpermitted release potentially warrants permittee mitigation of human health and/or water quality impacts via direct or indirect contact and demonstrates a hydraulic problem in the system that warrants permittee consideration as part of proper operation and maintenance of the system.

However, for the more typical, unpermitted, releases into the environment, this permit intends interchangeable use of the terms, "overflow" and "sanitary sewer overflow" for compliance reporting purposes.

#### 7. OTHER PERMIT REQUIREMENTS AND CONDITIONS

#### 7.1. CERTIFIED WASTEWATER TREATMENT OPERATOR

The waste treatment facilities shall be operated under the supervision of a Grade II certified wastewater treatment operator in accordance with the Water Environmental Health Act of 1984. Operator grades are under jurisdiction of the Water and Wastewater Operators Certification Board. This NPDES permit is under jurisdiction of the Tennessee Board of Water Quality, Oil and Gas. Operator grades are rated and recommended by the Division of Water Resources pursuant to Rule 0400-49-01 (formerly 1200-05-03) and are included in this fact sheet for reference. The grades are intentionally not specified in the permit so that the operation certification board can authorize changes in grade without conflicting with this permit.

#### 7.2. COLLECTION SYSTEM CERTIFIED OPERATOR

The collection system shall be operated under the supervision of a Grade I certified collection system operator in accordance with the Water Environmental Health Act of 1984.

#### 7.3. PRETREATMENT PROGRAM

The Englewood STP has received an exemption from development of a pretreatment program due to the lack of any significant industrial users. To keep the exemption, the City of Englewood must complete an updated Industrial Waste Survey within 120 days of the effective date of the permit, unless such a survey has been submitted within 3 years of the effective date. The City of Englewood must notify the division immediately of its intent to connect a significant industrial user to the sewage system.

#### 7.4. BIOSOLIDS MANAGEMENT PRACTICES

The Clean Water Act (CWA) requires that any NPDES permit issued to a publicly owned treatment works or any other treatment works treating domestic sewage shall comply with 40 CFR Part 503, the federal regulation governing the use and disposal of sewage sludge. It is important to note that "biosolids" are sewage sludge that have been treated to a level so that they can be land applied.

The language in subpart 3.3 of the permit, relative to biosolids management, a CWA requirement, allows the "permitting authority" under 40 CFR Part 503.9(p) to be able to enforce the provisions of Part 503. The "permitting authority" relative to Part 503 is either a state that has been delegated biosolids management authority or the applicable EPA Region; in the case of Tennessee it is EPA-Region 4.

Tennessee regulates the land application of non-exceptional quality biosolids under state rules, Chapter 0400-40-15. The state rules became effective on June 30, 2013. Under these state rules, all facilities that land apply non-exceptional quality biosolids must obtain a biosolids permit from the division. The land application of non-exceptional quality biosolids under state rules is regulated through either a general permit or by an individual permit. Questions about the division's biosolids regulations and permitting program should be directed to the State Biosolids Coordinator at:

State of Tennessee
Department of Environment and Conservation
Division of Water Resources
William R. Snodgrass - Tennessee Tower
312 Rosa L. Parks Avenue, 11th Floor
Nashville, Tennessee 37243-1102
(615) 532-0625

#### 7.5. PERMIT TERM

This permit is being reissued for 5 years in order to coordinate its reissuance with other permits located within the Hiwassee Watershed.

#### 7.6. ELECTRONIC REPORTING

Starting on December 21, 2016, all Individual NPDES Permit holders will be required to submit Discharge Monitoring Reports (DMRs) electronically through NetDMR. Prior to 21 December 2016, the permittee may elect to electronically submit DMRs instead of mailing paper DMRs.

EPA published the National Pollutant Discharge Elimination System (NPDES) Electronic Reporting Rule, which will modernize Clean Water Act reporting for municipalities, industries and other facilities. The rule was published in the Federal Register on October 22, 2015 and became effective on December 22, 2015. The rule replaces most paper-based NPDES reporting requirements with electronic reporting.

More information is available at: <a href="http://www.tn.gov/environment/topic/wr-netdmr-and-electronic-reporting">http://www.tn.gov/environment/topic/wr-netdmr-and-electronic-reporting</a>:

- Getting Started on NetDMR,
- Electronic reporting schedule,
- Training Opportunities,
- NetDMR User Guide and other supporting information.

#### 8. ANTIDEGRADATION STATEMENT/WATER QUALITY STATUS

Tennessee's Antidegradation Statement is found in the Rules of the Tennessee Department of Environment and Conservation, Chapter 0400-40-03-.06. It is the purpose of Tennessee's standards to fully protect existing uses of all surface waters as established under the Act. Stream determinations for this permit action are associated with the waterbody segment identified by the division as segment ID# TN06020002082 2000.

On May 14, 2015, the division made a water quality assessment of the receiving waters associated with the subject discharge and found the receiving stream to be neither an exceptional nor outstanding national resource water. Additionally, this water does not support Recreation (designated use) due to *Escherichia coli* from animal grazing in riparian or shoreline zones.

A TMDL has been developed (December 29, 2005) and approved (January 23, 2006) for this waterbody segment on the following parameter and date:

Parameter Pathogens

TMDL Approval Date January 23, 2006

The proposed terms and conditions of this permit comply with the wasteload allocations of these TMDLs.

## APPENDIX 1 PREVIOUS PERMIT LIMITS

| Descriptio | n:·External·Outfall,·Ni               | umber: 001, | ·Monito | ring: · All · Wea  | ther,·Season:·All·Ye | ear¤                      |                           |
|------------|---------------------------------------|-------------|---------|--------------------|----------------------|---------------------------|---------------------------|
| Code¤      | Parameter¤                            | Qualifier¤  | Value¤  | Unit¤              | Sample Type¤         | Monitoring⊷<br>Frequency¤ | Statistical-Base¤         |
| 51929¤     | Bypass·of·<br>Treatment·Facility¤     | Report¤     | ¤       | occur/ <u>mo</u> ¤ | Occurrences¤         | Continuous¤               | Monthly⋅Total¤            |
| Descriptio | escription: External Outfall, Number: |             | ·Monito | ring: ·Dry·We      |                      |                           |                           |
| Code¤      | Parameter¤                            | Qualifier¤  | Value¤  | Unit¤              | Sample · Type¤       | Monitoring⊷<br>Frequency¤ | Statistical-Base#         |
| 74062¤     | Overflow·use,·<br>occurrences¤        | Report¤     | ¤       | occur/mo¤          | Occurrences¤         | Continuous¤               | Monthly·Total¤            |
| Descriptio | n:·External·Outfall,·Ni               | umber: 001, | ·Monito | ring: Effluent     | ·Gross,·Season:·All  | l·Year¤                   |                           |
| Code¤      | Parameter¤                            | Qualifier¤  | Value¤  | Unit¤              | Sample Type¤         | Monitoring⊷<br>Frequency¤ | Statistical·Base¤         |
| 00300¤     | Oxygen, dissolved (DO)¤               | >=¤         | 1.0¤    | mg/L¤              | Grab¤                | Five·Per·Week¤            | Instantaneous<br>Minimum¤ |
| 00310¤     | BOD,·5-day,·20·C¤                     | <=¤         | 63¤     | ∭d¤                | Composite¤           | Three Per Week¤           | Monthly-Average¤          |
| 00310¤     | BOD,·5-day,·20·C¤                     | <=¤         | 45¤     | mg/L¤              | Composite¤           | Three-Per-<br>Week¤       | Daily·Maximum¤            |
| 00310¤     | BOD,·5-day,·20·C¤                     | <=»         | 83¤     | ∭d¤                | Composite¤           | Three Per Week¤           | Weekly-Average¤           |
| 00310¤     | BOD,·5-day,·20·C¤                     | α=>         | 40¤     | mg/L¤              | Composite¤           | Three Per Week¤           | Weekly-Average¤           |
| 00310¤     | BOD,·5-day,·20·C¤                     | <=¤         | 30¤     | mg/L¤              | Composite¤           | Three Per Week¤           | Monthly-Average¤          |
| 00400¤     | pH¤                                   | >=¤         | 6.0¤    | SU¤                | Grab¤                | Five-Per-Week¤            | Minimum¤                  |
| 00400¤     | pH¤                                   | <=¤         | 9.0¤    | SU¤                | Grab¤                | Five·Per·Week¤            | Maximum¤                  |

-

| Descripti  | Description-:-External-Outfall,-Number-:-001,-Monitoring-:-Effluent-Gross,-Season-:-All-Year□ |                      |                                |                    |                     |                           |                             |  |  |  |  |  |
|------------|-----------------------------------------------------------------------------------------------|----------------------|--------------------------------|--------------------|---------------------|---------------------------|-----------------------------|--|--|--|--|--|
| Code¤      | Parameter¤                                                                                    | Qualifier¤           | Value¤                         | Unit¤              | Sample-Type¤        | Monitoring←<br>Frequency¤ | Statistical·Base¤           |  |  |  |  |  |
| 00530¤     | Total·Suspended·<br>Solids·(TSS)¤                                                             | 1· <=¤ 63¤ lb/d¤ Com |                                | Composite¤         | Three-Per-<br>Week¤ | Monthly-Average¤          |                             |  |  |  |  |  |
| 00530¤     | Total-Suspended-<br>Solids-(TSS)¤                                                             | <=xx                 | a 1 30a 1 ma/la 1 Compositea 1 |                    | Three-Per-<br>Week¤ | Monthly-Average¤          |                             |  |  |  |  |  |
| 00530¤     | Total-Suspended-<br>Solids-(TSS)¤                                                             | <=¤                  | 40¤                            | mg/L¤              | Composite¤          | Three-Per-<br>Week¤       | Weekly-Average¤             |  |  |  |  |  |
| 00530¤     | Total·Suspended·<br>Solids·(TSS)¤                                                             | <=m                  | 45¤                            | mg/L¤              | Composite¤          | Three-Per-<br>Week¤       | Daily · Maximum¤            |  |  |  |  |  |
| 00530¤     | Total·Suspended·<br>Solids·(TSS)¤                                                             | <=¤                  | 83¤                            | <mark>∬</mark> /d¤ | Composite¤          | Three-Per-<br>Week¤       | Weekly-Average¤             |  |  |  |  |  |
| 00545¤     | Settleable Solids¤                                                                            | <=¤                  | 1.0¤                           | mL/L¤              | Grab¤               | Five-Per-<br>Week¤        | Daily · Maximum¤            |  |  |  |  |  |
| 50050¤     | Flow¤                                                                                         | Report¤              | ıα                             | Mgal/d¤            | Continuous¤         | Daily¤                    | Monthly-Average¤            |  |  |  |  |  |
| 50050¤     | Flow¤                                                                                         | Report¤              | ıα                             | Mgal/d¤            | Continuous¤         | Daily¤                    | Daily Maximum¤              |  |  |  |  |  |
| 50060¤     | Chlorine, ·total·<br>residual·(TRC)¤                                                          | <=¤                  | 0.3¤                           | mg/L¤              | Grab¤               | Five-Per-<br>Week¤        | Daily· Maximum¤             |  |  |  |  |  |
| 51040¤     | E.·coli¤                                                                                      | <=m                  | 941¤                           | #/100mL¤           | Grab¤               | Three-Per-<br>Week¤       | Daily · Maximum¤            |  |  |  |  |  |
| 51040¤     | E. · coli¤                                                                                    | <=¤                  | 126¤                           | #/100mL¤           | Grab¤               | Three-Per-<br>Week¤       | Monthly⋅Geometric⋅<br>Mean¤ |  |  |  |  |  |
| Descriptio | n·:·External·Outfall                                                                          | ,·Number·:·00        | 1, Monito                      | oring::∙Percen     | t-Removal, Seaso    |                           |                             |  |  |  |  |  |
| Code¤      | Parameter¤                                                                                    | Qualifier¤           | Value¤                         | Unit¤              | Sample · Type¤      | Monitoring⊷<br>Frequency¤ | Statistical·Base¤           |  |  |  |  |  |
| 81010¤     | BOD,·5-day,·%·<br>removal¤                                                                    | α=<                  | 40¤                            | %¤                 | Calculated¤         | Three Per Week¤           | Daily· Minimum¤             |  |  |  |  |  |
| 81010¤     | BOD,·5-day,·%·<br>removal¤                                                                    | >=¤                  | 85¤                            | %¤                 | Calculated¤         | Three Per Week¤           | Monthly Average Minimum¤    |  |  |  |  |  |
| 81011¤     | TSS,·%- removal¤ >=¤                                                                          |                      | 85¤                            | %¤                 | Calculated¤         | Three Per Week¤           | Monthly Average Minimum¤    |  |  |  |  |  |
| 81011¤     | TSS,·%-<br>removal¤                                                                           | α=<                  | 40¤                            | %¤                 | Calculated¤         | Three Per Week¤           | Daily⋅ Minimum¤             |  |  |  |  |  |

| Descriptio | Description:·External·Outfall,·Number:·001,·Monitoring:·Raw·Sewage·Influent,·Season:·All·Year¤ |             |          |                  |                     |                           |                       |  |  |  |  |  |
|------------|------------------------------------------------------------------------------------------------|-------------|----------|------------------|---------------------|---------------------------|-----------------------|--|--|--|--|--|
| Code¤      | Parameter¤                                                                                     | Qualifier¤  | Value¤   | Unit¤            | Sample · Type¤      | Monitoring⊷<br>Frequency¤ | Statistical·<br>Base¤ |  |  |  |  |  |
| 00310¤     | BOD, ·5-day, ·20·C¤                                                                            | Report¤     | α        | mg/L¤            | Composite¤          | Three-Per-Week¤           | Daily<br>Maximum¤     |  |  |  |  |  |
| 00310¤     | BOD, ·5-day, ·20·C¤                                                                            | Report¤     | α        | mg/L¤            | Composite¤          | Three-Per-Week¤           | Monthly<br>Average¤   |  |  |  |  |  |
| 00530¤     | Total·Suspended·<br>Solids·(TSS)¤                                                              | Report¤     | ¤        | mg/L¤            | Composite¤          | Three-Per-Week¤           | Monthly<br>Average¤   |  |  |  |  |  |
| 00530¤     | Total·Suspended·<br>Solids·(TSS)¤                                                              | Report¤     | ¤        | mg/L¤            | Composite¤          | Three-Per-Week¤           | Daily∙<br>Maximum¤    |  |  |  |  |  |
| 50050¤     | Flow¤                                                                                          | Report¤     | ıα       | Mgal/d¤          | Continuous¤ Daily¤  |                           | Monthly<br>Average¤   |  |  |  |  |  |
| 50050¤     | Flow¤                                                                                          | Report¤     | ıα       | Mgal/d¤          | Continuous¤         | Daily¤                    | Daily∙<br>Maximum¤    |  |  |  |  |  |
| Descriptio | n:·External·Outfall,·                                                                          | Number: 001 | ,·Monito | ring: Wet · Weat | her,·Season:·All·Ye | ar¤                       |                       |  |  |  |  |  |
| Code¤      | Parameter¤                                                                                     | Qualifier¤  | Value¤   | Unit¤            | Sample · Type¤      | Monitoring⊷<br>Frequency¤ | Statistical·<br>Base¤ |  |  |  |  |  |
| 74062¤     | Overflow·use,·<br>occurrences¤                                                                 | Report¤     | α        | occur/mo¤        | Occurrences¤        | Continuous¤               | Monthly⋅Total¤        |  |  |  |  |  |

# **APPENDIX 2 Discharge Monitoring Report Summary**

\_\_\_\_\_

From Permit Application signed March 01, 2017 (received March 09, 2017).

| PARAMET                                                                  | TER          |              | MUMIXAN    | DAILY VALUE |             | AVE               | RAGE DAILY          | VALUE             |
|--------------------------------------------------------------------------|--------------|--------------|------------|-------------|-------------|-------------------|---------------------|-------------------|
|                                                                          |              |              | Value      | Units       | Valu        | ie                | Units               | Number of Samples |
| pH (Minimum)                                                             |              | 6.00         |            | s.u.        |             |                   |                     |                   |
| pH (Maximum)                                                             |              | 7.70         |            | s.u.        |             |                   |                     |                   |
| Flow Rate                                                                |              | 0.93         |            | MGD         | 0.16        | MGI               | D                   | 24.00             |
| Temperature (Winter)                                                     |              | 19.00        |            | С           | 17.00       | С                 |                     | 24.00             |
| Temperature (Summer)                                                     |              | 24.00        |            | С           | 22.00       | С                 |                     | 24.00             |
| * For pH please re                                                       | port a minir | mum and a ma | imum daily | value       |             |                   |                     |                   |
| POLLUTANT                                                                |              |              | IM DAILY   | AVERAG      | E DAILY DIS | CHARGE            | ANALYTIC/<br>METHOD |                   |
|                                                                          |              | Conc.        | Units      | Conc.       | Units       | Number of Samples |                     |                   |
|                                                                          |              |              |            |             |             |                   |                     |                   |
| CONVENTIONAL AND N                                                       | ONCONVI      | ENTIONAL CO  | MPOUNDS    |             |             |                   |                     |                   |
|                                                                          | BOD-5        | 14.80        | mg/l       | 8.30        | mg/l        | 12.00             | 5210B SM 2          | 20                |
| BIOCHEMICAL OXYGEN                                                       | T            | T            | T          | $\neg$      | mg/l        | 12.00             | 5210B SM 2          | 20                |
| CONVENTIONAL AND N BIOCHEMICAL OXYGEN DEMAND (Report one) FECAL COLIFORM | BOD-5        | T            | T          | $\neg$      | mg/l        | 12.00             | 5210B SM 2          |                   |

| POLLUTANT                         |             | NUM DAILY<br>CHARGE | AVERAC | GE DAILY DISC | CHARGE               |                      |          |
|-----------------------------------|-------------|---------------------|--------|---------------|----------------------|----------------------|----------|
|                                   | Conc.       | Units               | Conc.  | Units         | Number of<br>Samples | ANALYTICAL<br>METHOD | ML / MDL |
| CONVENTIONAL AND NO               | NCONVENTION | AL COMPOUN          | DS.    |               |                      |                      |          |
| AMMONIA (as N)                    | 0.00        | mg/l                | 0.00   | mg/l          | 3.00                 | EPA350.1, rv2.0      |          |
| CHLORINE (TOTAL<br>RESIDUAL, TRC) | 0.23        | mg/l                | 0.09   | mg/l          | 12.00                | SM 408C              |          |
| DISSOLVED OXYGEN                  | 9.60        | mg/l                | 6.80   | mg/l          | 12.00                | SM 421A              |          |
| TOTAL KJELDAHL<br>NITROGEN (TKN)  | 1.38        | mg/l                | 1.17   | mg/l          | 3.00                 | SM 4500-NorgC        |          |
| NITRATE PLUS NITRITE<br>NITROGEN  | 16.60       | mg/l                | 12.70  | mg/l          | 3.00                 | EPA 300.0, rv2.1     |          |
| OIL and GREASE                    | 0.00        | mg/l                | 0.00   | mg/l          | 3.00                 | EPA 1664B            |          |
| PHOSPHORUS (Total)                | 2.35        | mg/l                | 1.69   | mg/l          | 3.00                 | EPA 200.7, rv4.4     |          |
| TOTAL DISSOLVED<br>SOLIDS (TDS)   | 235.00      | mg/l                | 202.00 | mg/l          | 3.00                 | SM 2540.C            |          |
| OTHER                             |             |                     |        |               |                      |                      |          |
|                                   |             |                     |        |               |                      |                      |          |

| Munituring<br>Period End Date | Peremeter             | DMR<br>Value | Limit<br>Unit | Statistica<br>I Base |
|-------------------------------|-----------------------|--------------|---------------|----------------------|
| 06/30/2013                    | BOD, 5-day, 20 deq. C | 5.\$         | mq/L          | M0 AVG               |
| 06/30/2013                    | BOD, 5-day, 20 deq. C | 7.4          | mqfL          | WKLYAVG              |
| 06/30/2013                    | BOD, 5-day, 20 deq. C | 10.9         | mq/L          | DAILYMX              |
| 06/30/2013                    | BOD, 5-day, 20 deq. C | 15.2         | 1674          | M0 AVG               |
| 06/30/2013                    | BOD, 5-day, 20 deq. C | 23.2         | 1644          | WKLYAVG              |
| 07/31/2013                    | BOD, 5-day, 20 deq. C | 5.\$         | mq/L          | M0 AVG               |
| 07/31/2013                    | BOD, 5-day, 20 deq. C | *.5          | mq/L          | WKLYAVG              |
| 07/31/2013                    | BOD, 5-day, 20 deq. C | 10.0         | mqfL          | DAILYMX              |
| 07/31/2013                    | BOD, 5-day, 20 deq. C | 12.4         | 1644          | M0 AVG               |
| 07/31/2013                    | BOD, 5-day, 20 deq. C | 33.4         | 1644          | WKLYAVG              |
| 0#/31/2013                    | BOD, 5-day, 20 deq. C | 6.6          | mq/L          | M0 AVG               |
| 08/31/2013                    | BOD, 5-day, 20 deq. C | 7.6          | mqfL          | WKLYAVG              |
| 01/31/2013                    | BOD, 5-day, 20 deq. C | 9.6          | mq/L          | DAILYMX              |
| 00/31/2013                    | BOD, 5-day, 20 deq. C | 7.0          | 1674          | M0 AVG               |
| 0\$/31/2013                   | BOD, 5-day, 20 deq. C | 9.2          | 1644          | WKLYAVG              |
| 09/30/2013                    | BOD, 5-day, 20 deq. C | 5.7          | mqfL          | M0 AVG               |
| 09/30/2013                    | BOD, 5-day, 20 deq. C | 7.1          | mq/L          | WKLYAVG              |
| 09/30/2013                    | BOD, 5-day, 20 dag. C | 7.5          | mqfL          | DAILYMX              |
| 09/30/2013                    | BOD, 5-day, 20 deq. C | 4.3          | 1674          | M0 AVG               |
| 09/30/2013                    | BOD, 5-day, 20 daq. C | 5.2          | 1674          | WKLYAVG              |
| 10/31/2013                    | BOD, 5-day, 20 deg, C | 6.0          | mark          | MOAVG                |
| 10/31/2013                    | BOD, 5-day, 20 deq. C | <b>\$.9</b>  | mg/L          | WKLYAVG              |
| 10/31/2013                    | BOD, 5-day, 20 deq. C | 10.2         | mq/L          | DAILYMS              |
| 10/31/2013                    | BOD, 5-day, 20 daq. C | 3.9          | 1674          | MOAVG                |
| 10/31/2013                    | BOD, 5-day, 20 deg, C | 6.5          | 1674          | WKLYAVG              |
| 11/30/2013                    | BOD, 5-day, 20 deq. C | 4.1          | mq/L          | M0 AVG               |
| 11/30/2013                    | BOD, 5-day, 20 daq. C | 4.8          | mq/L          | WKLYAVG              |
| 11/30/2013                    | BOD, 5-day, 20 deq. C | 5.5          | mq/L          | DAILYMX              |
| 11/30/2013                    | BOD, 5-day, 20 deq. C | 4.7          | 1674          | M0 AVG               |
| 11/30/2013                    | BOD, 5-day, 20 deq. C | 1.7          | 1674          | WKLYAVG              |
| 12/31/2013                    | BOD, 5-day, 20 deq. C | 4.6          | mq/L          | M0 AVG               |
| 12/31/2013                    | BOD, 5-day, 20 dag, C | 16.0         | mg/L          | WKLYAVG              |
| 12/31/2013                    | BOD, 5-day, 20 dag. C | 6.8          | mq/L          | DAILYMX              |
| 12/31/2013                    | BOD, 5-day, 20 daq. C | 19.4         | 1674          | M0 AVG               |
| 12/31/2013                    | BOD, 5-day, 20 deg, C | 37.0         | 1674          | WKLYAVG              |

| Paris   Pari                                                                                                                                                                                                                                                                 |                                         |                       |             |       |         |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|-----------------------|-------------|-------|---------|
| ## # ## # ## # ## # ## ## ## ## ## ##                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                         | Peremeter             |             |       |         |
| ### ### ### ### ### ### ### ### ### ##                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 01/31/2014                              | BOD, 5-day, 20 deq. C | 5.2         | mqfL  | MOAVG   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 01/31/2014                              | BOD, 5-day, 20 deq. C | 5.\$        | mqrL  | WKLYAVG |
| ### 1972/2244   DOD, F-49; 204-0; D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 01/31/2014                              | BOD, 5-day, 20 deq. C | 7.3         | mq/L  | DAILYMX |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 01/31/2014                              | BOD, 5-day, 20 deq. C | 9.          | 1944  | MO AVG  |
| 2022    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025                                                                                                                                                                                                                                                                 | 01/31/2014                              | BOD, 5-day, 20 deq. C |             | 1944  | WKLYAVG |
| 2022#29584   DOD, 5-19; 204-0; O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 02/28/2014                              | BOD, 5-day, 20 deq. C | 5.1         | mqfL  | M0 AVG  |
| 2022    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025    2025                                                                                                                                                                                                                                                                 | 02/28/2014                              | BOD, 5-day, 20 deq. C | 5.2         | m-q/L | WKLYAVG |
| 2021292864   DOD, 5-87, 204-0, D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 02/2#/2014                              | BOD, 5-day, 20 deq. C | *.*         | mqrL  | DAILYMX |
| ## 1997/2014   ## 1997/2014   ## 1997/2014   ## 1997/2014   ## 1997/2014   ## 1997/2014   ## 1997/2014   ## 1997/2014   ## 1997/2014   ## 1997/2014   ## 1997/2014   ## 1997/2014   ## 1997/2014   ## 1997/2014   ## 1997/2014   ## 1997/2014   ## 1997/2014   ## 1997/2014   ## 1997/2014   ## 1997/2014   ## 1997/2014   ## 1997/2014   ## 1997/2014   ## 1997/2014   ## 1997/2014   ## 1997/2014   ## 1997/2014   ## 1997/2014   ## 1997/2014   ## 1997/2014   ## 1997/2014   ## 1997/2014   ## 1997/2014   ## 1997/2014   ## 1997/2014   ## 1997/2014   ## 1997/2014   ## 1997/2014   ## 1997/2014   ## 1997/2014   ## 1997/2014   ## 1997/2014   ## 1997/2014   ## 1997/2014   ## 1997/2014   ## 1997/2014   ## 1997/2014   ## 1997/2014   ## 1997/2014   ## 1997/2014   ## 1997/2014   ## 1997/2014   ## 1997/2014   ## 1997/2014   ## 1997/2014   ## 1997/2014   ## 1997/2014   ## 1997/2014   ## 1997/2014   ## 1997/2014   ## 1997/2014   ## 1997/2014   ## 1997/2014   ## 1997/2014   ## 1997/2014   ## 1997/2014   ## 1997/2014   ## 1997/2014   ## 1997/2014   ## 1997/2014   ## 1997/2014   ## 1997/2014   ## 1997/2014   ## 1997/2014   ## 1997/2014   ## 1997/2014   ## 1997/2014   ## 1997/2014   ## 1997/2014   ## 1997/2014   ## 1997/2014   ## 1997/2014   ## 1997/2014   ## 1997/2014   ## 1997/2014   ## 1997/2014   ## 1997/2014   ## 1997/2014   ## 1997/2014   ## 1997/2014   ## 1997/2014   ## 1997/2014   ## 1997/2014   ## 1997/2014   ## 1997/2014   ## 1997/2014   ## 1997/2014   ## 1997/2014   ## 1997/2014   ## 1997/2014   ## 1997/2014   ## 1997/2014   ## 1997/2014   ## 1997/2014   ## 1997/2014   ## 1997/2014   ## 1997/2014   ## 1997/2014   ## 1997/2014   ## 1997/2014   ## 1997/2014   ## 1997/2014   ## 1997/2014   ## 1997/2014   ## 1997/2014   ## 1997/2014   ## 1997/2014   ## 1997/2014   ## 1997/2014   ## 1997/2014   ## 1997/2014   ## 1997/2014   ## 1997/2014   ## 1997/2014   ## 1997/2014   ## 1997/2014   ## 1997/2014   ## 1997/2014   ## 1997/2014   ## 1997/2014   ## 1997/2014   ## 1997/2014   ## 1997/2014   ## 1997/2014   ## 1997/2014   ## 1997/2014   ## 1                                                                                                                                                                                                                                                                 | 02/2#/2014                              | BOD, 5-day, 20 deq. C | 16.2        | 1944  | MOAVG   |
| 927312281 000,5-42,204-0, 0.7, mayL. WILLYANG 000,5-42,204-0, 0.7,                                                                                                                                                                                                                                                               | 02/28/2014                              | BOD, 5-day, 20 deq. C | 29.         | 1674  | WKLYAVG |
| 9273122814 000,5-40,204a,0 7. myt. DARLYNE 9273122814 000,5-40,204a,0 7.5 Myt. Myt. Myt. Myt. Myt. Myt. Myt. Myt.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 03/31/2014                              | BOD, 5-day, 20 deq. C | 5.6         | mqrL  | MOAVG   |
| 923122284                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 03/31/2014                              | BOD, 5-day, 20 deq. C | 6.7         | mqfL  | WKLYAVG |
| ##   ##   ##   ##   ##   ##   ##   #                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 03/31/2014                              | BOD, 5-day, 20 deq. C | 7.          | mq/L  | DAILYMX |
| ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###                                                                                                                                                                                                                                                                  | 03/31/2014                              | BOD, 5-day, 20 deq. C | 7.5         | 1674  | MO AVG  |
| ### ### ### ### ### ### ### ### ### ##                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 03/31/2014                              | BOD, 5-day, 20 deq. C | 30.9        | 1644  | WKLYAVG |
| ### ### ### ### ### ### ### ### ### ##                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 04/30/2014                              | BOD, 5-day, 20 deq. C | 5.6         | mq/L  | M0 AVG  |
| ### 1942/2014   00.5.1-40.7.04-0.   19.7   19.44   1963/2014   1963/2014   1963/2014   1963/2014   1963/2014   1963/2014   1963/2014   1963/2014   1963/2014   1963/2014   1963/2014   1963/2014   1963/2014   1963/2014   1963/2014   1963/2014   1963/2014   1963/2014   1963/2014   1963/2014   1963/2014   1963/2014   1963/2014   1963/2014   1963/2014   1963/2014   1963/2014   1963/2014   1963/2014   1963/2014   1963/2014   1963/2014   1963/2014   1963/2014   1963/2014   1963/2014   1963/2014   1963/2014   1963/2014   1963/2014   1963/2014   1963/2014   1963/2014   1963/2014   1963/2014   1963/2014   1963/2014   1963/2014   1963/2014   1963/2014   1963/2014   1963/2014   1963/2014   1963/2014   1963/2014   1963/2014   1963/2014   1963/2014   1963/2014   1963/2014   1963/2014   1963/2014   1963/2014   1963/2014   1963/2014   1963/2014   1963/2014   1963/2014   1963/2014   1963/2014   1963/2014   1963/2014   1963/2014   1963/2014   1963/2014   1963/2014   1963/2014   1963/2014   1963/2014   1963/2014   1963/2014   1963/2014   1963/2014   1963/2014   1963/2014   1963/2014   1963/2014   1963/2014   1963/2014   1963/2014   1963/2014   1963/2014   1963/2014   1963/2014   1963/2014   1963/2014   1963/2014   1963/2014   1963/2014   1963/2014   1963/2014   1963/2014   1963/2014   1963/2014   1963/2014   1963/2014   1963/2014   1963/2014   1963/2014   1963/2014   1963/2014   1963/2014   1963/2014   1963/2014   1963/2014   1963/2014   1963/2014   1963/2014   1963/2014   1963/2014   1963/2014   1963/2014   1963/2014   1963/2014   1963/2014   1963/2014   1963/2014   1963/2014   1963/2014   1963/2014   1963/2014   1963/2014   1963/2014   1963/2014   1963/2014   1963/2014   1963/2014   1963/2014   1963/2014   1963/2014   1963/2014   1963/2014   1963/2014   1963/2014   1963/2014   1963/2014   1963/2014   1963/2014   1963/2014   1963/2014   1963/2014   1963/2014   1963/2014   1963/2014   1963/2014   1963/2014   1963/2014   1963/2014   1963/2014   1963/2014   1963/2014   1963/2014   1963/2014   1963/2014   1963/2014   1963/2014   196                                                                                                                                                                                                                                                               | 04/30/2014                              |                       | 6.7         | mqfL  | WKLYAVG |
| ### 1942/2284                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 04/30/2014                              | BOD, 5-day, 20 deq. C | 9.4         | mqfL  | DAILYMX |
| ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###                                                                                                                                                                                                                                                                  | 04/30/2014                              |                       | 10.7        | 1674  | MOAVG   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                         |                       | 19.2        |       |         |
| ## ## ## ## ## ## ## ## ## ## ## ## ##                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                         |                       |             |       |         |
| \$6,000, \$6,000, \$6,000, \$6,000, \$6,000, \$6,000, \$6,000, \$6,000, \$6,000, \$6,000, \$6,000, \$6,000, \$6,000, \$6,000, \$6,000, \$6,000, \$6,000, \$6,000, \$6,000, \$6,000, \$6,000, \$6,000, \$6,000, \$6,000, \$6,000, \$6,000, \$6,000, \$6,000, \$6,000, \$6,000, \$6,000, \$6,000, \$6,000, \$6,000, \$6,000, \$6,000, \$6,000, \$6,000, \$6,000, \$6,000, \$6,000, \$6,000, \$6,000, \$6,000, \$6,000, \$6,000, \$6,000, \$6,000, \$6,000, \$6,000, \$6,000, \$6,000, \$6,000, \$6,000, \$6,000, \$6,000, \$6,000, \$6,000, \$6,000, \$6,000, \$6,000, \$6,000, \$6,000, \$6,000, \$6,000, \$6,000, \$6,000, \$6,000, \$6,000, \$6,000, \$6,000, \$6,000, \$6,000, \$6,000, \$6,000, \$6,000, \$6,000, \$6,000, \$6,000, \$6,000, \$6,000, \$6,000, \$6,000, \$6,000, \$6,000, \$6,000, \$6,000, \$6,000, \$6,000, \$6,000, \$6,000, \$6,000, \$6,000, \$6,000, \$6,000, \$6,000, \$6,000, \$6,000, \$6,000, \$6,000, \$6,000, \$6,000, \$6,000, \$6,000, \$6,000, \$6,000, \$6,000, \$6,000, \$6,000, \$6,000, \$6,000, \$6,000, \$6,000, \$6,000, \$6,000, \$6,000, \$6,000, \$6,000, \$6,000, \$6,000, \$6,000, \$6,000, \$6,000, \$6,000, \$6,000, \$6,000, \$6,000, \$6,000, \$6,000, \$6,000, \$6,000, \$6,000, \$6,000, \$6,000, \$6,000, \$6,000, \$6,000, \$6,000, \$6,000, \$6,000, \$6,000, \$6,000, \$6,000, \$6,000, \$6,000, \$6,000, \$6,000, \$6,000, \$6,000, \$6,000, \$6,000, \$6,000, \$6,000, \$6,000, \$6,000, \$6,000, \$6,000, \$6,000, \$6,000, \$6,000, \$6,000, \$6,000, \$6,000, \$6,000, \$6,000, \$6,000, \$6,000, \$6,000, \$6,000, \$6,000, \$6,000, \$6,000, \$6,000, \$6,000, \$6,000, \$6,000, \$6,000, \$6,000, \$6,000, \$6,000, \$6,000, \$6,000, \$6,000, \$6,000, \$6,000, \$6,000, \$6,000, \$6,000, \$6,000, \$6,000, \$6,000, \$6,000, \$6,000, \$6,000, \$6,000, \$6,000, \$6,000, \$6,000, \$6,000, \$6,000, \$6,000, \$6,000, \$6,000, \$6,000, \$6,000, \$6,000, \$6,000, \$6,000, \$6,000, \$6,000, \$6,000, \$6,000, \$6,000, \$6,000, \$6,000, \$6,000, \$6,000, \$6,000, \$6,000, \$6,000, \$6,000, \$6,000, \$6,000, \$6,000, \$6,000, \$6,000, \$6,000, \$6,000, \$6,000, \$6,000, \$6,000, \$6,000, \$6,000, \$6,000, \$6,000, \$6,000, \$6,000, \$6,000, \$6,000, \$6,000, \$6,000, \$6,000, \$6,000, \$6,000, \$6,000, \$6,000, \$6,000, \$6,000, \$6,000, \$6,000, \$6,000, \$6,000, \$6,000, \$6,000, \$6,000, \$6,0 |                                         |                       |             |       |         |
| ##   ##   ##   ##   ##   ##   ##   #                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | *************************************** |                       |             |       |         |
| ### STATESTER   DOD, F-102, 204-0, C   10.9   BM   BM   SMICKANG                                                                                                                                                                                                                                                                 |                                         |                       |             |       |         |
| ### 1997/22/14   DOD, F-649, 70 4-0   T. muyll. MODATE ### 2007/24/14   DOD, F-649, 70 4-0   T. muyll. MODATE ### 2007/24/14   DOD, F-649, 70 4-0   T. muyll. MODATE ### 2007/24/14   DOD, F-649, 70 4-0   T. muyll. MODATE ### 2007/24/14   DOD, F-649, 70 4-0   T. muyll. MODATE ### 2007/24/14   DOD, F-649, 70 4-0   T. muyll. MODATE ### 2007/24/14   DOD, F-649, 70 4-0   T. muyll. MODATE ### 2007/24/14   DOD, F-649, 70 4-0   T. muyll. MODATE ### 2007/24/14   DOD, F-649, 70 4-0   T. muyll. MODATE ### 2007/24/14   DOD, F-649, 70 4-0   T. muyll. MODATE ### 2007/24/14   DOD, F-649, 70 4-0   T. muyll. MODATE ### 2007/24/14   DOD, F-649, 70 4-0   T. muyll. MODATE ### 2007/24/14   DOD, F-649, 70 4-0   T. muyll. MODATE ### 2007/24/14   DOD, F-649, 70 4-0   T. muyll. MODATE ### 2007/24/14   DOD, F-649, 70 4-0   T. muyll. MODATE ### 2007/24/14   DOD, F-649, 70 4-0   T. muyll. MODATE ### 2007/24/14   DOD, F-649, 70 4-0   T. muyll. MODATE ### 2007/24/14   DOD, F-649, 70 4-0   T. muyll. MODATE ### 2007/24/14   DOD, F-649, 70 4-0   T. muyll. MODATE ### 2007/24/14   DOD, F-649, 70 4-0   T. muyll. MODATE ### 2007/24/14   DOD, F-649, 70 4-0   T. muyll. MODATE ### 2007/24/14   DOD, F-649, 70 4-0   T. muyll. MODATE ### 2007/24/14   DOD, F-649, 70 4-0   T. muyll. MODATE ### 2007/24/14   DOD, F-649, 70 4-0   T. muyll. MODATE ### 2007/24/14   DOD, F-649, 70 4-0   T. muyll. MODATE ### 2007/24/14   DOD, F-649, 70 4-0   T. muyll. MODATE ### 2007/24/14   DOD, F-649, 70 4-0   T. muyll. MODATE ### 2007/24/14   DOD, F-649, 70 4-0   T. muyll. MODATE ### 2007/24/14   DOD, F-649, 70 4-0   T. muyll. MODATE ### 2007/24/14   DOD, F-649, 70 4-0   T. muyll. MODATE ### 2007/24/14   DOD, F-649, 70 4-0   T. muyll. MODATE ### 2007/24/14   DOD, F-649, 70 4-0   T. muyll. MODATE ### 2007/24/14   DOD, F-649, 70 4-0   T. muyll. MODATE ### 2007/24/14   DOD, F-649, 70 4-0   T. muyll. MODATE ### 2007/24/14   DOD, F-649, 70 4-0   T. muyll. MODATE ### 2007/24/14   DOD, F-649, 70 4-0   T. muyll. MODATE ### 2007/24/14   DOD, F-649, 70 4-0   T. muyll. MODATE ### 2007/24                                                                                                                                                                                                                                                               |                                         |                       |             |       |         |
| ### 1997/2014   000,5-40; 204-0   7. myt. MYLYANG   000,5-40; 204-                                                                                                                                                                                                                                                               | ***********                             |                       |             |       |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                         |                       |             |       |         |
| ## 57942264                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                         |                       |             |       |         |
| ##   ##   ##   ##   ##   ##   ##   #                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | *********                               |                       |             |       |         |
| ### 1973/2244                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                       | *****       |       |         |
| 973312246 000,5-42,26-40 8.8 mg/t. WIXT-WIG<br>973312246 000,5-42,26-40 9.8 mg/t. MiXT-WIG<br>973312246 000,5-42,26-40 9.8 mg/t. MiXT-WIG<br>973312246 000,5-42,26-40 0.7 mg/t. MiXT-WIG<br>983312246 000,5-42,26-40 0.7 mg/t. MiXT-WIG<br>983312244 000,5-42,26-40 0.7 mg/t. MiXT-WIG<br>98331244 000,5-42,26-40 0.7 mg/t. MiXT-WIG<br>98331244 000,5-42,26-40 0.7 mg/t. MiXT-WIG<br>98331244 000,5-42,26-40 0.7 mg/t. MiXT-WIG<br>98331244 000,5-42,26-40                                                                                                                                                                      |                                         |                       |             |       |         |
| ### 27392284 000,5-69,204-0, 9.8 mg/t. DARTHE ### 27392284 000,5-69,204-0, 9.8 mg/t. DARTHE ### 27392284 000,5-69,204-0, 9.4 Mg/t. MORRES ### 27392284 000,5-69,204-0, 9.4 Mg/t. MORRES ### 27392284 000,5-69,204-0, 9.4 Mg/t. Morres ### 27392284 000,5-69,204-0, 9.7 mg/t. Morres ### 27392284 000,5-69,                                                                                                                                                                                                                                                               |                                         |                       |             |       |         |
| ### 2793/2284 000,5-42,204-0 5.2 BM4 NOAMS ### 2793/2284 000,5-42,204-0 4.8 MM4 NOAMS ### 2793/2284 000,5-42,204-0 4.7 mayL NOAMS ### 2793/2284 000,5-42,204-0 7.8 mayL NOAMS ### 2793/2284 000,5-42,204-0 7.7 mayL NOAMS ### 2793/2284 000,5-42,204-0 7.8 mayL NOAMS                                                                                                                                                                                                                                                                                                                                                                                                                            |                                         |                       |             |       |         |
| 97392244 000,5-49,204-0 9.4 BM WILLYAMS 98-90-90-90-90-90-90-90-90-90-90-90-90-90-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                         |                       |             |       |         |
| ### 1973/2244                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                       |             |       |         |
| ### ### ### ### ### ### ### ### ### ##                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                         |                       |             |       |         |
| ### 1979/2264                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                       |             |       |         |
| ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###                                                                                                                                                                                                                                                                  |                                         |                       |             |       |         |
| ### ### ### ### ### ### ### ### ### ##                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                         |                       |             |       |         |
| ##   ##   ##   ##   ##   ##   ##   #                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                         |                       |             |       |         |
| 993942244 000,5-42,204-0, 7.7 mg/t, WIXTANG 993942244 000,5-42,204-0, 8.9 mg/t, WIXTANG 993942244 000,5-42,204-0, 8.9 mg/t, WIXTANG 993942244 000,5-42,204-0, 8.9 mg/t, WIXTANG 993942244 000,5-42,204-0, 9.2 mg/t, WIXTANG 993942244 000,5-42,204-0, 9.4 mg/t, WIXTANG 993944 000,5-42,204-0, 9.4 mg/t, WIXTANG 993944 000,5-42,204-0, 9.4 mg/t, WIXTANG 99394 000,5-                                                                                                                                                                                                                                                               |                                         |                       |             |       |         |
| ### 1997/2244                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | *************************************** |                       |             |       |         |
| ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###                                                                                                                                                                                                                                                                  | ************                            |                       |             |       |         |
| 90392284   000,5-62,204a,0   31.4   18/4   18/14/19/14/19/16/19/19/19/19/19/19/19/19/19/19/19/19/19/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                         |                       |             |       |         |
| 1973   1724   1970   17.4   may   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1                                                                                                                                                                                                                                                                 | *212415414                              |                       | _           |       |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ***********                             |                       |             |       |         |
| 1973   1224   100, 5-10, 20   14-0   19.5   maj.   DAILTHE   1973   1224   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19.0   19                                                                                                                                                                                                                                                                 |                                         |                       |             |       |         |
| 1973   124   100   15   10   10   10   10   10   1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                         |                       |             |       |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 10/31/2014                              |                       |             |       |         |
| 15992294   00.5.542,2044.0   7.8 mg/L   MOANG   15792294   00.5.542,2044.0   18.1 mg/L   MOANG   15792294   00.5.542,2044.0   18.1 mg/L   MOLTANG   15792294   00.5.542,2044.0   18.4 mg/L   DRILTTANG   15792294   00.5.542,2044.0   21.5 mg/L   MOANG   12292294   00.5.542,2044.0   21.5 mg/L   MOANG   122912294   00.5.542,2044.0   18.2 mg/L   MOANG   122912294   00.5.542,2044.0   18.1 mg/L   MOANG   122912294   00.5.542,2044.0   18.1 mg/L   MOLTANG   122912294   00.5.542,2044.0   18.1 mg/L   MOLTANG   122912294   00.5.542,2044.0   12.5 mg/L   MOLTANG   122912294   124912394.0   12.5 mg/L   MOLTANG   124912394.0   124912394.0   124912394.0   124912394.0   124912394.0   124912394.0   124912394.0   124912394.0   124912394.0   124912394.0   124912394.0   124912394.0   124912394.0   124912394.0   124912394.0   124912394.0   124912394.0   124912394.0   124912394.0   124912394.0   124912394.0   124912394.0   124912394.0   124912394.0   124912394.0   124912394.0   124912394.0   124912394.0   124912394.0   124912394.0   124912394.0   124912394.0   124912394.0   124912394.0   124912394.0   124912394.0   124912394.0   124912394.0   124912394.0   124912394.0   124912394.0   124912394.0   124912394.0   124912394.0   124912394.0   124912394.0   124912394.0   124912394.0   124912394.0   124912394.0   124912394.0   124912394.0   124912394.0   124912394.0   124912394.0   124912394.0   124912394.0   124912394.0   124912394.0   124912394.0   124912394.0   124912394.0   124912394.0   124912394.0   124912394.0   124912394.0   124912394.0   124912394.0   124912394.0   124912394.0   124912394.0   124912394.0   124912394.0   124912394.0   124912394.0   124912394.0   124912394.0   124912394.0   124912394.0   124912394.0                                                                                                                                                                                                                                                                 |                                         |                       |             |       |         |
| 157942264   00.0.5-642,20-640,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                         |                       |             |       |         |
| 1529/22546   DOD,5-54y,204a,0   0.4.4   mq/L   DALYTHY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                         |                       |             |       |         |
| \$173972814 BOO,5-40;20-40;0 9.4 BM4 MORNG \$187972814 BOO,5-40;20-40;0 \$1.5 BM4 MORNG \$223972814 BOO,5-40;20-40;0 \$1.2 mg/L MORNG \$1223972814 BOO,5-40;20-40;0 \$1.2 mg/L MORNG \$1223972814 BOO,5-40;20-40;0 \$1.1 mg/L MORNG \$1223972814 BOO,5-40;20-40;0 \$12. mg/L MORNG \$1223972814 BOO,5-40;20-40;0 \$12. mg/L MORNG \$1239738241 BOO,5-40;20-40;0 \$12. mg/L MORNG \$12439738241 BOO,5-40;20-40;0 \$12.5 BM4 MORNG \$12439738241 BM4 BOO,5-40;20-40;0 \$12.5 BM4 MORNG \$12439738241 BM4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 11/30/2014                              | BOD, 5-day, 20 deq. C |             | mq/L  | WKLYAVG |
| 187942948 800,5-4sy,204se,0 21,5 Me4 WKLYANG 1223142948 800,5-4sy,204se,0 4.2 meft. HOANG 1223142948 800,5-4sy,204se,0 11.2 meft. WKLYANG 1223142949 800,5-4sy,204se,0 12. meft. OMILYANG 800,5-4sy,204se,0 12. meft. MKLYANG 1223142949 800,5-4sy,204se,0 12. meft. MKLYANG 1223142949 800,5-4sy,204se,0 12. meft. MKLYANG 1223142949 800,5-4sy,204se,0 12. Me4 MKLYANG 1223142949 800,5-4sy,204se,0 12. Me4 MKLYANG 1233142949 800,5-4sy,204se,0 12. Me4 MKLYANG 1233142949 800,5-4sy,204se,0 123314294 800,5-4sy,204se,0 1233144 800,5-4sy,204se,0 123314 800,5-4sy,204se,0 123                                                                                                                                                                                                                                                               | 11/30/2014                              | BOD, 5-day, 20 deq. C | 10.4        | mqfL  | DAILYMX |
| 12/31/2014   BOD,5-day,20 deq. C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 11/30/2014                              |                       | 9.4         | 1674  |         |
| 12/3142814   BOD, 5-day, 20 deq. 0   11.1   mq/L   WKLYAYG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 11/30/2014                              | BOD, 5-day, 20 deq. C | 21.5        | 1674  | WKLYAVG |
| 12/31/2014         BOD, 5-day, 20 deq. C         11.1         mq/L         WKLYAVG           12/31/2014         BOD, 5-day, 20 deq. C         12.         mq/L         DAILYMX           12/31/2014         BOD, 5-day, 20 deq. C         12.5         Ib/d         MO AVG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 12/31/2014                              | BOD, 5-day, 20 deq. C | <b>\$.2</b> | mqfL  | MOAVG   |
| 12/31/2014 BOD,5-day,20 daq.C 12.5 Ib/d MO AVG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 12/31/2014                              |                       | 11.1        | mq/L  | WKLYAVG |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 12/31/2014                              | BOD, 5-day, 20 deq. C | 12.         | mq/L  | DAILYMX |
| 12/31/2014 BOD, 5-day, 20 daq. C 1\$.5 Ib/d WKLYAVG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 12/31/2014                              | BOD, 5-day, 20 deq. C | 12.5        | 1674  | MOAVG   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 12/31/2014                              | BOD, 5-day, 20 deq. C | 18.5        | 1674  | WKLYAVG |

| Munituring<br>Parind End Data | Peremeter              | DHR<br>Telus | Limit<br>Unit | Statisti<br>cal Base |
|-------------------------------|------------------------|--------------|---------------|----------------------|
| 01/31/2015                    | BOD, 5-day, 20 da q. C | 6.5          | mq/L          | MOAVG                |
| 01/31/2015                    | BOD, 5-day, 20 deq. C  | \$.2         | mqfL          | WKLYAVO              |
| 01/31/2015                    | BOD, 5-day, 20 daq. C  | 11.3         | mark          | DAILYM               |
| 01/31/2015                    | BOD, 5-day, 20 deg, C  | 11.4         | 1644          | MOAVG                |
| 01/31/2015                    | B0D,5-day,20 de q. C   | 18.3         | 1674          | WKLYAV               |
| 02/22/2015                    | BOD, 5-day, 20 deq. C  | 6.5          | mgfL          | MOAVG                |
| 02/28/2015                    | BOD, 5-day, 20 daq. C  | 1.0          | mqrL<br>mqrL  | WKLYAV               |
| 02/20/2015                    | BOD, 5-day, 20 deq. C  | 10.6         | mqrL          | DAILYM               |
| 02/24/2015                    |                        | 11.9         | IP54          | MOAVE                |
| 02/28/2015                    | BOD, 5-day, 20 deq. C  | 15.5         | 1674          | WKLYAV               |
| 03/31/2015                    | BOD, 5-day, 20 de q. C | 7.1          |               | MOAVG                |
| 03/31/2015                    | BOD, 5-day, 20 de q. C | 10.0         | mqfL          | WKLYAV               |
|                               | BOD, 5-day, 20 deq. C  |              | mqfL          |                      |
| 03/31/2015                    | BOD, 5-day, 20 de q. C | 15.0         | mqfL          | DAILYM               |
| 03/31/2015                    | BOD, 5-day, 20 de q. C | 18.3         | 1674          | M0 AVG               |
| 03/31/2015                    | BOD, 5-day, 20 de q. C | 30.5         | 1674          | WKLYAV               |
| 04/30/2015                    | BOD, 5-day, 20 de q. C | 8.8          | mq/L          | M0 AVG               |
| 04/30/2015                    | BOD, 5-day, 20 de q. C | 13.5         | mq/L          | WKLYAV               |
| 04/30/2015                    | B0D, 5-day, 20 deq. C  | 14.4         | mqfL          | DAILYM               |
| 04/30/2015                    | BOD, 5-day, 20 de q. C | 19.1         | 1674          | M0 AVG               |
| 04/30/2015                    | BOD, 5-day, 20 da q. C | 43.0         | 1674          | WKLY AV              |
| 05/31/2015                    | BOD, 5-day, 20 daq. C  | 9.6          | mark          | MOAVG                |
| 05/31/2015                    | BOD, 5-day, 20 de q. C | 10.9         | mg/L          | WKLYAW               |
| 05/31/2015                    | B0D, 5-day, 20 da q. C | 11.9         | mafL          | DAILYM               |
| 05/31/2015                    | BOD, 5-day, 20 deq. C  | 7.1          | 1644          | MOAVG                |
| 05/31/2015                    | BOD, 5-day, 20 de q. C | <b>*.2</b>   | 1674          | WKLYAV               |
| 06/30/2015                    | BOD, 5-day, 20 day, C  | 11.9         | mark          | MOAVG                |
| 06/30/2015                    | BOD, 5-day, 20 daq. C  | 13.7         | mqrL<br>mqrL  | WKLYAV               |
| 06/30/2015                    |                        | 15.1         |               | DAILYM               |
|                               | BOD, 5-day, 20 de q. C | 7.4          | mq/L<br>Ib/d  |                      |
| 06/30/2015                    | BOD, 5-day, 20 deq. C  |              |               | MOAVG                |
| TOTOTICOLO                    | BOD, 5-day, 20 deq. C  | 30.1         | 1944          | WKLYAV               |
| 07/31/2015                    | BOD, 5-day, 20 de q. C | \$.4         | mqfL          | M0 AVG               |
| 07/31/2015                    | B0D, 5-day, 20 deq. C  | 11.9         | m-qfL         | WKLYAV               |
| 07/31/2015                    | BOD, 5-day, 20 de q. C | 14.1         | mqfL          | DAILYM               |
| 07/31/2015                    | BOD, 5-day, 20 da q. C | 16.5         | 1674          | M0 AVG               |
| 07/31/2015                    | BOD, 5-day, 20 deq. C  | 30.2         | 1674          | WKLYAV               |
| 0#/31/2015                    | BOD, 5-day, 20 deq. C  | \$.9         | mqfL          | MOAVG                |
| 0#/31/2015                    | BOD, 5-day, 20 daq. C  | 11.4         | mqfL          | WKLY AV              |
| 0#/31/2015                    | BOD, 5-day, 20 de q. C | 21.1         | mqfL          | DAILYM               |
| 0#/31/2015                    | B0D, 5-day, 20 deq. C  | 11.1         | 1674          | MOAVG                |
| 01/31/2015                    | BOD, 5-day, 20 de q. C | 16.0         | 1674          | WKLYAV               |
| 09/30/2015                    | BOD, 5-day, 20 da q. C | 8.9          | mařl          | MOAVG                |
| 09/30/2015                    | BOD, 5-day, 20 dag, C  | 10.2         | mg/L          | WKLYAV               |
| 09/30/2015                    | B0D, 5-day, 20 daq. C  | 11.3         | mqfL          | DAILYM               |
| 09/30/2015                    | BOD, 5-day, 20 da q. C | 6.4          | 1674          | MOAVG                |
| 09/30/2015                    | BOD, 5-day, 20 da q. C | 7.8          | 1674          | WKLYAV               |
| 10/31/2015                    | BOD, 5-day, 20 deq. C  | 9.0          | mqfL          | MOAVG                |
| 10/31/2015                    | BOD, 5-day, 20 daq. C  | 10.3         | mark          | WKLYAV               |
| 10/31/2015                    | BOD, 5-day, 20 de q. C | 13.7         | mq/L          | DAILYM               |
|                               |                        | 9.8          | mqrL<br>Ib/4  |                      |
| 10/31/2015                    | BOD, 5-day, 20 de q. C |              |               | MOAVG                |
| 10/31/2015                    | BOD, 5-day, 20 deq. C  | 14.1         | 1644          | WKLYAV               |
| 11/30/2015                    | BOD, 5-day, 20 deq. C  | 9.7          | m-qfL         | M0 AVG               |
| 11/30/2015                    | BOD, 5-day, 20 de q. C | 12.4         | mqfL          | WKLYAV               |
| 11/30/2015                    | BOD, 5-day, 20 deq. C  | 13.1         | m-qfL         | DAILYM               |
| 11/30/2015                    | BOD, 5-day, 20 de q. C | 14.9         | 1674          | M0 AVG               |
| 11/30/2015                    | BOD, 5-day, 20 da q. C | 31.0         | 1674          | WKLYAV               |
| 12/31/2015                    | BOD, 5-day, 20 da q. C | 9.5          | m-qrL         | M0 AVG               |
| 12/31/2015                    | BOD, 5-day, 20 daq. C  | 11.8         | mqfL          | WKLYAV               |
| 12/31/2015                    | BOD, 5-day, 20 de q. C | 13.2         | mqfL          | DAILYM               |
|                               | BOD, 5-day, 20 de q. C | 32.0         | 1674          | MOAVG                |
| 12/31/2015                    | BOD,5-449,20484.C      |              |               |                      |

|                               |                                                | $\overline{}$ | $\overline{}$ |                      |     |                               |                                                |              |               |                     |
|-------------------------------|------------------------------------------------|---------------|---------------|----------------------|-----|-------------------------------|------------------------------------------------|--------------|---------------|---------------------|
| Munituring Parind<br>End Data | Peremeter                                      | DHR<br>Talus  | Limit<br>Unit | Statistic<br>al Bare |     | Munituring<br>Parind End Data | Peremeter                                      | DHR<br>Telus | Limit<br>Unit | Statistical<br>Base |
| 01/31/2016                    | BOD, 5-day, 20 daq. C                          | 11.1          | mq/L          | M0 AVG               | , i | 01/31/2017                    | BOD, 5-day, 20 daq. C                          | <b>\$.2</b>  | m-q#L         | M0 AVG              |
| 01/31/2016                    | BOD, 5-day, 20 deq. C                          | 12.3          | mqfL          | WKLYAVG              |     | 01/31/2017                    | B0D, 5-day, 20 deq. C                          | 10.6         | mqfL          | WKLYAVG             |
| 01/31/2016                    | BOD, 5-day, 20 deq. C                          | 14.8          | mqfL          | DAILYMX              |     | 01/31/2017                    | BOD, 5-day, 20 daq. C                          | 10.9         | mq/L          | DAILYMX             |
| 01/31/2016                    | BOD, 5-day, 20 deq. C                          | 16.5          | 1944          | M0 AVG               | 1   | 01/31/2017                    | BOD, 5-day, 20 da q. C                         | 15.2         | 1674          | M0 AVG              |
| 01/31/2016                    | BOD, 5-day, 20 deq. C                          | 31.4          | 1949          | WKLYAVG              |     | 01/31/2017                    | BOD, 5-day, 20 deq. C                          | 34.‡         | 1644          | WKLYAVG             |
| 02/29/2016                    | BOD, 5-day, 20 deq. C                          | 7.3           | m-qrL         | M0 AVG               | , i | 02/28/2017                    | BOD, 5-day, 20 deq. C                          | 6.6          | mq/L          | M0 AVG              |
| 02/29/2016                    | BOD, 5-day, 20 deq. C                          | 10.2          | m-q/L         | WKLYAVG              | 1   | 02/28/2017                    | BOD, 5-day, 20 deq. C                          | <b>*.5</b>   | mq/L          | WKLYAVG             |
| 02/29/2016                    | BOD, 5-day, 20 day, C                          | 11.7          | mqfL<br>Ib/d  | DAILYMX              | 1   | 02/2#/2017<br>02/2#/2017      | BOD, 5-day, 20 daq. C                          | \$.6         | mqfL<br>Ibfd  | DAILYMX             |
| 02/29/2016                    | BOD, 5-day, 20 day, C                          | 21.8          | 1674          | MO AVG<br>WKLY AVG   | , i | 02/28/2017                    | BOD, 5-day, 20 de q. C                         | 9.8          | 1674          | MO AVG<br>WKLY AVG  |
| 03/31/2016                    | BOD, 5-day, 20 deq. C<br>BOD, 5-day, 20 deq. C | 27.9<br>\$.4  | mq/L          | MOAVG                | 1   | 02/20/2017                    | BOD, 5-day, 20 daq. C<br>BOD, 5-day, 20 daq. C | 7.1          | mq/L          | MO AVG              |
| 03/31/2016                    | BOD, 5-day, 20 deq. C                          | 10.1          | mqrL<br>mqrL  | WKLYAVG              | 1 1 | 03/31/2017                    | BOD, 5-day, 20 de q. C                         | 1.1          | mqrL<br>mqrL  | WKLYAVG             |
| 03/31/2016                    | BOD, 5-day, 20 deq. C                          | 10.7          | mqrL<br>mqrL  | DAILYMX              | 1   | 03/31/2017                    | BOD,5-day,20 deq. C                            | 11.1         | mqrL<br>mqrL  | DAILYMX             |
| 03/31/2016                    | BOD, 5-day, 20 deq. C                          | 10.2          | 1644          | MOAVG                | 1 1 | 03/31/2017                    | BOD, 5-day, 20 deq. C                          | 15.1         | 1674          | MO AVG              |
| 03/31/2016                    | BOD, 5-day, 20 deq. C                          | 14.3          | 1644          | WKLYAVG              | 1 1 | 03/31/2017                    | B0D,5-day,20 deq. C                            | 20.4         | 1674          | WKLYAVG             |
| 04/30/2016                    | BOD, 5-day, 20 deq. C                          | 8.4           | mqfL          | M0 AVG               | 1 1 | 04/30/2017                    | BOD, 5-day, 20 daq. C                          | 5.9          | mq/L          | M0 AVG              |
| 04/30/2016                    | BOD, 5-day, 20 deq. C                          | 10.1          | mq/L          | WKLYAVG              | , i | 04/30/2017                    | BOD, 5-day, 20 daq. C                          | 6.9          | mqfL          | WKLYAVG             |
| 04/30/2016                    | BOD, 5-day, 20 deq. C                          | 10.5          | mqfL          | DAILYMX              |     | 04/30/2017                    | B0D, 5-day, 20 deq. C                          | 7.6          | mqfL          | DAILYMX             |
| 04/30/2016                    | BOD, 5-day, 20 deq. C                          | 9.1           | 1674          | M0 AVG               |     | 04/30/2017                    | BOD, 5-day, 20 deq. C                          | 17.7         | 1674          | M0 AVG              |
| 04/30/2016                    | BOD, 5-day, 20 deq. C                          | 15.8          | 1674          | WKLYAVG              |     | 04/30/2017                    | BOD, 5-day, 20 deq. C                          | 27.5         | 1674          | WKLYAVG             |
| 05/31/2016                    | BOD, 5-day, 20 deq. C                          | 9.3           | mqfL          | M0 AVG               |     |                               |                                                |              |               |                     |
| 05/31/2016                    | BOD, 5-day, 20 deq. C                          | 10.2          | mqfL          | WKLYAVG              |     |                               |                                                |              |               |                     |
| 05/31/2016                    | BOD, 5-day, 20 deq. C                          | 11.8          | m-q/L         | DAILYMX              |     |                               |                                                |              |               |                     |
| 05/31/2016                    | BOD, 5-day, 20 deq. C                          | 5.8           | 1944          | M0 AVG               |     |                               |                                                |              |               |                     |
| 05/31/2016                    | BOD, 5-day, 20 deq. C                          | 7.3           | 1674          | WKLYAVG              |     |                               |                                                |              |               |                     |
| 06/30/2016                    | BOD, 5-day, 20 deq. C                          | 6.8           | m-qrL         | MOAVG                |     |                               |                                                |              |               |                     |
| 06/30/2016                    | BOD, 5-day, 20 deq. C                          | \$.2<br>A.2   | m-q/L         | WKLYAVG<br>DAILYMX   | •   |                               |                                                |              |               |                     |
| 06/30/2016                    | BOD, 5-day, 20 deq. C<br>BOD, 5-day, 20 deq. C | 9.3           | mqfL<br>Ib/d  | MO AVG               |     |                               |                                                |              |               |                     |
| 06/30/2016                    | BOD, 5-day, 20 deq. C<br>BOD, 5-day, 20 deq. C | 5.7           | 1674          | WKLYAVG              |     |                               |                                                |              |               |                     |
| 07/31/2016                    | BOD, 5-day, 20 deq. C                          | 7.4           | mq/L          | MOAVG                |     |                               |                                                |              |               |                     |
| 07/31/2016                    | BOD, 5-day, 20 deq. C                          | 7.8           | mqrL<br>mqrL  | WKLYAVG              | •   |                               |                                                |              |               |                     |
| 07/31/2016                    | BOD, 5-day, 20 deq. C                          | 8.7           | mqfL          | DAILYMX              |     |                               |                                                |              |               |                     |
| 07/31/2016                    | BOD, 5-day, 20 deq. C                          | 3.7           | 1944          | M0 AVG               |     |                               |                                                |              |               |                     |
| 07/31/2016                    | BOD, 5-day, 20 deq. C                          | 4.0           | 1944          | WKLYAVG              |     |                               |                                                |              |               |                     |
| 0\$/31/2016                   | BOD, 5-day, 20 dag, C                          | 6.5           | mqfL          | MOAVG                |     |                               |                                                |              |               |                     |
| 08/31/2016                    | BOD, 5-day, 20 deq. C                          | 8.6           | mqfL          | WKLYAVG              |     |                               |                                                |              |               |                     |
| 08/31/2016                    | BOD, 5-day, 20 deq. C                          | 9.5           | mqfL          | DAILYMX              |     |                               |                                                |              |               |                     |
| 0\$/31/2016                   | BOD, 5-day, 20 deq. C                          | 3.7           | 1674          | M0 AVG               |     |                               |                                                |              |               |                     |
| 08/31/2016                    | BOD, 5-day, 20 deq. C                          | 4.8           | 1644          | WKLYAVG              |     |                               |                                                |              |               |                     |
| 09/30/2016                    | BOD, 5-day, 20 deq. C                          | \$.5          | mqfL          | M0 AVG               |     |                               |                                                |              |               |                     |
| 09/30/2016                    | BOD, 5-day, 20 deq. C                          | 11.0          | mqfL          | WKLYAVG              |     |                               |                                                |              |               |                     |
| 09/30/2016                    | BOD, 5-day, 20 deq. C                          | 11.5          | mqfL          | DAILYMX              |     |                               |                                                |              |               |                     |
| 09/30/2016                    | BOD, 5-day, 20 daq. C                          | 4.4<br>5.6    | 1944          | MO AVG<br>WKLY AVG   |     |                               |                                                |              |               |                     |
| 10/31/2016                    | BOD, 5-day, 20 deq. C<br>BOD, 5-day, 20 deq. C | 5.6<br>\$.7   | m-qr'L        | MOAVG                |     |                               |                                                |              |               |                     |
| 10/31/2016                    | BOD, 5-day, 20 deq. C<br>BOD, 5-day, 20 deq. C | 9.9           | mqrL<br>mqrL  | WKLY AVG             | •   |                               |                                                |              |               |                     |
| 10/31/2016                    | BOD, 5-day, 20 deq. C                          | 11.0          | mqrL<br>mqrL  | DAILYMX              | •   |                               |                                                |              |               |                     |
| 10/31/2016                    | BOD, 5-day, 20 deq. C                          | 3.7           | mqrL<br>Ib/d  | MOAVG                |     |                               |                                                |              |               |                     |
| 10/31/2016                    | BOD, 5-day, 20 deq. C<br>BOD, 5-day, 20 deq. C | 4.9           | 1674          | WKLYAVG              | •   |                               |                                                |              |               |                     |
| 11/30/2016                    | BOD, 5-day, 20 deq. C                          | 9.3           | mq/L          | MOAVG                | 1   |                               |                                                |              |               |                     |
| 11/30/2016                    | BOD, 5-day, 20 deq. C                          | 10.9          | mqrL<br>mqrL  | WKLYAVG              | 1   |                               |                                                |              |               |                     |
| 11/30/2016                    | BOD, 5-day, 20 deq. C                          | 13.4          | m-qrL         | DAILYMX              | 1   |                               |                                                |              |               |                     |
| 11/30/2016                    | BOD, 5-day, 20 deq. C                          | 4.5           | 1674          | M0 AVG               |     |                               |                                                |              |               |                     |
| 11/30/2016                    | BOD, 5-day, 20 deq. C                          | 4.8           | 1674          | WKLYAVG              |     |                               |                                                |              |               |                     |
| 12/31/2016                    | BOD, 5-day, 20 deq. C                          | 11.2          | mqfL          | M0 AVG               |     |                               |                                                |              |               |                     |
| 12/31/2016                    | BOD, 5-day, 20 deq. C                          | 12.3          | mqfL          | WKLYAVG              |     |                               |                                                |              |               |                     |
| 12/31/2016                    | BOD, 5-day, 20 deq. C                          | 12.5          | mq/L          | DAILYMX              |     |                               |                                                |              |               |                     |
| 12/31/2016                    | BOD, 5-day, 20 daq. C                          | 19.3          | 1644          | MOAVG                |     |                               |                                                |              |               |                     |
| 12/31/2016                    | BOD, 5-day, 20 daq. C                          | 27.#          | 1674          | WKLYAVG              |     |                               |                                                |              |               |                     |
|                               |                                                |               |               |                      |     |                               |                                                |              |               |                     |

| Munituring  | Parameter | DMR   | Limit | Statistical | Munituring               | Pereme    | DMR   | Limit | Statist | Manitaring                                                       | DMR     | Limit | Statistic          | Munituring  |                         | DMR   | Limit | Statisti      |
|-------------|-----------|-------|-------|-------------|--------------------------|-----------|-------|-------|---------|------------------------------------------------------------------|---------|-------|--------------------|-------------|-------------------------|-------|-------|---------------|
| Perind End  |           | Talse | Unit  | Bere        | Parind End               | ter       | Talus | Unit  | ical    | Perind End Peremeter                                             | Tales   | Unit  | al Bara            | Parind End  | Peremeter               | Talus | Unit  | Bere          |
| 06/30/2013  | pН        | 6.0   | SU    | MINIMUM     | 01/31/2015               | pН        | 6.8   | SU    | MINIMUM | 06/30/2013 Salids, tatalsuspon                                   |         | mq/L  | M0 AVG             | 01/31/2014  | Salids, tatals usponded | 3.*   | mqfL  | MOA           |
| 06/30/2013  | pН        | 7.4   | SU    | MAXIMUM     | 01/31/2015               | pН        | 7.6   | SU    | MAXIMUM | •6/30/2013 Salida, tatal surpon                                  |         | mq/L  | WKLYAVG            | 01/31/2014  | Salidz, tatal zwrpondod | 4.7   | mqfL  | WKLY          |
| 07/31/2013  | pН        | 7.1   | SU    | MINIMUM     | 02/2#/2015               | pН        | 7.2   | SU    | MINIMUM | 06/30/2013 Salids, tatalsuspon                                   |         | mqfL  | DAILYMX            | 01/31/2014  | Salids, tatals usponded | 5.2   | mqfL  | DAIL          |
| 07/31/2013  | pН        | 7.6   | SU    | MAXIMUM     | 02/2\$/2015              | pН        | 7.5   | SU    | MAXIMUM | 06/30/2013 Salidr, tatalsurpon                                   |         | 1944  | MOAVG              | 01/31/2014  | Salidr, tatal surpended | 7.5   | 1944  | MOA           |
| 0#/31/2013  | pН        | 6.9   | SU    | MINIMUM     | 03/31/2015               | pΗ        | 7.2   | SU    | MINIMUM | 06#30#2013 Salids, tatalsuspon                                   |         | 1644  | WKLYAVG            | 01/31/2014  | Salids, tatals usponded | 17.2  | 1674  | WKLY          |
| 0\$/31/2013 | pН        | 7.7   | SU    | MAXIMUM     | 03/31/2015               | pН        | 7.7   | SU    | MAXIMUM | •7/31/2•13 Salidr, tatalsurpon                                   |         | mq/L  | MOAVG              | 02/28/2014  | Salidr, tatal surpended | 3.7   | mq/L  | MOA           |
| 09/30/2013  | pН        | 6.5   | SU    | MINIMUM     | 04/30/2015               | pН        | 7.3   | SU    | MINIMUM | 07/31/2013 Salidr, tatalsurpon                                   |         | mqfL  | WKLYAVG            | 02/2#/2014  | Salidr, tatalsurpended  | 4.4   | mqfL  | WKLY          |
| 09/30/2013  | pН        | 7.2   | SU    | MAXIMUM     | 04/30/2015               | pН        | 7.7   | SU    | MAXIMUM | 97/31/2013 Salidr, tatalsurpon                                   |         | mq/L  | DAILYMX            | 02/28/2014  | Salidr, tatal surponded | 6.2   | mq/L  | DAIL          |
| 10/31/2013  | pН        | 6.5   | SU    | MINIMUM     | 05/31/2015               | pН        | 6.8   | SU    | MINIMUM | 07/31/2013 Salidr, tatalsurpon                                   |         | 1644  | M0 AVG             | 02/2#/2014  | Salidr, tatalsurpended  | 9.7   | 1644  | MOA           |
| 10/31/2013  | pН        | 7.0   | SU    | MAXIMUM     | 05/31/2015               | pН        | 7.3   | SU    | MAXIMUM | •7/31/2•13 Salids, tatalsuspon                                   |         | 1944  | WKLYAVG            | 02/28/2014  | Salidr, tatal surponded | 13.1  | 1644  | WKLY          |
| 11/30/2013  | pН        | 6.5   | SU    | MINIMUM     | 06/30/2015               | pН        | 6.7   | SU    | MINIMUM | 0\$#31#2013 Salidr, tatalsurpon                                  |         | mqfL  | MOAVG              | 03/31/2014  | Salidr, tatalsurpended  | 2.9   | mqfL  | MOA           |
| 11/30/2013  | pН        | 7.0   | SU    | MAXIMUM     | 06/30/2015               | pН        | 7.4   | SU    | MAXIMUM | 0\$/31/2013 Salidr, tatals urpon                                 |         | mq/L  | WKLYAVG            | 03/31/2014  | Salidr, tatal surponded | 4.3   | mqfL  | WKLY          |
| 12/31/2013  | pН        | 6.5   | SU    | MINIMUM     | 07/31/2015               | pН        | 7.0   | SU    | MINIMUM | 0\$#31#2013 Salidr, tatalsurpon                                  |         | mq/L  | DAILYMX            | 03/31/2014  | Salids, tatalsuspended  | 4.9   | mq/L  | DAIL          |
| 12/31/2013  | pН        | 7.5   | SU    | MAXIMUM     | 07/31/2015               | pН        | 7.5   | SU    | MAXIMUM | 0\$/31/2013 Salidr, tatals urpon                                 |         | 1944  | MO AVG<br>WKLY AVG | 03/31/2014  | Salidr, tatal surponded | 3.#   | 1944  | MOA           |
| 01/31/2014  | pΗ        | 6.8   | SU    | MINIMUM     | 0\$/31/2015              | pН        | 7.0   | SU    |         | 0\$#31#2013 Salidr,tatalsurpon                                   |         | 1944  |                    | 03/31/2014  | Salids, tatalsuspended  | 6.5   | 1674  | WKLY          |
| 01/31/2014  | pН        | 7.4   | SU    | MAXIMUM     | 0\$/31/2015              | pН        | 7.6   | SU    | MAXIMUM | 99/39/2013 Salidr, tatal surpon                                  |         | mq/L  | MOAVG              | 04/30/2014  | Salidr, tatal surponded | 2.9   | mqfL  | MOA           |
| 02/2#/2014  | pH        | 7.1   | SU    | MINIMUM     | 09/30/2015               | pН        | 7.0   | SU    | MINIMUM | 99/39/2013 Salidr, tatalsurpon                                   |         | mqfL  | WKLYAVG<br>DAILVMX | 04/30/2014  | Salide, tatalsuspended  | 4.5   | mqfL  | DAILY         |
| 02/2#/2014  | pН        | 7.5   | SU    |             | 09/30/2015               | pH<br>- H | 7.5   | SU    |         | 99/39/2013 Salidr, tatal surpon                                  |         | mq/L  | D711011111         | 04/30/2014  | Salidr, tatal surpended | 6.6   | mqfL  | _             |
| 03/31/2014  | pΗ        | 6.6   | SU    | MINIMUM     | 10/31/2015               | pН        | 7.3   | SU    | MINIMUM | 99/39/2013 Salidr, tatalsurpon                                   | _       | 1944  | MOAVG              | 04/30/2014  | Salids, tatalsuspended  | 4.6   | 1644  | MOA           |
| 03/31/2014  | pΗ        | 7.2   | SU    | MAXIMUM     | 10/31/2015               | pН        | 7.6   | SU    | MAXIMUM | 99/39/2013 Salidr, tatalsurpon                                   |         | 1944  | WKLYAVG            | 04/30/2014  | Salids, tatalsuspended  | 10.6  | 1644  | WKLY          |
| 04/30/2014  | pН        | 6.6   | SU    | MINIMUM     | 11/30/2015               | pН        | 7.0   | SU    | MINIMUM | 10/31/2013 Salidr, tatals urpon                                  |         | mq/L  | M0 AVG             | 05/31/2014  | Salidr, tatalsurpended  | 3.6   | mqfL  | MOA           |
| 04/30/2014  | pН        | 7.2   | SU    | MAXIMUM     | 11/30/2015               | pН        | 7.7   | SU    | MAXIMUM | 10/31/2013 Salidr, tatalsurpon                                   |         | mq/L  | WKLYAVG            | 05/31/2014  | Salidr, tatal surponded | 6.3   | mq/L  | WKLY          |
| 05/31/2014  | pН        | 7.1   | SU    | MINIMUM     | 12/31/2015               | pН        | 7.2   | SU    | MINIMUM | 10/31/2013 Salida, tatala urpon                                  |         | mqfL  | DAILYMX            | 05/31/2014  | Salidr, tatalsurpended  | 7.5   | mqfL  | DAIL          |
| 05/31/2014  | pН        | 7.4   | SU    | MAXIMUM     | 12/31/2015               | pН        | 7.4   | SU    | MAXIMUM | 10/31/2013 Salidr, tatalsurpon                                   |         | 1674  | MOAVG              | 05/31/2014  | Salidr, tatal surponded | 3.5   | 1644  | MOA           |
| 06/30/2014  | pН        | 6.5   | SU    | MINIMUM     | 01/31/2016               | pΗ        | 7.2   | SU    | MINIMUM | 10/31/2013 Salids, tatalsuspon                                   |         | 1644  | WKLYAVG            | 05/31/2014  | Salids, tatals uspended | 7.#   | 1674  | WKLY          |
| 06/30/2014  | pН        | 7.2   | SU    | MAXIMUM     | 01/31/2016               | pН        | 7.5   | SU    | MAXIMUM | 11/30/2013 Salidr, tatalsurpon                                   |         | mqfL  | MOAVG              | 06/30/2014  | Salidr, tatalzurpondod  | 2.7   | mqfL  | MOA           |
| 07/31/2014  | pН        | 6.3   | SU    | MINIMUM     | 02/29/2016               | pН        | 7.3   | SU    | MINIMUM | 11/30/2013 Salidr, tatalsurpon                                   |         | mqfL  | WKLYAVG            | 06/30/2014  | Salidr, tatalsurpended  | 2.9   | mqfL  | WKLY          |
| 07/31/2014  | pН        | 7.3   | SU    | MAXIMUM     | 02/29/2016               | pН        | 7.5   | SU    | MAXIMUM | 11/30/2013 Salidr, tatalsurpon                                   |         | mqfL  | DAILYMX            | 06/30/2014  | Salids, tatals usponded | 3.9   | mq/L  | DAIL          |
| 01/31/2014  | pН        | 6.2   | SU    | MINIMUM     | 03/31/2016               | pН        | 7.0   | SU    | MINIMUM | 11/30/2013 Salidr, tatalsurpon                                   |         | 1644  | M0 AVG             | 06/30/2014  | Salids, tatalsuspended  | 2.6   | 1644  | MOA           |
| 0\$/31/2014 | pН        | 7.4   | SU    | MASIMUM     | 03/31/2016               | pН        | 7.5   | SU    | MAXIMUM | 11/30/2013 Salidr, tatals urpon                                  |         | 1944  | WKLYAVG            | 06/30/2014  | Salidr, tatal surponded | 2.2   | 1944  | WKLY          |
| 09/30/2014  | pΗ        | 6.8   | SU    |             | 04/30/2016               | pН        | 7.0   | SU    |         | 12/31/2013 Salidr, tatals urpon                                  |         | mq/L  | MOAVG              | 07/31/2014  | Salids, tatalsuspended  | 1.5   | mqfL  | MOA           |
| 09/30/2014  | pН        | 7.4   | SU    | MAXIMUM     | 04/30/2016               | pН        | 7.5   | SU    | MAXIMUM | 12/31/2013 Salidr, tatal surpon                                  |         | mq/L  | WKLYAVG            | 07/31/2014  | Salidr, tatal surponded | 2.3   | mq/L  | WKLY          |
| 10/31/2014  | pΗ        | 6.7   | SU    | MINIMUM     | 05/31/2016<br>05/31/2016 | pН        | 7.2   | SU    | MINIMUM | 12/31/2013 Solids, totalsuspen<br>12/31/2013 Solids, totalsuspen |         | mqfL  | DAILYMX<br>MO AVG  | 07/31/2014  | Salids, tatalsuspended  | 2.9   | mqfL  | DAIL1<br>MO A |
|             | pН        | 7.4   |       |             |                          | pН        | 7.6   |       |         |                                                                  |         | 1944  |                    | 07/31/2014  | Salidr, tatal surpended | 1.3   | 1944  | _             |
| 11/30/2014  | pН        | 6.7   | SU    | MINIMUM     | 06/30/2016               | pН        | 6.7   | SU    | MINIMUM | 12/31/2013 Salidr, tatalsuspon                                   | od 22.3 | 1944  | WKLYAVG            | 07/31/2014  | Salidr, tatalzurpended  | 2.2   | 1944  | WKLY          |
| 11/30/2014  | pН        | 7.5   | SU    | MAXIMUM     | 06/30/2016               | pН        | 7.2   | SU    | MAXIMUM |                                                                  |         |       |                    | 0#/31/2014  | Salidz, tatal surpondod | 2.2   | mq/L  | MOA           |
| 12/31/2014  | pН        | 7.0   | SU    | MINIMUM     | 07/31/2016               | pН        | 6.3   | SU    | MINIMUM |                                                                  |         |       |                    | 0#/31/2014  | Salidr, tatalsurpended  | 2.\$  | mqfL  | WKLY          |
| 12/31/2014  | pН        | 7.3   | SU    | MAXIMUM     | 07/31/2016               | pН        | 7.4   | SU    | MAXIMUM |                                                                  |         |       |                    | 0#/31/2014  | Salidr, tatalsurpended  | 3.6   | mqfL  | DAIL          |
|             |           |       |       |             | 0#/31/2016               | pΗ        | 6.1   | SU    | MINIMUM |                                                                  |         |       |                    | 0#/31/2014  | Salidr, tatalsusponded  | 2.2   | 1674  | MOA           |
|             |           |       |       |             | 0\$/31/2016              | pН        | 7.1   | SU    | MAXIMUM |                                                                  |         |       |                    | 0\$/31/2014 | Salidr, tatalzurpended  | 4.2   | 1674  | WKLY          |
|             |           |       |       |             | 09/30/2016               | pН        | 6.1   | SU    | MINIMUM |                                                                  |         |       |                    | 09/30/2014  | Salidr, tatalsuspondod  | 1.7   | mq/L  | MO            |
|             |           |       |       |             | 09/30/2016               | pН        | 6.6   | SU    | MAXIMUM |                                                                  |         |       |                    | 09/30/2014  | Salidr, tatalsurpended  | 2.9   | mq/L  | WKLY          |
|             |           |       |       |             | 10/31/2016               | pН        | 6.0   | SU    | MINIMUM |                                                                  |         |       |                    | 09/30/2014  | Salidr, tatalsuspended  | 4.0   | mqfL  | DAIL          |
|             |           |       |       |             | 10/31/2016               | pН        | 7.0   | SU    | MAXIMUM |                                                                  |         |       |                    | 09/30/2014  | Salidr, tatalsurpended  | 2.1   | 1674  | MO            |
|             |           |       |       |             | 11/30/2016               | pΗ        | 6.0   | SU    | MINIMUM |                                                                  |         |       |                    | 09/30/2014  | Salids, tatals usponded | 5.7   | 1674  | WKLY          |
|             |           |       |       |             | 11/30/2016               | pН        | 6.6   | SU    | MAXIMUM |                                                                  |         |       |                    | 10/31/2014  | Salidr, tatalsurpended  | 2.0   | mq/L  | MO            |
|             |           |       |       |             | 12/31/2016               | pН        | 6.5   | SU    | MINIMUM |                                                                  |         |       |                    | 10/31/2014  | Salidr, tatalsuspended  | 2.4   | mqfL  | WKL           |
|             |           |       |       |             | 12/31/2016               | pН        | 7.2   | SU    | MAXIMUM |                                                                  |         |       |                    | 10/31/2014  | Salidr, tatalsurpondod  | 3.1   | mq/L  | DAIL          |
|             |           |       |       |             | 01/31/2017               | pН        | 6.7   | SU    | MINIMUM |                                                                  |         |       |                    | 10/31/2014  | Salids, tatals usponded | 2.4   | 1674  | Mo            |
|             |           |       |       |             | 01/31/2017               | pН        | 7.3   | SU    | MAXIMUM |                                                                  |         |       |                    | 10/31/2014  | Salidr, tatalsurpondod  | 5.9   | 1674  | WKL           |
|             |           |       |       |             | 02/2#/2017               | pН        | 7.2   | SU    | MINIMUM |                                                                  |         |       |                    | 11/30/2014  | Salids, tatals usponded | 1.7   | mq/L  | Mo            |
|             |           |       |       |             | 02/2\$/2017              | pН        | 7.7   | SU    | MAXIMUM |                                                                  |         |       |                    | 11/30/2014  | Salidr, tatal surponded | 3.6   | mq/L  | WKL           |
|             |           |       |       |             | 03/31/2017               | pН        | 6.8   | SU    | MINIMUM |                                                                  |         |       |                    | 11/30/2014  | Salids, tatals uspended | 4.0   | mq/L  | DAIL          |
|             |           |       |       |             | 03/31/2017               | pН        | 7.2   | SU    | MAXIMUM |                                                                  |         |       |                    | 11/30/2014  | Salidr, tatalsurpondod  | 1.3   | 1674  | MO            |
|             |           |       |       |             | 04/30/2017               | pН        | 7.0   | SU    | MINIMUM |                                                                  |         |       |                    | 11/30/2014  | Salidr, tatalsuspended  | 2.0   | 1674  | WKL           |
|             |           |       |       |             | 04/30/2017               | pН        | 7.4   | SU    | MAXIMUM |                                                                  |         |       |                    | 12/31/2014  | Salids, tatals uspended | 2.0   | mq/L  | MO            |
|             |           |       |       |             |                          |           |       |       |         |                                                                  |         |       |                    | 12/31/2014  | Salidr, tatalsuspondod  | 2.9   | mqfL  | WKL           |
|             |           |       |       |             |                          |           |       |       |         |                                                                  |         |       |                    | 12/31/2014  | Salidr, tatal zurpondod | 3.5   | mq/L  | DAIL          |
|             |           |       |       |             |                          |           |       |       |         |                                                                  |         |       |                    | 12/31/2014  | Salidr, tatalsurpended  | 3.0   | 1674  | MO            |
|             |           |       |       |             |                          |           |       |       |         |                                                                  |         |       |                    | 12/31/2014  | Salids, tatals usponded | 6.4   | 1674  | WKLY          |
|             |           |       |       |             |                          |           |       |       |         |                                                                  |         |       |                    |             |                         |       |       |               |

|   | Munituring<br>Parind End | Peremeter               | DMR<br>Talus | Limit | Statirti<br>cal Bara |
|---|--------------------------|-------------------------|--------------|-------|----------------------|
|   | 01/31/2015               | Salidr, tatalsusponded  | 2.9          | mark  | MOAVG                |
|   | 01/31/2015               | Salidr, tatalzurpondod  | 4.5          | mg/L  | WKLYAVG              |
|   | 01/31/2015               | Salidr, tatalsuspended  | 6.2          | mqfL  | DAILYMX              |
|   | 01/31/2015               | Salidr, tatal surponded | 5.3          | 1674  | MOAVG                |
|   | 01/31/2015               | Salids, tatals uspended | 9.0          | 1674  | WKLYAVG              |
|   | 02/2#/2015               | Salidr, tatal surponded | 3.2          | mqfL  | MOAVG                |
|   | 02/22/2015               | Salidr, tatalsuspended  | 5.0          | mqfL  | WKLYAVG              |
|   | 02/22/2015               | Salidr, tatal surponded | 9.1          | mark  | DAILYMX              |
|   | 02/28/2015               | Salidr, tatals uspended | 5.9          | 1644  | MOAVG                |
|   | 02/21/2015               | Salidr, tatal surpended | 9.9          | 1674  | WKLYAVG              |
|   | 03/31/2015               | Salidr, tatalzurpondod  | 2.1          | mq/L  | M0 AVG               |
|   | 03/31/2015               | Salidr, tatal surponded | 3.1          | mark  | WKLYAVG              |
|   | 03/31/2015               | Salidr, tatal surpended | 5.2          | marL  | DAILYMX              |
|   | 03/31/2015               | Salidr, tatal surponded | 6.6          | 1674  | M0 AVG               |
|   | 03/31/2015               | Salidr, tatals urponded | 12.2         | 1674  | WKLYAVG              |
|   | 04/30/2015               | Salidr, tatalsurpended  | 2.3          | mqfL  | M0 AVG               |
|   | 04/30/2015               | Salidr, tatalzurpondod  | 3.2          | mg/L  | WKLY AVG             |
|   | 04/30/2015               | Salidr, tatalsuspended  | 5.9          | mqfL  | DAILYMX              |
|   | 04/30/2015               | Salidr, tatal surponded | 4.9          | 1674  | MOAVG                |
|   | 04/30/2015               | Salidr, tatal surpended | 9.6          | 1674  | WKLYAVG              |
|   | 05/31/2015               | Salidr, tatals uspended | 1.#          | mq/L  | MOAVG                |
| _ | 05/31/2015               | Salidr, tatalsuspended  | 2.3          | mqfL  | WKLYAVG              |
|   | 05/31/2015               | Solidr, total surpended | 3.1          | mq/L  | DAILYMX              |
|   | 05/31/2015               | Salidr, tatal surpended | 1.3          | 1674  | M0 AVG               |
|   | 05/31/2015               | Salidr, tatal surponded | 1.7          | 1674  | WKLYAVG              |
|   | 06/30/2015               | Salidr, tatalsuspended  | 1.5          | mqfL  | MOAVG                |
|   | 06/30/2015               | Salidr, tatal surponded | 1.#          | marL  | WKLYAVG              |
|   | 06/30/2015               | Salidr, tatalzurpondod  | 2.6          | mqfL  | DAILYMX              |
|   | 06/30/2015               | Salidr, tatal rurpondod | 0.9          | 1674  | MOAVG                |
|   | 06/30/2015               | Salids, tatals usponded | 0.9          | 1674  | WKLY AVG             |
|   | 07/31/2015               | Salidr, tatalzurpondod  | 1.5          | mqfL  | MOAVG                |
|   | 07/31/2015               | Salids, tatals usponded | 2.1          | mg/L  | WKLY AVG             |
|   | 07/31/2015               | Salidr, tatals urponded | 2.6          | mqfL  | DAILYMX              |
|   | 07/31/2015               | Salidr, tatals urponded | 3.3          | 1644  | M0 AVG               |
|   | 07/31/2015               | Salids, tatals usponded | \$.7         | 1674  | WKLY AVG             |
|   | 01/31/2015               | Salidr, tatalsusponded  | 1.9          | mq/L  | M0 AVG               |
|   | 0#/31/2015               | Salidr, tatal surponded | 2.\$         | mg/L  | WKLY AVG             |
|   | 02/31/2015               | Salidr, tatal surpended | 4.4          | mq/L  | DAILYMX              |
|   | 02/31/2015               | Salidr, tatals uspended | 2.9          | 1664  | MOAVG                |
| - | 0#/31/2015               | Solidr, total surpended | \$.5         | 1644  | WKLYAVG              |
|   | 09/30/2015               | Solidr, total surpended | 1.4          | mq/L  | MOAVG                |
|   | 09/30/2015               | Salidr, tatalsuspended  | 2.5          | mqfL  | WKLYAVG              |
|   | 09/30/2015               | Solidr, total surpended | 3.6          | mark  | DAILYMX              |
|   | 09/30/2015               | Salidr, tatalsuspended  | 1.7          | 1644  | MOAVG                |
|   | 09/30/2015               | Salidr, tatal surponded | 4.4          | 1644  | WKLYAVG              |
|   | 10/31/2015               | Salidr, tatalsuspended  | 1.2          | mqfL  | M0 AVG               |
|   | 10/31/2015               | Salidr, tatal surponded | 1.#          | mqfL  | WKLYAVG              |
|   | 10/31/2015               | Salidr, tatals urpended | 2.6          | mqfL  | DAILYMX              |
|   | 10/31/2015               | Salidr, tatals urponded | 1.7          | 1644  | M0 AVG               |
|   | 10/31/2015               | Salidr, tatals urpended | 3.2          | 1644  | WKLYAVG              |
|   | 11/30/2015               | Salidr, tatalsurpended  | 2.3          | mqfL  | M0 AVG               |
|   | 11/30/2015               | Salidr, tatals urponded | 3.0          | mq/L  | WKLY AVG             |
|   | 11/30/2015               | Salidr, tatalsurpended  | 4.4          | mqfL  | DAILYMX              |
|   | 11/30/2015               | Salidr, tatals urponded | 5.0          | 1644  | M0 AVG               |
|   | 11/30/2015               | Salidr, tatalsurpended  | <b>\$.2</b>  | 1644  | WKLYAVG              |
|   | 12/31/2015               | Salidr, tatal surpended | 1.9          | mq/L  | M0 AVG               |
|   | 12/31/2015               | Salidr, tatal surponded | 2.9          | mq/L  | WKLYAVG              |
|   | 12/31/2015               | Salidr, tatals uspended | 3.6          | mq/L  | DAILYMX              |
|   | 12/31/2015               | Salidr, tatal surponded | 6.6          | 1644  | MOAVG                |
|   | 12/31/2015               | Salidr, tatal surpended | 16.1         | 1644  | WKLYAVG              |
| _ |                          | present a pondo         |              |       |                      |

| Munituring |                                                    | DMR   | Limit        | Statistic          |   |
|------------|----------------------------------------------------|-------|--------------|--------------------|---|
| Parind End | Parameter                                          | Talus | Unit         | al Bara            |   |
| 01/31/2016 | Salidr, tatal surpended                            | 3.3   | mq/L         | M0 AVG             |   |
| 01/31/2016 | Salidr, tatal surpended                            | 7.3   | mqfL         | WKLYAVG            |   |
| 01/31/2016 | Salids, tatalsuspended                             | 10.0  | mqfL         | DAILYMX            |   |
| 01/31/2016 | Salidr, tatalsuspended                             | 7.0   | 1944         | MOAVG              | _ |
| 01/31/2016 | Salids, tatalsuspended                             | 1#.1  | 1944         | WKLYAVG            |   |
| 02/29/2016 | Salidr, tatal surpended                            | 2.0   | mqfL         | MO AVG<br>WKLY AVG |   |
| 02/29/2016 | Salidr, tatal surpended<br>Salidr, tatal surpended | 4.9   | mq/L<br>mq/L | DAILYMX            | - |
| 02/29/2016 | Solida, total surpended                            | 5.5   | Ib/d         | MOAVG              | - |
| 02/29/2016 | Salidr, tatalsuspended                             | 11.3  | 1644         | WKLYAVG            |   |
| 03/31/2016 | Solids, totals uspended                            | 1.4   | mq/L         | MOAVG              |   |
| 03/31/2016 | Salidr, tatal surpended                            | 2.1   | mqfL         | WKLYAVG            |   |
| 03/31/2016 | Salids, tatals uspended                            | 2.3   | marL         | DAILYMX            |   |
| 03/31/2016 | Salidr, tatal surpended                            | 1.#   | 1644         | M0 AVG             |   |
| 03/31/2016 | Salidr, tatal surpended                            | 2.7   | 1674         | WKLYAVG            |   |
| 04/30/2016 | Salidr, tatal surpended                            | 1.4   | mqfL         | M0 AVG             |   |
| 04/30/2016 | Salidr, tatal surpended                            | 1.9   | mq/L         | WKLYAVG            |   |
| 04/30/2016 | Salidr, tatal surpended                            | 2.1   | mqfL         | DAILYMX            |   |
| 04/30/2016 | Salidz, tatal zurpondod                            | 1.6   | 1644         | M0 AVG             |   |
| 04/30/2016 | Salidr, tatal surpended                            | 2.\$  | 1674         | WKLYAVG            |   |
| 05/31/2016 | Salidr, tatal surpended                            | 1.6   | mq/L         | MOAVG              |   |
| 05/31/2016 | Salids, tatalsuspended                             | 2.3   | mqfL         | WKLYAVG            |   |
| 05/31/2016 | Salidr, tatal surpended                            | 2.\$  | mqfL         | DAILYMX            |   |
| 05/31/2016 | Salidr, tatal surpended                            | 1.1   | 1644         | M0 AVG             |   |
| 05/31/2016 | Salidr, tatalsuspended                             | 1.3   | 1644         | WKLYAVG            |   |
| 06/30/2016 | Salids, tatalsuspended                             | 2.4   | mqfL         | MOAVG              |   |
| 06/30/2016 | Salidz, tatalzurpondod                             | 2.7   | mq/L         | WKLYAVG            | _ |
| 06/30/2016 | Salidr, tatal surpended<br>Salidr, tatal surpended | 3.0   | mq/L<br>Ik/A | DAILYMX<br>MOAVG   | - |
| 06/30/2016 | Solids, totalsuspended Solids, totalsuspended      | 3.7   | Ib44         | WKLYAVG            | _ |
| 07/31/2016 | Solide, total surpended                            | 2.3   | mark         | MOAVG              |   |
| 07/31/2016 | Salidr, tatalsuspended                             | 3.1   | mark         | WKLYAVG            |   |
| 07/31/2016 | Salidr, tatal surpended                            | 4.3   | mqfL         | DAILYMX            |   |
| 07/31/2016 | Salidr, tatal surpended                            | 1.2   | 1674         | MOAVG              |   |
| 07/31/2016 | Salidr, tatal surpended                            | 1.5   | 1674         | WKLYAVG            |   |
| 0#/31/2016 | Salidr, tatalsuspended                             | 2.7   | mqfL         | MOAVG              |   |
| 0#/31/2016 | Salidr, tatal surpended                            | 4.9   | mqfL         | WKLYAVG            |   |
| 0#/31/2016 | Salidr, tatalsuspended                             | 5.6   | mq/L         | DAILYMX            |   |
| 0#/31/2016 | Salidr, tatal surpended                            | 1.5   | 1674         | MOAVG              |   |
| 0#/31/2016 | Salidr, tatal surpended                            | 3.0   | 1674         | WKLYAVG            |   |
| 09/30/2016 | Salidr, tatal surpended                            | 1.5   | mq/L         | M0 AVG             |   |
| 09/30/2016 | Salidr, tatal surpended                            | 2.0   | mqfL         | WKLYAVG            |   |
| 09/30/2016 | Salidr, tatalsuspended                             | 2.2   | mq/L         | DAILYMX            |   |
| 09/30/2016 | Salidr, tatalsuspended                             | 0.7   | 1944         | M0 AVG             |   |
| 09/30/2016 | Salidr, tatal surpended                            | 1.0   | 1944         | WKLYAVG            | L |
| 10/31/2016 | Salidr, tatalsuspended                             | 3.4   | mq/L         | MOAVG              | - |
| 10/31/2016 | Salidz, tatalzurpondod                             | 9.4   | mqfL         | WKLYAVG<br>DAILYMX | _ |
| 10/31/2016 | Salidr, tatals uspended                            | 1.4   | mq/L<br>Ib/d | MOAVG              | - |
| 10/31/2016 | Salidr, tatal suspended<br>Salids, tatal suspended | 2.8   | 1644         | WKLYAVG            |   |
| 11/30/2016 | Salidr, tatal surpended                            | 2.4   | mq/L         | MOAVG              |   |
| 11/30/2016 | Salidr, tatals uspended                            | 2.6   | mq/L         | WKLYAVG            |   |
| 11/30/2016 | Solids, totals uspended                            | 2.9   | mq/L         | DAILYMX            |   |
| 11/30/2016 | Solids, totals uspended                            | 1.0   | 1644         | MOAVG              |   |
| 11/30/2016 | Salidr, tatal surpended                            | 1.2   | 1644         | WKLYAVG            |   |
| 12/31/2016 | Salidr, tatal surpended                            | 1.#   | mqfL         | MOAVG              |   |
| 12/31/2016 | Salidr, tatal rurpondod                            | 2.4   | mqfL         | WKLYAVG            |   |
| 12/31/2016 | Salids, tatalsuspended                             | 3.0   | mqfL         | DAILYMX            |   |
| 12/31/2016 | Salidr, tatal surpended                            | 2.9   | 1644         | MOAVG              |   |
| 12/31/2016 | Salidr, tatals urponded                            | 4.9   | 16441        | WKLYAVG            |   |

| Munituring<br>Parind End | Parameter               | DMR<br>Talas | Limit<br>Unit | Statistic<br>al Base |
|--------------------------|-------------------------|--------------|---------------|----------------------|
| 01/31/2017               | Salidr, tatalsuspended  | 1.9          | mqfL          | M0 AVG               |
| 01/31/2017               | Salidr, tatal rurpondod | 3.0          | mq/L          | WKLYAVG              |
| 01/31/2017               | Salids, tatalsuspended  | 5.3          | mqfL          | DAILYMX              |
| 01/31/2017               | Salidr, tatal rurpondod | 3.3          | 1644          | M0 AVG               |
| 01/31/2017               | Salids, tatalsuspended  | 6.7          | 1674          | WKLYAVG              |
| 02/2#/2017               | Salidr, tatal rurpondod | 2.2          | mqfL          | M0 AVG               |
| 02/2#/2017               | Salidr, tatalsuspended  | 2.9          | mq/L          | WKLYAVG              |
| 02/2#/2017               | Salidr, tatal surpended | 3.2          | mqfL          | DAILYMX              |
| 02/28/2017               | Salidr, tatalsuspended  | 2.9          | 1674          | MOAVG                |
| 02/2#/2017               | Salidr, tatal surponded | 4.0          | 1644          | WKLYAVG              |
| 03/31/2017               | Salidr, tatal surpended | 1.9          | mq/L          | MOAVG                |
| 03/31/2017               | Salidr, tatal surponded | 2.6          | mqfL          | WKLYAVG              |
| 03/31/2017               | Salidr, tatal surpended | 3.0          | mq/L          | DAILY MX             |
| 03/31/2017               | Salidr, tatal surpended | 3.6          | 1644          | M0 AVG               |
| 03/31/2017               | Salidr, tatal surpended | 6.0          | 1674          | WKLYAVG              |
| 04/30/2017               | Salidr, tatal surpended | 1.9          | mqfL          | M0 AVG               |
| 04/30/2017               | Salidr, tatal surpended | 3.9          | mq/L          | WKLYAVG              |
| 04/30/2017               | Salids, tatals uspended | 5.3          | mqfL          | DAILYMX              |
| 04/30/2017               | Salidr, tatal surpended | 5.6          | 1644          | MOAVG                |
| 04/30/2017               | Salidr, tatal surpended | 13.1         | 1674          | WKLYAVG              |
|                          |                         |              |               |                      |

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             | Peremeter          |      |      | Statistical |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|--------------------|------|------|-------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             | Sulidr, rottleable |      |      |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 07/31/2013  |                    |      |      | DAILYMX     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             |                    |      | _    |             |
| 1937/2007   Smills_cartheable   MaLL   DARLYPE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 09/30/2013  |                    |      | mL/L | DAILYMX     |
| 1273122915   Smilit_cartelade   0.59                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 10/31/2013  | Salidr, rottloablo |      | mL/L | DAILYMX     |
| 0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.00 | 11/30/2013  | Salidr, rottloable |      | mL/L | DAILYMX     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 12/31/2013  | Salidr, rottloablo | 0.10 | mL/L | DAILYMX     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 01/31/2014  | Salidr, rottloablo |      | mL/L | DAILYMX     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 02/28/2014  | Salidz, zottloablo |      | mL/L | DAILYM8     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 03/31/2014  | Salidr, rottloable |      | mL/L | DAILYMX     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 04/30/2014  | Salidr, rottloablo |      | mL/L | DAILYMX     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 05/31/2014  | Salidr, rottloable | 0.10 | mL/L | DAILYMX     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 06/30/2014  | Salidr, rottleable | 0.10 | mL/L | DAILYMX     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 07/31/2014  | Salidr, rottleable | 0.01 | mL/L | DAILYMX     |
| 1973122915   Smilit_rathleath   0.19 m.LT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 08/31/2014  | Salidr, zottloablo | 0.10 | mL/L | DAILYMX     |
| 11/30/2014   Sulid_carticable   0.10   m.L/L   DAILYPE   12/31/2015   Sulid_carticable   0.10   m.L/L   DAILYPE   11/31/2015   Sulid_carticable   0.10   m.L/L   DAILYPE   12/31/2015   Sulid_carticable   0.10   m.L/L   DA | 09/30/2014  | Salidr, zottloablo | 0.10 | mL/L | DAILYMX     |
| 1223122015   Sulidaratticable   0.10   mL/L   DAILYTEN   013122015   Sulidaratticable   0.10   mL/L   DAILYTEN   0233122015   Sulidaratticable   0.10   mL/L   DAILYTEN   0433122015   Sulidaratticable   0.10   mL/L   DAILYTEN                                                      | 10/31/2014  | Salidr, zottloablo | 0.10 | mL/L | DAILYMX     |
| 0437120915   Smilit_caretheads                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 11/30/2014  | Salidr, rottloablo | 0.10 | mL/L | DAILYMX     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 12/31/2014  | Salidr, rottleable | 0.10 | mL/L | DAILYMX     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 01/31/2015  | Salidr, rottloablo | 0.10 | mL/L | DAILYMX     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             |                    |      |      |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             | Salidz,zettleable  |      |      |             |
| 0-17-912-05   Sulid-gravita-bio   0-16   m.L/L   DAILY PM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |             | Salidr, zottloablo |      | mL/L |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             |                    |      | _    |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             | · ·                |      |      |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             | · ·                |      |      |             |
| 197312015   Solid_cavitable   0.10   mL/L   DAILYNY   197012015   Solid_cavitable   0.10   mL/L   DAILYNY   197012015   Solid_cavitable   0.10   mL/L   DAILYNY   197312016   Solid_cavitable   0.10   mL/L   DAILYNY   197312017   Solid_cavitable   0.10   mL/L   DAILYNY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |             |                    |      |      |             |
| 1973-02-097   Solik_restlechte   0.90   sol.7L   DAILYPEE   1973-72-095   Solik_restlechte   0.10   sol.7L   DAILYPEE                                                                    |             |                    |      |      |             |
| 1237122915   Smilit_presthealth   0.10   m.LT   DMILYPHE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |             |                    |      |      |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             |                    |      | _    |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             |                    |      |      |             |
| 92/31/2015   Sulidaranticable   0.10   mL/L   DAILYPEN   94/31/2016   Sulidaranticable   0.10   mL/L   DAILYPEN   95/31/2016   Sulidaranticable   0.10   mL/L   DAILYPEN   95/31/2016   Sulidaranticable   0.10   mL/L   DAILYPEN   96/31/2016   Sulidaranticable   0.10   mL/L   DAILYPEN   11/31/2016   Sulidaranticable   0.10   mL/L   DAILYPEN   11/31/2016   Sulidaranticable   0.10   mL/L   DAILYPEN   11/31/2017   Sulidaranticable   0.10   mL/L   DAILYPEN   96/31/2017   Sulidaranticable   0.10   mL/L   DAILYPEN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                    |      |      |             |
| 0-479-02-091   Smillig_restleaded   0-10   MaLT   DARLYTEE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |             | · .                |      |      |             |
| SP13172915   Sulid-practicable   0.10   mL/L   DAILYPEN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |             |                    |      |      |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             |                    |      |      |             |
| 07/31/2015   Salidar, estimate   0.10   mL/L   DAILY PER     08/31/2016   Salidar, estimate   0.10   mL/L   DAILY PER     09/31/2016   Salidar, estimate   0.10   mL/L   DAILY PER     19/31/2015   Salidar, estimate   0.10   mL/L   DAILY PER     19/31/2015   Salidar, estimate   0.10   mL/L   DAILY PER     19/31/2015   Salidar, estimate   0.10   mL/L   DAILY PER     19/31/2017   Salidar, estimate   0.10   mL/L   DAILY PER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             |                    |      |      |             |
| 08/31/2015   Salidarasticable   0.10 mL/L DAILYPER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |             |                    |      | _    |             |
| 09/39/2016   Salidyraviticable   0.10   mL/L   DAILYMX     109/31/2016   Salidyraviticable   0.10   mL/L   DAILYMX     11/39/2016   Salidyraviticable   0.10   mL/L   DAILYMX     12/31/2016   Salidyraviticable   0.10   mL/L   DAILYMX     10/31/2017   Salidyraviticable   0.10 |             |                    |      |      |             |
| 16/31/2015   Salidarasticable   0.10   mL/L   DAILYPEE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |             |                    |      | _    |             |
| 11/3 0/2015   Salidr, cettleddo   0.10   mL/L   DAILYMX   12/3 12/2015   Salidr, cettleddo   0.10   mL/L   DAILYMX   01/3 12/2017   Salidr, cettleddo   0.10   mL/L   DAILYMX   02/22/2017   Salidr, cettleddo   0.10   mL/L   DAILYMX   03/3 1/2017   Salidr, cettleddo   0.10   mL/L   DAILYMX   03/3 1/2017   Salidr, cettleddo   0.10   mL/L   DAILYMX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |             |                    |      | _    |             |
| 12731/2016   Salidr_restholds   0.10 mL/L DAILYMN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |             |                    |      | _    |             |
| 01/31/2017         Salidr, rottlosko         0.10         mL/L         DAILYMX           02/20/2017         Salidr, rottlosko         0.10         mL/L         DAILYMX           03/31/2017         Salidr, rottlosko         0.10         mL/L         DAILYMX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |             |                    |      |      |             |
| 02/23/2017         Salidr,rottloablo         0.10         mL/L         DAILYMX           03/31/2017         Salidr,rottloablo         0.10         mL/L         DAILYMX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |             | · ·                |      | _    |             |
| e3#31#2e17 Salidr,rottleable e.10 mL/L DAILYMX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |             |                    |      |      |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             |                    |      |      |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             |                    |      |      |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.1.5512411 | Dania pottiodolo   | 2.19 |      | 27.1211111  |

| Munituring  | Parameter        | DHR   | Limit    | Statistical |  |  |  |  |
|-------------|------------------|-------|----------|-------------|--|--|--|--|
| Parind End  |                  | Talus | Unit     | Bere        |  |  |  |  |
| 06/30/2013  | E. cali, MTEC-MF | 3.0   | \$/100mL | MO GEOMN    |  |  |  |  |
| 06/30/2013  | E. cali, MTEC-MF | 19.0  | \$/100mL | DAILYMX     |  |  |  |  |
| 07/31/2013  | E. cali, MTEC-MF | 3.0   | #/100mL  | MO GEOMN    |  |  |  |  |
| 07/31/2013  | E. cali, MTEC-MF | 19.0  | #/100mL  | DAILYMX     |  |  |  |  |
| 0\$/31/2013 | E. cali, MTEC-MF | 1.3   | ##100mL  | MO GEOMN    |  |  |  |  |
| 0\$/31/2013 | E. cali, MTEC+MF | 5.0   | \$/100mL | DAILYMX     |  |  |  |  |
| 09/30/2013  | E. cali, MTEC-MF | 2.0   | \$/100mL | MO GEOMN    |  |  |  |  |
| 09/30/2013  | E. cali, MTEC-MF | 5.0   | \$/100mL | DAILYMX     |  |  |  |  |
| 10/31/2013  | E. cali, MTEC-MF | 3.0   | \$/100mL | MO GEOMN    |  |  |  |  |
| 10/31/2013  | E. cali, MTEC-MF | 48.0  | #/100mL  | DAILYMX     |  |  |  |  |
| 11/30/2013  | E. cali, MTEC-MF | 12.4  | ##100mL  | MO GEOMN    |  |  |  |  |
| 11/30/2013  | E. cali, MTEC-MF | \$1.0 | \$/100mL | DAILYMX     |  |  |  |  |
| 12/31/2013  | E. cali, MTEC-MF | 9.8   | \$/100mL | MO GEOMN    |  |  |  |  |
| 12/31/2013  | E. cali, MTEC-MF | 69.0  | \$/100mL | DAILYMX     |  |  |  |  |
| 01/31/2014  | E. cali, MTEC-MF | 1.2   | \$/100mL | MO GEOMN    |  |  |  |  |
| 01/31/2014  | E. cali, MTEC-MF | 5.0   | \$/100mL | DAILYMX     |  |  |  |  |
| 02/2#/2014  | E. cali, MTEC-MF | 3.4   | \$/100mL | MO GEOMN    |  |  |  |  |
| 02/2#/2014  | E. cali, MTEC-MF | 73.0  | \$/100mL | DAILYMX     |  |  |  |  |
| 03/31/2014  | E. cali, MTEC-MF | 2.6   | \$/100mL | MO GEOMN    |  |  |  |  |
| 03/31/2014  | E. cali, MTEC-MF | 24.0  | \$/100mL | DAILYMX     |  |  |  |  |
| 04/30/2014  | E. cali, MTEC-MF | 2.3   | \$/100mL | MO GEOMN    |  |  |  |  |
| 04/30/2014  | E. cali, MTEC-MF | 17.0  | \$/100mL | DAILYMX     |  |  |  |  |
| 05/31/2014  | E. cali, MTEC+MF | 1.3   | \$/100mL | MO GEOMN    |  |  |  |  |
| 05/31/2014  | E. cali, MTEC+MF | 1.0   | \$/100mL | DAILYMX     |  |  |  |  |
| 06/30/2014  | E. cali, MTEC-MF | 3.0   | \$/100mL | MO GEOMN    |  |  |  |  |
| 06/30/2014  | E. cali, MTEC-MF | 98.0  | \$/100mL | DAILYMX     |  |  |  |  |
| 07/31/2014  | E. cali, MTEC-MF | 9.0   | \$/100mL | MO GEOMN    |  |  |  |  |
| 07/31/2014  | E. cali, MTEC-MF | 70.0  | \$/100mL | DAILYMX     |  |  |  |  |
| 0#/31/2014  | E. cali, MTEC-MF | 6.0   | \$/100mL | MO GEOMN    |  |  |  |  |
| 0#/31/2014  | E. cali, MTEC-MF | 130.0 | \$/100mL | DAILYMX     |  |  |  |  |
| 09/30/2014  | E. cali, MTEC-MF | 6.0   | \$/100mL | MO GEOMN    |  |  |  |  |
| 09/30/2014  | E. cali, MTEC-MF | 75.0  | \$/100mL | DAILYMX     |  |  |  |  |
| 10/31/2014  | E. cali, MTEC-MF | 1.0   | \$/100mL | MO GEOMN    |  |  |  |  |
| 10/31/2014  | E. cali, MTEC-MF | 5.0   | \$/100mL | DAILYMX     |  |  |  |  |
| 11/30/2014  | E. cali, MTEC-MF | 2.0   | #/100mL  | MO GEOMN    |  |  |  |  |
| 11/30/2014  | E. cali, MTEC-MF | 2.0   | \$/100mL | DAILYMX     |  |  |  |  |
| 12/31/2014  | E. cali, MTEC-MF | 4.0   | \$/100mL | MO GEOMN    |  |  |  |  |
| 12/31/2014  | E. cali, MTEC-MF | 43.0  | ##100mL  | DAILYMX     |  |  |  |  |

| Munituring<br>Pariud End Data | Parameter        | DHR<br>Value | Limit Unit           | Statistical<br>Base  |
|-------------------------------|------------------|--------------|----------------------|----------------------|
| 01/31/2015                    | E. cali, MTEC+MF | 4.0          | \$/100mL             | MO GEOMN             |
| 01/31/2015                    | E. cali, MTEC-MF | 61.0         | \$/100mL             | DAILYMX              |
| 02/2#/2015                    | E. cali, MTEC-MF | 6.0          | \$/100mL             | MO GEOMN             |
| 02/2#/2015                    | E. cali, MTEC-MF | 51.0         | \$/100mL             | DAILYMX              |
| 03/31/2015                    | E. cali, MTEC-MF | 1.1          | \$/100mL             | MO GEOMN             |
| 03/31/2015                    | E. coli, MTEC-MF | 43.0         | \$/100mL             | DAILYMX              |
| 04/30/2015                    | E. cali, MTEC-MF | 6.0          | \$/100mL             | MO GEOMN             |
| 04/30/2015                    | E. cali, MTEC-MF | 31.0         | \$/100mL             | DAILYMX              |
| 05/31/2015                    | E. cali, MTEC-MF | 3.0          | #/100mL              | MO GEOMN             |
| 05/31/2015                    | E. cali, MTEC-MF | 47.0         | \$/100mL             | DAILYMX              |
| 06/30/2015                    | E. cali, MTEC-MF | 1.6          | \$/100mL             | MO GEOMN             |
| 06/30/2015                    | E. cali, MTEC-MF | 121.0        | \$/100mL             | DAILYMX              |
| 07/31/2015                    | E. cali, MTEC-MF | 3.0          | \$/100mL             | MO GEOMN             |
| 07/31/2015                    | E. cali, MTEC-MF | 46.0         | \$/100mL             | DAILYMX              |
| 02/31/2015                    | E. cali, MTEC-MF | 8.0          | \$/100mL             | MO GEOMN             |
| 0013112015                    | E. cali, MTEC-MF | 142.0        | \$/100mL             | DAILYMX              |
| 04/31/2015                    | E. cali, MTEC-MF | 7.0          | ##100mL              | MOSEOMN              |
| 09/30/2015                    | E. cali, MTEC-MF | 32.0         | ##100mL              | DAILYMX              |
| 10/31/2015                    | E. cali, MTEC-MF | 2.0          | \$/100mL             | MO GEOMN             |
| 10/31/2015                    | E. cali, MTEC-MF | 25.0         | \$/100mL             | DAILYMX              |
| 11/30/2015                    | E. cali, MTEC-MF | 12.0         | \$/100mL<br>\$/100mL | MO GEOMN             |
| 11/30/2015                    | E. coli, MTEC-MF | 369.0        | \$/100mL<br>\$/100mL | DAILYMX              |
| 12/31/2015                    |                  |              |                      |                      |
| 12/31/2015                    | E. cali, MTEC-MF | 17.0         | \$/100mL<br>\$/100mL | MO GEOMN<br>DAILY MX |
|                               | E. cali, MTEC-MF | 53.0         |                      |                      |
| 01/31/2016                    | E. cali, MTEC-MF | 3.0          | \$/100mL             | MO GEOMN             |
| 01/31/2016                    | E. cali, MTEC-MF | 14.0         | \$/100mL             | DAILYMX              |
| 02/29/2016                    | E. cali, MTEC-MF | 6.0          | \$/100mL             | MO GEOMN             |
| 02/29/2016                    | E. cali, MTEC-MF | 31.0         | \$/100mL             | DAILYMX              |
| 03/31/2016                    | E. cali, MTEC-MF | 4.0          | \$/100mL             | MO GEOMN             |
| 03/31/2016                    | E. cali, MTEC-MF | 42.0         | \$/100mL             | DAILYMX              |
| 04/30/2016                    | E. cali, MTEC-MF | \$.4         | \$/100mL             | MO GEOMN             |
| 04/30/2016                    | E. cali, MTEC-MF | 58.0         | \$/100mL             | DAILYMX              |
| 05/31/2016                    | E. cali, MTEC-MF | 7.0          | \$/100mL             | MO GEOMN             |
| 05/31/2016                    | E. cali, MTEC-MF | 23.0         | \$/100mL             | DAILYMX              |
| 06/30/2016                    | E. cali, MTEC-MF | 11.0         | \$/100mL             | MO GEOMN             |
| 06/30/2016                    | E. cali, MTEC-MF | 139.0        | \$/100mL             | DAILYMX              |
| 07/31/2016                    | E. cali, MTEC-MF | 10.0         | \$/100mL             | MO GEOMN             |
| 07/31/2016                    | E. cali, MTEC-MF | 15.0         | \$/100mL             | DAILYMX              |
| 0\$/31/2016                   | E. cali, MTEC-MF | 3.0          | \$/100mL             | MO GEOMN             |
| 0#/31/2016                    | E. cali, MTEC-MF | 71.0         | \$/100mL             | DAILYMX              |
| 09/30/2016                    | E. cali, MTEC-MF | 4.0          | \$/100mL             | MO GEOMN             |
| 09/30/2016                    | E. cali, MTEC-MF | 37.0         | \$/100mL             | DAILYMX              |
| 10/31/2016                    | E. cali, MTEC-MF | 2\$.0        | \$/100mL             | MO GEOMN             |
| 10/31/2016                    | E. cali, MTEC-MF | 525.0        | \$/100mL             | DAILYMX              |
| 11/30/2016                    | E. cali, MTEC-MF | 2.0          | \$/100mL             | MO GEOMN             |
| 11/30/2016                    | E. cali, MTEC-MF | 21.0         | \$/100mL             | DAILYMX              |
| 12/31/2016                    | E. cali, MTEC-MF | 3.0          | \$/100mL             | MO GEOMN             |
| 12/31/2016                    | E. cali, MTEC-MF | 15.0         | \$/100mL             | DAILYMX              |
| 01/31/2017                    | E. cali, MTEC-MF | 3.0          | \$/100mL             | MO GEOMN             |
| 01/31/2017                    | E. cali, MTEC-MF | 13.0         | \$/100mL             | DAILYMX              |
| 02/22/2017                    | E. cali, MTEC-MF | 3.0          | \$/100mL             | MO GEOMN             |
| 02/24/2017                    | E. cali, MTEC-MF | \$.0         | #/100mL              | DAILYMX              |
| 8333132817                    | E. cali, MTEC-MF | 11.0         | \$/100mL             | MO GEOMN             |
| 03/31/2017<br>03/31/2017      | E. cali, MTEC-MF | 43.0         | \$/100mL<br>\$/100mL | DAILYMX              |
| 03/31/2017                    | E. cali, MTEC-MF | 3.0          | \$/100mL<br>\$/100mL | MO GEOMN             |
|                               |                  |              |                      |                      |
| 04/30/2017                    | E. cali, MTEC-MF | 16.0         | \$/100mL             | DAILYMX              |

| Munituring  | Peremeter                                | DMR    | Limit | Statistical |
|-------------|------------------------------------------|--------|-------|-------------|
| Parind End  | r aramatar                               | Telus  | Unit  | Bere        |
| 06/30/2013  | Flaw, in canduit ar thru treatment plant | 0.251  | MGD   | M0 AVG      |
| 06/30/2013  | Flaw, in canduit ar thru treatment plant | 0.484  | MGD   | DAILYMX     |
| 07/31/2013  | Flaw, in canduit ar thru troatmont plant | 0.227  | MGD   | M0 AVG      |
| 07/31/2013  | Flaw, in canduit ar thru troatmont plant | 0.656  | MGD   | DAILYMX     |
| 0#/31/2013  | Flow, in conduit or thru treatment plant | 0.123  | MGD   | M0 AVG      |
| 0#/31/2013  | Flaw, in canduit ar thru troatmont plant | 0.255  | MGD   | DAILYMX     |
| 09/30/2013  | Flaw, in canduit ar thru treatment plant | 0.091  | MGD   | M0 AVG      |
| 09/30/2013  | Flaw, in canduit ar thru troatmont plant | 0.177  | MGD   | DAILYMX     |
| 10/31/2013  | Flow, in conduit or thru troatmont plant | 0.073  | MGD   | M0 AVG      |
| 10/31/2013  | Flaw, in canduit ar thru troatmont plant | 0.099  | MGD   | DAILYMX     |
| 11/30/2013  | Flow, in conduit or thru treatment plant | 0.110  | MGD   | M0 AVG      |
| 11/30/2013  | Flaw, in canduit arthru treatment plant  | 0.741  | MGD   | DAILYMX     |
| 12/31/2013  | Flow, in conduit or thru treatment plant | 0.376  | MGD   | M0 AVG      |
| 12/31/2013  | Flow, in conduit or thru treatment plant | 0.960  | MGD   | DAILYMX     |
| 01/31/2014  | Flow, in conduit or thru treatment plant | 0.224  | MGD   | M0 AVG      |
| 01/31/2014  | Flow, in conduit or thru treatment plant | 0.631  | MGD   | DAILYMX     |
| 02/2#/2014  | Flow, in conduit or thru treatment plant | 0.343  | MGD   | M0 AVG      |
| 02/2#/2014  | Flaw, in canduit arthru treatment plant  | 0.789  | MGD   | DAILYMX     |
| 03/31/2014  | Flow, in conduit or thru treatment plant | 0.149  | MGD   | M0 AVG      |
| 03/31/2014  | Flow, in conduit or thru treatment plant | 0.239  | MGD   | DAILYMX     |
| 04/30/2014  | Flow, in conduit or thru treatment plant | 0.165  | MGD   | M0 AVG      |
| 04/30/2014  | Flaw, in canduit ar thru troatmont plant | 0.600  | MGD   | DAILYMX     |
| 05/31/2014  | Flow, in conduit or thru treatment plant | 0.113  | MGD   | M0 AVG      |
| 05/31/2014  | Flow, in conduit or thru treatment plant | 0.2\$1 | MGD   | DAILYMX     |
| 06/30/2014  | Flaw, in canduit arthru treatment plant  | 0.105  | MGD   | M0 AVG      |
| 06/30/2014  | Flow, in conduit or thru treatment plant | 0.351  | MGD   | DAILYMX     |
| 07/31/2014  | Flow, in conduit or thru treatment plant | 0.104  | MGD   | M0 AVG      |
| 07/31/2014  | Flow, in conduit or thru treatment plant | 0.33*  | MGD   | DAILYMX     |
| 0\$/31/2014 | Flow, in conduit or thru treatment plant | 0.136  | MGD   | M0 AVG      |
| 0\$/31/2014 | Flow, in conduit or thru treatment plant | 0.361  | MGD   | DAILYMX     |
| 09/30/2014  | Flow, in conduit or thru treatment plant | 0.115  | MGD   | M0 AVG      |
| 09/30/2014  | Flow, in conduit or thru treatment plant | 0.331  | MGD   | DAILYMX     |
| 10/31/2014  | Flow, in conduit or thru treatment plant | 0.125  | MGD   | M0 AVG      |
| 10/31/2014  | Flow, in conduit or thru treatment plant | 0.620  | MGD   | DAILYMX     |
| 11/30/2014  | Flow, in conduit or thru treatment plant | 0.107  | MGD   | M0 AVG      |
| 11/30/2014  | Flow, in conduit or thru treatment plant | 0.397  | MGD   | DAILYMX     |
| 12/31/2014  | Flaw, in canduit ar thru troatmont plant | 0.17#  | MGD   | M0 AVG      |
| 12/31/2014  | Flaw, in canduit ar thru troatmont plant | 0.545  | MGD   | DAILYMX     |

| Part   Mark   Part      | Munituring                              |                                          | DHR    | Limit | Statistical |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|------------------------------------------|--------|-------|-------------|
| ### 1921/24/25   Flau, in candol in the true transmant plant                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                         | Parameter                                |        |       |             |
| PROJECT   Proc.   Consider the true training plant   0.218   PROD   PROJECT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                         |                                          |        |       |             |
| ## 223   ## 225   ## 225   ## 225   ## 225   ## 225   ## 225   ## 225   ## 225   ## 225   ## 225   ## 225   ## 225   ## 225   ## 225   ## 225   ## 225   ## 225   ## 225   ## 225   ## 225   ## 225   ## 225   ## 225   ## 225   ## 225   ## 225   ## 225   ## 225   ## 225   ## 225   ## 225   ## 225   ## 225   ## 225   ## 225   ## 225   ## 225   ## 225   ## 225   ## 225   ## 225   ## 225   ## 225   ## 225   ## 225   ## 225   ## 225   ## 225   ## 225   ## 225   ## 225   ## 225   ## 225   ## 225   ## 225   ## 225   ## 225   ## 225   ## 225   ## 225   ## 225   ## 225   ## 225   ## 225   ## 225   ## 225   ## 225   ## 225   ## 225   ## 225   ## 225   ## 225   ## 225   ## 225   ## 225   ## 225   ## 225   ## 225   ## 225   ## 225   ## 225   ## 225   ## 225   ## 225   ## 225   ## 225   ## 225   ## 225   ## 225   ## 225   ## 225   ## 225   ## 225   ## 225   ## 225   ## 225   ## 225   ## 225   ## 225   ## 225   ## 225   ## 225   ## 225   ## 225   ## 225   ## 225   ## 225   ## 225   ## 225   ## 225   ## 225   ## 225   ## 225   ## 225   ## 225   ## 225   ## 225   ## 225   ## 225   ## 225   ## 225   ## 225   ## 225   ## 225   ## 225   ## 225   ## 225   ## 225   ## 225   ## 225   ## 225   ## 225   ## 225   ## 225   ## 225   ## 225   ## 225   ## 225   ## 225   ## 225   ## 225   ## 225   ## 225   ## 225   ## 225   ## 225   ## 225   ## 225   ## 225   ## 225   ## 225   ## 225   ## 225   ## 225   ## 225   ## 225   ## 225   ## 225   ## 225   ## 225   ## 225   ## 225   ## 225   ## 225   ## 225   ## 225   ## 225   ## 225   ## 225   ## 225   ## 225   ## 225   ## 225   ## 225   ## 225   ## 225   ## 225   ## 225   ## 225   ## 225   ## 225   ## 225   ## 225   ## 225   ## 225   ## 225   ## 225   ## 225   ## 225   ## 225   ## 225   ## 225   ## 225   ## 225   ## 225   ## 225   ## 225   ## 225   ## 225   ## 225   ## 225   ## 225   ## 225   ## 225   ## 225   ## 225   ## 225   ## 225   ## 225   ## 225   ## 225   ## 225   ## 225   ## 225   ## 225   ## 225   ## 225   ## 225   ## 225   ## 225   ## 225   ## 225   ## 225   ## 225   ## 225   ## 225   #   |                                         |                                          |        |       |             |
| 1923   1924   1925   1924   1925   1926   1926   1926   1926   1926   1926   1926   1926   1926   1926   1926   1926   1926   1926   1926   1926   1926   1926   1926   1926   1926   1926   1926   1926   1926   1926   1926   1926   1926   1926   1926   1926   1926   1926   1926   1926   1926   1926   1926   1926   1926   1926   1926   1926   1926   1926   1926   1926   1926   1926   1926   1926   1926   1926   1926   1926   1926   1926   1926   1926   1926   1926   1926   1926   1926   1926   1926   1926   1926   1926   1926   1926   1926   1926   1926   1926   1926   1926   1926   1926   1926   1926   1926   1926   1926   1926   1926   1926   1926   1926   1926   1926   1926   1926   1926   1926   1926   1926   1926   1926   1926   1926   1926   1926   1926   1926   1926   1926   1926   1926   1926   1926   1926   1926   1926   1926   1926   1926   1926   1926   1926   1926   1926   1926   1926   1926   1926   1926   1926   1926   1926   1926   1926   1926   1926   1926   1926   1926   1926   1926   1926   1926   1926   1926   1926   1926   1926   1926   1926   1926   1926   1926   1926   1926   1926   1926   1926   1926   1926   1926   1926   1926   1926   1926   1926   1926   1926   1926   1926   1926   1926   1926   1926   1926   1926   1926   1926   1926   1926   1926   1926   1926   1926   1926   1926   1926   1926   1926   1926   1926   1926   1926   1926   1926   1926   1926   1926   1926   1926   1926   1926   1926   1926   1926   1926   1926   1926   1926   1926   1926   1926   1926   1926   1926   1926   1926   1926   1926   1926   1926   1926   1926   1926   1926   1926   1926   1926   1926   1926   1926   1926   1926   1926   1926   1926   1926   1926   1926   1926   1926   1926   1926   1926   1926   1926   1926   1926   1926   1926   1926   1926   1926   1926   1926   1926   1926   1926   1926   1926   1926   1926   1926   1926   1926   1926   1926   1926   1926   1926   1926   1926   1926   1926   1926   1926   1926   1926   1926   1926   1926   1926   1926   1926   1926   1926   1926   1926      |                                         |                                          |        |       |             |
| 1973   1972   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973      |                                         |                                          |        |       |             |
| 14/39/2015   Fillus, in candolite or thrus treatment plant                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                         |                                          |        |       |             |
| 1.627-12.2015   Files, in conduction to the treatment plant   1.679   1.660   1.660   1.660   1.660   1.660   1.660   1.660   1.660   1.660   1.660   1.660   1.660   1.660   1.660   1.660   1.660   1.660   1.660   1.660   1.660   1.660   1.660   1.660   1.660   1.660   1.660   1.660   1.660   1.660   1.660   1.660   1.660   1.660   1.660   1.660   1.660   1.660   1.660   1.660   1.660   1.660   1.660   1.660   1.660   1.660   1.660   1.660   1.660   1.660   1.660   1.660   1.660   1.660   1.660   1.660   1.660   1.660   1.660   1.660   1.660   1.660   1.660   1.660   1.660   1.660   1.660   1.660   1.660   1.660   1.660   1.660   1.660   1.660   1.660   1.660   1.660   1.660   1.660   1.660   1.660   1.660   1.660   1.660   1.660   1.660   1.660   1.660   1.660   1.660   1.660   1.660   1.660   1.660   1.660   1.660   1.660   1.660   1.660   1.660   1.660   1.660   1.660   1.660   1.660   1.660   1.660   1.660   1.660   1.660   1.660   1.660   1.660   1.660   1.660   1.660   1.660   1.660   1.660   1.660   1.660   1.660   1.660   1.660   1.660   1.660   1.660   1.660   1.660   1.660   1.660   1.660   1.660   1.660   1.660   1.660   1.660   1.660   1.660   1.660   1.660   1.660   1.660   1.660   1.660   1.660   1.660   1.660   1.660   1.660   1.660   1.660   1.660   1.660   1.660   1.660   1.660   1.660   1.660   1.660   1.660   1.660   1.660   1.660   1.660   1.660   1.660   1.660   1.660   1.660   1.660   1.660   1.660   1.660   1.660   1.660   1.660   1.660   1.660   1.660   1.660   1.660   1.660   1.660   1.660   1.660   1.660   1.660   1.660   1.660   1.660   1.660   1.660   1.660   1.660   1.660   1.660   1.660   1.660   1.660   1.660   1.660   1.660   1.660   1.660   1.660   1.660   1.660   1.660   1.660   1.660   1.660   1.660   1.660   1.660   1.660   1.660   1.660   1.660   1.660   1.660   1.660   1.660   1.660   1.660   1.660   1.660   1.660   1.660   1.660   1.660   1.660   1.660   1.660   1.660   1.660   1.660   1.660   1.660   1.660   1.660   1.660   1.660   1.660   1.660   1.660   1.660   1.660    |                                         |                                          | _      |       |             |
| 1967   172-215   Fina., in conduction to the transmit plant   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1   |                                         |                                          | _      |       |             |
| 1967-1972-1975   Files, in conduction the true transmit plant   1979-1972-1975   Files, in conduction the true transmit plan   |                                         |                                          |        |       |             |
| 16.23   17.23   17.23   17.23   17.23   17.23   17.23   17.23   17.23   17.23   17.23   17.23   17.23   17.23   17.23   17.23   17.23   17.23   17.23   17.23   17.23   17.23   17.23   17.23   17.23   17.23   17.23   17.23   17.23   17.23   17.23   17.23   17.23   17.23   17.23   17.23   17.23   17.23   17.23   17.23   17.23   17.23   17.23   17.23   17.23   17.23   17.23   17.23   17.23   17.23   17.23   17.23   17.23   17.23   17.23   17.23   17.23   17.23   17.23   17.23   17.23   17.23   17.23   17.23   17.23   17.23   17.23   17.23   17.23   17.23   17.23   17.23   17.23   17.23   17.23   17.23   17.23   17.23   17.23   17.23   17.23   17.23   17.23   17.23   17.23   17.23   17.23   17.23   17.23   17.23   17.23   17.23   17.23   17.23   17.23   17.23   17.23   17.23   17.23   17.23   17.23   17.23   17.23   17.23   17.23   17.23   17.23   17.23   17.23   17.23   17.23   17.23   17.23   17.23   17.23   17.23   17.23   17.23   17.23   17.23   17.23   17.23   17.23   17.23   17.23   17.23   17.23   17.23   17.23   17.23   17.23   17.23   17.23   17.23   17.23   17.23   17.23   17.23   17.23   17.23   17.23   17.23   17.23   17.23   17.23   17.23   17.23   17.23   17.23   17.23   17.23   17.23   17.23   17.23   17.23   17.23   17.23   17.23   17.23   17.23   17.23   17.23   17.23   17.23   17.23   17.23   17.23   17.23   17.23   17.23   17.23   17.23   17.23   17.23   17.23   17.23   17.23   17.23   17.23   17.23   17.23   17.23   17.23   17.23   17.23   17.23   17.23   17.23   17.23   17.23   17.23   17.23   17.23   17.23   17.23   17.23   17.23   17.23   17.23   17.23   17.23   17.23   17.23   17.23   17.23   17.23   17.23   17.23   17.23   17.23   17.23   17.23   17.23   17.23   17.23   17.23   17.23   17.23   17.23   17.23   17.23   17.23   17.23   17.23   17.23   17.23   17.23   17.23   17.23   17.23   17.23   17.23   17.23   17.23   17.23   17.23   17.23   17.23   17.23   17.23   17.23   17.23   17.23   17.23   17.23   17.23   17.23   17.23   17.23   17.23   17.23   17.23   17.23   17.23   17.23   17.2   |                                         |                                          |        |       |             |
| ### 1962 Plaus, in candol in the Vertical Plaus   1960 Pl |                                         |                                          |        |       |             |
| ### 1973/14/2015   Finus, in candolite or their version and plant   9,224   1950   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   196 |                                         |                                          |        |       |             |
| ### 1973/14/29 Files, in candol to the Vertical plant ### 1973/14/29 Files, in candol to the Vertical plant ### 1973/14/29 Files, in candol to the Vertical plant ### 1973/14/29 Files, in candol to the Vertical plant ### 1973/14/29 Files, in candol to the Vertical plant ### 1973/14/29 Files, in candol to the Vertical plant ### 1973/14/29 Files, in candol to the Vertical plant ### 1973/14/29 Files, in candol to the Vertical plant ### 1973/14/29 Files, in candol to the Vertical plant ### 1973/14/29 Files, in candol to the Vertical plant ### 1973/14/29 Files, in candol to the Vertical plant ### 1973/14/29 Files, in candol to the Vertical plant ### 1973/14/29 Files, in candol to the Vertical plant ### 1973/14/29 Files, in candol to the Vertical plant ### 1973/14/29 Files, in candol to the Vertical plant ### 1973/14/29 Files, in candol to the Vertical plant ### 1973/14/29 Files, in candol to the Vertical plant ### 1973/14/29 Files, in candol to the Vertical plant ### 1973/14/29 Files, in candol to the Vertical plant ### 1973/14/29 Files, in candol to the Vertical plant ### 1973/14/29 Files, in candol to the Vertical plant ### 1973/14/29 Files, in candol to the Vertical plant ### 1973/14/29 Files, in candol to the Vertical plant ### 1973/14/29 Files, in candol to the Vertical plant ### 1973/14/29 Files, in candol to the Vertical plant ### 1973/14/29 Files, in candol to the Vertical plant ### 1973/14/29 Files, in candol to the Vertical plant ### 1973/14/29 Files, in candol to the Vertical plant ### 1973/14/29 Files, in candol to the Vertical plant ### 1973/14/29 Files, in candol to the Vertical plant ### 1973/14/29 Files, in candol to the Vertical plant ### 1973/14/29 Files, in candol to the Vertical plant ### 1973/14/29 Files, in candol to the Vertical plant ### 1973/14/29 Files, in candol to the Vertical plant ### 1973/14/29 Files, in candol to the Vertical plant ### 1973/14/29 Files, in candol to the Vertical plant ### 1973/14/29 Files, in candol to the Vertical plant ### 1973/14/29 Files, in candol to the Vertical  |                                         |                                          |        |       |             |
| 1967314295   Files, in conduit or three treatment plant   19.40   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   |                                         |                                          |        |       |             |
| ### 1993/94295   Files, in condoit or thrust variations at plant   9.594   1950   DAILY PRI   ### 1993/94295   Files, in condoit or thrust variations at plant   9.595   1950   DAILY PRI   ### 1993/94295   Files, in condoit or thrust variations at plant   ### 1993/94295   Files, in condoit or thrust variations at plant   ### 1993/94295   Files, in condoit or thrust variations at plant   ### 1993/94295   Files, in condoit or thrust variations at plant   ### 1993/94295   Files, in condoit or thrust variations at plant   ### 1993/94295   Files, in condoit or thrust variations at plant   ### 1993/94295   Files, in condoit or thrust variations at plant   ### 1993/94295   Files, in condoit or thrust variations at plant   ### 1993/94295   Files, in condoit or thrust variations at plant   ### 1993/94295   Files, in condoit or thrust variations at plant   ### 1993/94295   Files, in condoit or thrust variations at plant   ### 1993/94295   Files, in condoit or thrust variations at plant   ### 1993/94295   Files, in condoit or thrust variations at plant   ### 1993/94295   Files, in condoit or thrust variations at plant   ### 1993/94295   Files, in condoit or thrust variations at plant   ### 1993/94295   Files, in condoit or thrust variations at plant   ### 1993/94295   Files, in condoit or thrust variations at plant   ### 1993/94295   Files, in condoit or thrust variations at plant   ### 1993/94295   Files, in condoit or thrust variations at plant   ### 1993/94295   Files, in condoit or thrust variations at plant   ### 1993/94295   Files, in condoit or thrust variations at plant   ### 1993/94295   Files, in condoit or thrust variations at plant   ### 1993/94295   Files, in condoit or thrust variations at plant   ### 1993/94295   Files, in condoit or thrust variations at plant   ### 1993/94295   Files, in condoit or thrust variations at plant   ### 1993/94295   Files, in condoit or thrust variations at plant   ### 1993/94295   Files, in condoit or thrust variations at plant   ### 1993/94295   Files, in condoit or thrust vari |                                         |                                          |        |       |             |
| 9979972915   Finus, in candol its or thrus treatment plant   9.95   1950   1960 PO AULT PRI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                         |                                          |        |       |             |
| 1993   1993   1994   1995   1995   1995   1995   1995   1995   1995   1995   1995   1995   1995   1995   1995   1995   1995   1995   1995   1995   1995   1995   1995   1995   1995   1995   1995   1995   1995   1995   1995   1995   1995   1995   1995   1995   1995   1995   1995   1995   1995   1995   1995   1995   1995   1995   1995   1995   1995   1995   1995   1995   1995   1995   1995   1995   1995   1995   1995   1995   1995   1995   1995   1995   1995   1995   1995   1995   1995   1995   1995   1995   1995   1995   1995   1995   1995   1995   1995   1995   1995   1995   1995   1995   1995   1995   1995   1995   1995   1995   1995   1995   1995   1995   1995   1995   1995   1995   1995   1995   1995   1995   1995   1995   1995   1995   1995   1995   1995   1995   1995   1995   1995   1995   1995   1995   1995   1995   1995   1995   1995   1995   1995   1995   1995   1995   1995   1995   1995   1995   1995   1995   1995   1995   1995   1995   1995   1995   1995   1995   1995   1995   1995   1995   1995   1995   1995   1995   1995   1995   1995   1995   1995   1995   1995   1995   1995   1995   1995   1995   1995   1995   1995   1995   1995   1995   1995   1995   1995   1995   1995   1995   1995   1995   1995   1995   1995   1995   1995   1995   1995   1995   1995   1995   1995   1995   1995   1995   1995   1995   1995   1995   1995   1995   1995   1995   1995   1995   1995   1995   1995   1995   1995   1995   1995   1995   1995   1995   1995   1995   1995   1995   1995   1995   1995   1995   1995   1995   1995   1995   1995   1995   1995   1995   1995   1995   1995   1995   1995   1995   1995   1995   1995   1995   1995   1995   1995   1995   1995   1995   1995   1995   1995   1995   1995   1995   1995   1995   1995   1995   1995   1995   1995   1995   1995   1995   1995   1995   1995   1995   1995   1995   1995   1995   1995   1995   1995   1995   1995   1995   1995   1995   1995   1995   1995   1995   1995   1995   1995   1995   1995   1995   1995   1995   1995   1995   1995   1995   1995   1995   1995      |                                         |                                          |        |       |             |
| 1967   1972   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973      |                                         |                                          |        |       |             |
| 19/31/2015   Fina., in conduction than the transmist plant   19/31/2015   Fina., in conduction the transmist plant   19/31/2015   Fina., in    | *************************************** |                                          | *10.10 |       |             |
| 1923-02-05   Flau, in candolin or their treatment plans   9.181   MGD   MO AVG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                         |                                          |        |       |             |
| 1927-192-195                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                         |                                          |        |       |             |
| 12/23/12/25    Flau, in candoth or then to estimate plant   12/23/12/25    Flau, in candoth or then to estimate plant   12/23/12/25    Flau, in candoth or then to estimate plant   12/23/12/25    Flau, in candoth or then to estimate plant   12/23/12/25    Flau, in candoth or then to estimate plant   12/23/12/25    Flau, in candoth or then to estimate plant   12/23/12/25    Flau, in candoth or then to estimate plant   12/23/12/25    Flau, in candoth or then to estimate plant   12/23/12/25    Flau, in candoth or then to estimate plant   12/23/12/25    Flau, in candoth or then to estimate plant   12/23/12/25    Flau, in candoth or then to estimate plant   12/23/12/25    Flau, in candoth or then to estimate plant   12/23/12/25    Flau, in candoth or then to estimate plant   12/23/12/25    Flau, in candoth or then to estimate plant   12/23/12/25    Flau, in candoth or then to estimate plant   12/23/12/25    Flau, in candoth or then to estimate plant   12/23/12/25    Flau, in candoth or then to estimate plant   12/23/12/25    Flau, in candoth or then to estimate plant   12/23/12/25    Flau, in candoth or then to estimate plant   12/23/12/25    Flau, in candoth or then to estimate plant   12/23/12/25    Flau, in candoth or then to estimate plant   12/23/12/25    Flau, in candoth or then to estimate plant   12/23/12/25    Flau, in candoth or then to estimate plant   12/23/12/25    Flau, in candoth or then to estimate plant   12/23/12/25    Flau, in candoth or then to estimate plant   12/23/12/25    Flau, in candoth or then to estimate plant   12/23/12/25    Flau, in candoth or then to estimate plant   12/23/12/25    Flau, in candoth or then to estimate plant   12/23/12/25    Flau, in candoth or then to estimate plant   12/23/12/25    Flau, in candoth or then to estimate plant   12/23/12/25    Flau, in candoth or then to estimate plant   12/23/12/25    Flau, in candoth or then to estimate plant   12/23/12/25    Flau, in candoth or then to estimate plant   12/23/12/25    Flau, in candoth or then to estimate plant   12/2   |                                         |                                          |        |       |             |
| 1231/1245   Files, in conduit or three treatment plant   1.817   1950   DAILY PRE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | INSTILLI                                |                                          |        |       |             |
| ### 1957/12-95   Files, in candol to the Vertical Plant   ### 1950   HOAVG   ### 1957/12-95   Files, in candol to the Vertical Plant   ### 1950   DAILY HILL   ### 1957/12-95   Files, in candol to the Vertical Plant   ### 1950   DAILY HILL   ### 1957/12-95   Files, in candol to the Vertical Plant   ### 1950   HOAVG   ### 1957/12-95   Files, in candol to the Vertical Plant   ### 1950   HOAVG   ### 1957/12-95   Files, in candol to the Vertical Plant   ### 1950   HOAVG   ### 1957/12-95   Files, in candol to the Vertical Plant   ### 1950   HOAVG   ### 1957/12-95   Files, in candol to the Vertical Plant   ### 1950   HOAVG   ### 1957/12-95   Files, in candol to the Vertical Plant   ### 1950   HOAVG   ### 1957/12-95   Files, in candol to the Vertical Plant   ### 1950   HOAVG   ### 1957/12-95   Files, in candol to the Vertical Plant   ### 1950   HOAVG   ### 1957/12-95   Files, in candol to the Vertical Plant   ### 1950   HOAVG   ### 1957/12-95   Files, in candol to the Vertical Plant   ### 1950   HOAVG   ### 1957/12-95   Files, in candol to the Vertical Plant   ### 1950   HOAVG   ### 1957/12-95   Files, in candol to the Vertical Plant   ### 1950   HOAVG   ### 1957/12-95   Files, in candol to the Vertical Plant   ### 1950   HOAVG   ### 1957/12-95   Files, in candol to the Vertical Plant   ### 1950   HOAVG   ### 1957/12-95   Files, in candol to the Vertical Plant   ### 1950   HOAVG   ### 1957/12-95   Files, in candol to the Vertical Plant   ### 1950   HOAVG   ### 1957/12-95   Files, in candol to the Vertical Plant   ### 1950   HOAVG   ### 1957/12-95   Files, in candol to the Vertical Plant   ### 1950   HOAVG   ### 1957/12-95   Files, in candol to the Vertical Plant   ### 1950   HOAVG   ### 1957/12-95   Files, in candol to the Vertical Plant   ### 1950   HOAVG   ### 1957/12-95   Files, in candol to the Vertical Plant   ### 1950   HOAVG   ### 1957/12-95   Files, in candol to the Vertical Plant   ### 1950   HOAVG   ### 1957/12-95   Files, in candol to the Vertical Plant   ### 1950   HOAVG   ### 1957/12-95   Files, in candol  |                                         |                                          |        |       |             |
| 96731/2916   Files, in conduit or thrus treatment plant   9.897   MSD   DAILY MI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                         |                                          |        |       |             |
| 1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,00   |                                         |                                          |        |       |             |
| 2022/12/25   Finus, in conduit or thrus transmax plant   0.55   MSD   MOLITYRE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                         |                                          |        |       |             |
| 0.23172.016   Fina., in conduit or thrust restment plant   0.389   MIGD   DAILY MIG   0.47.072.016   Fina., in conduit or thrust restment plant   0.452   MIGD   DAILY MIG   0.47.072.016   Fina., in conduit or thrust restment plant   0.457   MIGD   DAILY MIG   0.57.072.016   Fina., in conduit or thrust restment plant   0.457   MIGD   DAILY MIG   0.57.072.016   Fina., in conduit or thrust restment plant   0.452   MIGD   DAILY MIG   0.57.072.016   Fina., in conduit or thrust restment plant   0.452   MIGD   DAILY MIG   0.57.072.016   Fina., in conduit or thrust restment plant   0.452   MIGD   DAILY MIG   0.57.072.016   Fina., in conduit or thrust restment plant   0.453   MIGD   DAILY MIG   0.57.072.016   Fina., in conduit or thrust restment plant   0.457   MIGD   DAILY MIG   0.57.072.016   Fina., in conduit or thrust restment plant   0.457   MIGD   DAILY MIG   0.57.072.016   Fina., in conduit or thrust restment plant   0.457   MIGD   DAILY MIG   0.57.072.016   Fina., in conduit or thrust restment plant   0.457   MIGD   DAILY MIG   0.57.072.016   Fina., in conduit or thrust restment plant   0.457   MIGD   DAILY MIG   0.57.072.016   Fina., in conduit or thrust restment plant   0.457   MIGD   DAILY MIG   0.57.072.016   Fina., in conduit or thrust restment plant   0.457   MIGD   DAILY MIG   0.57.072.016   Fina., in conduit or thrust restment plant   0.457   MIGD   DAILY MIG   0.57.072.016   Fina., in conduit or thrust restment plant   0.457   MIGD   DAILY MIG   0.57.072.016   Fina., in conduit or thrust restment plant   0.458   MIGD   DAILY MIG   0.57.072.0172.017   Fina., in conduit or thrust restment plant   0.455   MIGD   DAILY MIG   0.57.072.0172.017   Fina., in conduit or thrust restment plant   0.455   MIGD   DAILY MIG   0.57.072.0172.017   Fina., in conduit or thrust restment plant   0.455   MIGD   DAILY MIG   0.57.072.0172.017   Fina., in conduit or thrust restment plant   0.455   MIGD   DAILY MIG   0.57.072.0172.017   Fina., in conduit or thrust restment plant   0.455   MIGD   DAILY MIG   0.57.072.0172.017     | 02/29/2016                              |                                          |        |       |             |
| ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###   ###    | 03/31/2016                              |                                          | 0.154  | MGD   | MO AVG      |
| 1947-1942-1946   Flau, in conduit or thrust variational plant   1947   1960   DAILY MI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 03/31/2016                              |                                          | 0.300  | MGD   | DAILYMX     |
| 195731/2265   Files, in candolite to their treatment plant   195731/2265   Files in candolite to their treatment plant   195731/2267   Files in candolite    | 04/30/2016                              | Flow, in conduit or thru treatment plant | 0.142  | MGD   | MO AVG      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 04/30/2016                              | Flaw, in canduit ar thru treatment plant | 0.453  | MGD   | DAILYMX     |
| 1667-982-986   Files, in conduite to their transport   160, 160, 160, 160, 160, 160, 160, 160,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 05/31/2016                              | Flaw, in canduit ar thru troatmont plant | 0.077  | MGD   | MO AVG      |
| 06738/2016   Files, in conduit or thrust volument plant   0.254   MGD   DAILY MI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 05/31/2016                              | Flaw, in canduit ar thru troatmont plant | 0.120  | MGD   | DAILYMX     |
| 1973172816   Flau, in candolis or their treatment plant   1963   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960   1960    | 06/30/2016                              | Flaw, in canduit ar thru troatmont plant | 0.102  | MGD   | MO AVG      |
| ##   ##   ##   ##   ##   ##   ##   #                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 06/30/2016                              | Flaw, in canduit ar thru troatmont plant | 0.250  | MGD   | DAILYMX     |
| 08731/2916   Flau, in conduit or thrust ventiment plant   0.465   HGD   MOAVG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 07/31/2016                              | Flaw, in canduit ar thru troatmont plant | 0.063  | MGD   | M0 AVG      |
| 04/31/2016   Flau, in candolis or thrust restment plant   0.699   MGD   DAILY MG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 07/31/2016                              | Flaw, in canduit ar thru treatment plant | 0.077  | MGD   | DAILYMX     |
| 99/30/2016   Flau, in candol are then treatment plant   9.854   HGD   MO AVG   99/30/2016   Flau, in candol are then treatment plant   9.411   HGD   DAILY HI   99/30/2016   Flau, in candol are then treatment plant   9.401   HGD   DAILY HI   19/31/2016   Flau, in candol are then treatment plant   9.402   HGD   DAILY HI   19/30/2016   Flau, in candol are then treatment plant   9.202   HGD   DAILY HI   19/31/2016   Flau, in candol are then treatment plant   9.202   HGD   DAILY HI   19/31/2016   Flau, in candol are then treatment plant   9.202   HGD   DAILY HI   19/31/2017   Flau, in candol are then treatment plant   9.202   HGD   DAILY HI   19/31/2017   Flau, in candol are then treatment plant   9.415   HGD   DAILY HI   19/31/2017   Flau, in candol are then treatment plant   9.415   HGD   DAILY HI   19/31/2017   Flau, in candol are then treatment plant   9.415   HGD   DAILY HI   19/31/2017   Flau, in candol are then treatment plant   9.415   HGD   DAILY HI   19/31/2017   Flau, in candol are then treatment plant   9.415   HGD   DAILY HI   19/31/2017   Flau, in candol are then treatment plant   9.213   HGD   DAILY HI   19/31/2017   Flau, in candol are then treatment plant   9.213   HGD   DAILY HI   19/31/2017   Flau, in candol are then treatment plant   9.213   HGD   DAILY HI   19/31/2017   Flau, in candol are then treatment plant   9.213   HGD   DAILY HI   19/31/2017   Flau, in candol are then treatment plant   9.213   HGD   DAILY HI   19/31/2017   Flau, in candol are then treatment plant   9.213   HGD   DAILY HI   19/31/2017   Flau, in candol are then treatment plant   9.213   HGD   DAILY HI   19/31/2017   Flau, in candol are then treatment plant   9.213   HGD   DAILY HI   19/31/2017   Flau, in candol are then treatment plant   9.213   HGD   DAILY HI                                                                                                                                                                                                                                                                              | 0#/31/2016                              | Flow, in conduitor thru troatmont plant  | 0.065  | MGD   | MO AVG      |
| 997942915   Fins., in conduit or then transmit plant   9-671   MGD   DAILY MG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 00/31/2016                              | Flaw, in canduit ar thru treatment plant | 0.099  | MGD   | DAILYMX     |
| 1973/12916   Flau, in candoit or thrust ventionate plant   4.649   MGD   MO.N/G   1973/12916   Flau, in candoit or thrust ventionate plant   4.649   MGD   DAILYTHI   1973/12916   Flau, in candoit or thrust ventionate plant   4.559   MGD   MO.N/G   1973/12916   Flau, in candoit or thrust ventionate plant   4.240   MGD   MGD   1273/12916   Flau, in candoit or thrust ventionate plant   4.649   MGD   MGD   1273/12917   Flau, in candoit or thrust ventionate plant   4.649   MGD   MGD   1273/12917   Flau, in candoit or thrust ventionate plant   4.649   MGD   MGD   1273/12917   Flau, in candoit or thrust ventionate plant   4.649   MGD   MGD   1273/12917   Flau, in candoit or thrust ventionate plant   4.749   MGD   MGD   1273/12917   Flau, in candoit or thrust ventionate plant   4.749   MGD   MGD   1273/12917   Flau, in candoit or thrust ventionate plant   4.749   MGD   MGD   1273/12917   Flau, in candoit or thrust ventionate plant   4.749   MGD   MGD   1273/12917   Flau, in candoit or thrust ventionate plant   4.749   MGD   MGD   1273/12917   Flau, in candoit or thrust ventionate plant   4.749   MGD   MGD   1273/12917   Flau, in candoit or thrust ventionate plant   4.749   MGD   MGD   1273/12917   Flau, in candoit or thrust ventionate plant   4.749   MGD   MGD   1273/12917   Flau, in candoit or thrust ventionate plant   4.749   MGD   MGD   1273/12917   Flau, in candoit or thrust ventionate plant   4.749   MGD   MGD   1273/12917   Flau, in candoit or thrust ventionate plant   4.749   MGD   MGD   1273/12917   Flau, in candoit or thrust ventionate plant   4.749   MGD   MGD   1273/12917   Flau, in candoit or thrust ventionate plant   4.749   MGD   MGD   1273/12917   Flau, in candoit or thrust ventionate plant   4.749   MGD   MGD   1273/12917   Flau, in candoit or thrust ventionate plant   4.749   MGD   MGD   1273/12917   Flau, in candoit or thrust ventionate plant   4.749   MGD   MGD   1273/12917   Flau, in candoit or thrust ventionate plant   4.749   MGD   1273/12917   Flau, in candoit or thrust ventionate plant   4.749   |                                         |                                          |        |       |             |
| 1973   1226   Fins., in conduit or thrust restment plant   1.6.75   MGD   DAILY ME                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                         | Flow, in conduit or thru treatment plant | 0.071  | MGD   |             |
| 1923   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925   1925      |                                         |                                          |        |       |             |
| 1979-972-916   Fins., in conduit or thrust restment plant   9.124   MIGD   DAILY MIG   122-912-916   Fins., in conduit or thrust restment plant   9.485   MIGD   MIGNEY   122-912-917   Fins., in conduit or thrust restment plant   9.485   MIGD   DAILY MIG   122-912-917   Fins., in conduit or thrust restment plant   9.485   MIGD   MIGNEY   122-912-917   Fins., in conduit are thrust restment plant   9.486   MIGD   MIGNEY   122-912-917   Fins., in conduit are thrust restment plant   9.486   MIGD   MIGNEY   122-912-917   Fins., in conduit are thrust restment plant   9.486   MIGD   MIGNEY   123-912-917   Fins., in conduit or thrust restment plant   9.281   MIGD   MIGNEY   123-912-917   Fins., in conduit or thrust restment plant   9.281   MIGD   MIGNEY   123-912-917   Fins., in conduit or thrust restment plant   9.281   MIGD   MIGNEY   123-912-917   Fins., in conduit or thrust restment plant   9.281   MIGD   MIGNEY   123-912-917   Fins., in conduit or thrust restment plant   9.281   MIGD   MIGNEY   123-912-917   Fins., in conduit or thrust restment plant   9.281   MIGD   MIGNEY   123-912-917   MIGNEY   MIGNEY   MIGNEY   MIGNEY   MIGNEY   123-912-917   MIGNEY      |                                         |                                          |        |       |             |
| 12/31/2916   Flau, in candular or thrust restaurch plant   4.459   MGD   MG AVG   12/231/2916   Flau, in candular thrust vestaurch plant   4.459   MGD   DAILLYMS   19/231/2917   Flau, in candular thrust vestaurch plant   4.749   MGD   DAILLYMS   19/231/2917   Flau, in candular or thrust vestaurch plant   4.749   MGD   DAILLYMS   19/231/2917   Flau, in candular thrust vestaurch plant   4.749   MGD   DAILLYMS   19/231/2917   Flau, in candular thrust vestaurch plant   4.749   MGD   DAILLYMS   19/231/2917   Flau, in candular thrust vestaurch plant   4.749   MGD   DAILLYMS   19/231/2917   Flau, in candular thrust vestaurch plant   4.749   MGD   DAILLYMS   19/231/2917   Flau, in candular thrust vestaurch plant   4.749   MGD   DAILLYMS   19/231/2917   Flau, in candular thrust vestaurch plant   4.749   MGD   MGD   MGD   19/23/331/2917   Flau, in candular thrust vestaurch plant   4.749   MGD   MGD   MGD   19/23/331/2917   Flau, in candular thrust vestaurch plant   4.749   MGD    |                                         |                                          |        |       |             |
| 12/31/2016   Flau, in candoit or thrust volument plant   0.485   MGD   DAILY MR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                                          | _      |       |             |
| 1923  12917   Flau, in conduit or thrust variances plant   9.213   MGD   MOANG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                         |                                          |        |       |             |
| 91/31/2017   Flau, in candoit at that treatment plant   9.744   MGD   DAILY MS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                         |                                          |        |       |             |
| 922212937         Flau, in candwise when treatment plant         9.159         HSD         HSD         HSD         HSD         HSD         HSD         HSD         DAILY HS           922312937         Flau, in candwise when two tentment plant         9.251         HSD         HSD         HSD         HSD         HSD         HSD         HSD         HSD         DAILY HS           922312937         Flau, in candwise when two treatment plant         9.253         HSD         DAILY HS           943922937         Flau, in candwise when two treatments plant         9.259         HSD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                         |                                          | _      |       |             |
| 02/28/2807         Flau, in candult are thrust verticated plant         0.291         MGD         DAILYMI           03/29/2807         Flau, in candult are thrust verticated plant         0.423         MGD         MGD         MOAVG           04/20/2807         Flau, in candult are thrust verticated plant         0.452         MGD         DAILYMI           04/20/2807         Flau, in candult are thrust verticated plant         0.299         MGD         MOAVG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                         |                                          |        |       |             |
| 03/31/2017         Flau, in candular thrutroatmost plant         0.213         MGD         MOAVG           03/31/2017         Flau, in candular thrutroatmost plant         0.452         MGD         DAILLY MK           04/30/2017         Flau, in candular thrutroatmost plant         0.259         MGD         MOAVG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                         |                                          |        |       |             |
| 03/31/2017         Flau, in conduiter thru treatment plant         0.452         MGD         DAILYMX           04/30/2017         Flau, in conduiter thru treatment plant         0.299         MGD         MO AVG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                         |                                          |        |       |             |
| 04/30/2017 Flau, in canduit arthru troatmont plant 0.299 MGD MOAVG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                         |                                          |        |       |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                                          | _      |       |             |
| 04f30f2017 Flau, in canduit ar thru troatmont plant 0.711 MGD DAILYMX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                         |                                          | _      |       |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 04/30/2017                              | Flaw, in canduit ar thru troatmont plant | 0.711  | MGD   | DAILYMX     |

| Monitoring<br>Period End<br>Date | Parameter                                            | DMR<br>Value | Limit<br>Unit | Statistical<br>Base | Pe | donitoring<br>Period End<br>Date | Parameter                                      | DMR<br>Value   | Limit<br>Unit | Statistical<br>Base | Monitoring Period<br>End Date | Parameter                                      | DMR<br>Value  | Limit<br>Unit | Statistical<br>Base |     | Monitoring Period<br>End Date | Parameter                                          | DMR<br>Value    | Limit<br>Unit | Statistical<br>Base | Ī   | Monitoring Period<br>End Date | Parameter                                          |         | imit S<br>Jait | Statistical<br>Base |
|----------------------------------|------------------------------------------------------|--------------|---------------|---------------------|----|----------------------------------|------------------------------------------------|----------------|---------------|---------------------|-------------------------------|------------------------------------------------|---------------|---------------|---------------------|-----|-------------------------------|----------------------------------------------------|-----------------|---------------|---------------------|-----|-------------------------------|----------------------------------------------------|---------|----------------|---------------------|
| 06/30/2013                       | Chlorine, total residual                             | 0.23         | mg/L          | INST MAX            |    | 6/30/2013                        | B0D, 5-day, 20 deg. C                          | 48.7           | mg/L          | M0 AVG              | 01/31/2015                    | B0D, 5-day, 20 deg. C                          | 52.0          | mg/L          | M0 AVG              |     | 06/30/2013                    | Solids, total suspended                            | 91.9            | mg/L          | M0 AVG              |     | 01/31/2015                    | Solids, total suspended                            | 131.0 п | ng/L           | MO AVG              |
| 07/31/2013                       | Chlorine, total residual                             | 0.23         | mg/L          | INST MAX            | 06 | 6/30/2013                        | BOD, 5-day, 20 dag. C                          | 88.4           | mg/L          | DAILY MX            | 01/31/2015                    | BOD, 5-day, 20 dag. C                          | 77.0          | mg/L          | DAILY MX            |     | 06/30/2013                    | Solids, total suspended                            | 174.0           | mg/L          | DAILY MX            |     | 01/31/2015                    | Solids, total suspended                            | 272.0 m | ng/L [         | DAILY MX            |
| 08/31/2013                       | Chlorine, total residual                             | 0.23         | mg/L          | INST MAX            |    | 7/31/2013                        | B0D, 5-day, 20 deg. C                          | 72.3           | mg/L          | M0 AVG              | 02/28/2015                    | BOD, 5-day, 20 deg. C                          | 57.0          | mg/L          | M0 AVG              |     | 07/31/2013                    | Solids, total suspended                            | 92.6            | mg/L          | M0 AVG              |     | 02/28/2015                    | Solids, total suspended                            |         |                | MO AVG              |
| 09/30/2013                       | Chlorine, total residual                             | 0.28         | mg/L          | INST MAX            |    | 7/31/2013                        | B0D, 5-day, 20 deg. C                          | 108.4          | mg/L          | DAILY MX            | 02/28/2015                    | BOD, 5-day, 20 deg. C                          | 108.0         | mg/L          | DAILY MX            |     | 07/31/2013                    | Solids, total suspended                            | 363.0           |               | DAILY MX            |     | 02/28/2015                    | Solids, total suspended                            |         |                | DAILY MX            |
| 10/31/2013                       | Chlorine, total residual                             | 0.13         | mg/L          | INST MAX            |    | 8/31/2013                        | BOD, 5-day, 20 dag. C                          | 119.3          | mg/L          | MO AVG              |                               | BOD, 5-day, 20 dag. C                          | 57.0          | mg/L          | M0 AVG              |     | 08/31/2013                    | Solids, total suspended                            | 134.0           |               | M0 AVG              |     | 03/31/2015                    | Solids, total suspended                            |         |                | MO AVG              |
| 11/30/2013                       | Chlorine, total residual                             | 0.19         | mg/L          | INST MAX            |    | 8/31/2013                        | BOD, 5-day, 20 deg. C                          | 179.8          | mg/L          | DAILY MX            | 03/31/2015                    | BOD, 5-day, 20 deg. C                          | 103.0         | mg/L          | DAILY MX            |     | 08/31/2013                    | Solids, total suspended                            | 231.0           | mg/L          | DAILY MX            |     | 03/31/2015                    | Solids, total suspended                            |         |                | DAILY MX            |
| 12/31/2013                       | Chlorine, total residual<br>Chlorine, total residual | 0.02         | mg/L          | INST MAX            |    | 9/30/2013                        | BOD, 5-day, 20 deg. C<br>BOD, 5-day, 20 deg. C | 104.0<br>203.0 | mg/L          | MO AVG<br>DAILY MX  | 04/30/2015                    | BOD, 5-day, 20 deg. C<br>BOD, 5-day, 20 deg. C | 97.4<br>155.0 | mg/L<br>mg/L  | MO AVG<br>DAILY MX  |     | 09/30/2013                    | Solids, total suspended<br>Solids, total suspended | 90.0<br>164.0   |               | MO AVG<br>DAILY MX  |     | 04/30/2015                    | Solids, total suspended<br>Solids, total suspended |         |                | MO AVG<br>DAILY MX  |
| 02/28/2014                       | Chlorine, total residual                             | 0.27         | mg/L<br>mg/L  | INST MAX            |    | 0/31/2013                        | BOD, 5-day, 20 deg. C                          | 92.0           | mg/L<br>mg/L  | MO AVG              | 05/31/2015                    | BOD, 5-day, 20 deg. C                          | 91.0          | mg/L<br>mg/L  | MO AVG              |     | 10/31/2013                    | Solids, total suspended                            | 151.0           |               | MO AVG              |     | 05/31/2015                    | Solids, total suspended                            |         |                | MO AVG              |
| 03/31/2014                       | Chlorine, total residual                             | 0.28         | mg/L          | INST MAX            |    | 0/31/2013                        | BOD, 5-day, 20 deg. C                          | 138.0          | mg/L          | DAILY MX            | 05/31/2015                    | BOD, 5-day, 20 deg. C                          | 132.0         | mg/L          | DAILY MX            |     | 10/31/2013                    | Solids, total suspended                            | 332.0           | mg/L          | DAILY MX            |     | 05/31/2015                    | Solids, total suspended                            |         |                | DAILY MX            |
| 04/30/2014                       | Chlorine, total residual                             | 0.28         | mg/L          | INST MAX            |    | 1/30/2013                        | BOD, 5-day, 20 deg. C                          | 121.2          | mg/L          | MO AVG              | 06/30/2015                    | BOD, 5-day, 20 deg. C                          | 133.0         | mg/L          | MO AVG              |     | 11/30/2013                    | Solids, total suspended                            | 203.2           |               | MO AVG              | - 1 | 06/30/2015                    | Solids, total suspended                            |         |                | MO AVG              |
| 05/31/2014                       | Chlorine, total residual                             | 0.24         | mg/L          | INST MAX            | 11 | 1/30/2013                        | BOD, 5-day, 20 deg. C                          | 193.1          | mg/L          | DAILY MX            | 06/30/2015                    | BOD, 5-day, 20 deg. C                          | 170.0         | mq/L          | DAILY MX            |     | 11/30/2013                    | Solids, total suspended                            | 782.0           |               | DAILY MX            |     | 06/30/2015                    | Solids, total suspended                            |         |                | DAILY MX            |
| 06/30/2014                       | Chlorine, total residual                             | 0.12         |               | INST MAX            | 12 | 2/31/2013                        | B0D, 5-day, 20 deg. C                          | 71.2           | mg/L          | M0 AVG              | 07/31/2015                    | B0D, 5-day, 20 deg. C                          | 64.0          | mg/L          | M0 AVG              |     | 12/31/2013                    | Solids, total suspended                            | 75.9            | mg/L          | M0 AVG              |     | 07/31/2015                    | Solids, total suspended                            |         |                | MO AVG              |
| 07/31/2014                       | Chlorine, total residual                             | 0.18         | mg/L          | INST MAX            | 12 | 2/31/2013                        | BOD, 5-day, 20 dag. C                          | 89.6           | mg/L          | DAILY MX            | 07/31/2015                    | BOD, 5-day, 20 dag. C                          | 136.0         | mg/L          | DAILY MX            |     | 12/31/2013                    | Solids, total suspended                            | 155.0           | mg/L          | DAILY MX            |     | 07/31/2015                    | Solids, total suspended                            | 497.0 m | ng/L [         | DAILY MX            |
| 08/31/2014                       | Chlorine, total residual                             | 0.15         | mg/L          | INST MAX            | 01 | 1/31/2014                        | B0D, 5-day, 20 deg. C                          | 75.7           | mg/L          | M0 AVG              | 08/31/2015                    | BOD, 5-day, 20 deg. C                          | 114.0         | mg/L          | M0 AVG              |     | 01/31/2014                    | Solids, total suspended                            | 83.0            | mg/L          | M0 AVG              |     | 08/31/2015                    | Solids, total suspended                            | 233.0 п | ng/L           | MO AVG              |
| 09/30/2014                       | Chlorine, total residual                             | 0.21         | mg/L          | INST MAX            | 01 | 11/31/2014                       | B0D, 5-day, 20 deg. C                          | 173.2          | mg/L          | DAILY MX            | 08/31/2015                    | BOD, 5-day, 20 deg. C                          | 132.0         | mg/L          | DAILY MX            |     | 01/31/2014                    | Solids, total suspended                            | 237.0           |               | DAILY MX            |     | 08/31/2015                    | Solids, total suspended                            |         |                | DAILY MX            |
| 10/31/2014                       | Chlorine, total residual                             | 0.03         |               | INST MAX            |    | 2/28/2014                        | BOD, 5-day, 20 deg. C                          | 102.0          | mg/L          | MO AVG              | 09/30/2015                    | BOD, 5-dsy, 20 deg. C                          | 128.0         | mg/L          | M0 AVG              |     | 02/28/2014                    | Solids, total suspended                            | 79.0            | mg/L          | M0 AVG              |     | 09/30/2015                    | Solids, total suspended                            |         |                | MO AVG              |
| 11/30/2014                       | Chlorine, total residual                             | 0.06         | mg/L          | INST MAX            |    | 2/28/2014                        | B0D, 5-day, 20 deg. C                          | 230.0          | mg/L          | DAILY MX            | 09/30/2015                    | BOD, 5-day, 20 deg. C                          | 164.0         | mg/L          | DAILY MX            |     | 02/28/2014                    | Solids, total suspended                            | 248.0           |               | DAILY MX            |     | 09/30/2015                    | Solids, total suspended                            |         |                | DAILY MX            |
| 12/31/2014                       | Chlorine, total residual                             | 0.12         | mg/L          | INST MAX            |    | 3/31/2014                        | B0D, 5-day, 20 deg. C                          | 86.5           | mg/L          | MO AVG              | 10/31/2015                    | B0D, 5-day, 20 deg. C                          | 80.0          | mg/L          | M0 AVG              |     | 03/31/2014                    | Solids, total suspended                            | 116.9           | mg/L          | M0 AVG              |     | 10/31/2015                    | Solids, total suspended                            |         |                | MO AVG              |
| 01/31/2015                       | Chlorine, total residual                             | 0.21         | mg/L          | INST MAX            |    | 3/31/2014                        | BOD, 5-day, 20 dag. C                          | 150.0          | mg/L          | DAILY MX            | 10/31/2015                    | BOD, 5-day, 20 deg. C                          | 145.0         | mg/L          | DAILY MX            |     | 03/31/2014                    | Solids, total suspended                            | 243.0           |               | DAILY MX            |     | 10/31/2015                    | Solids, total suspended                            |         |                | DAILY MX            |
| 02/28/2015                       | Chlorine, total residual                             | 0.15         | mg/L          | INST MAX            |    | 4/30/2014                        | BOD, 5-day, 20 deg. C                          | 82.4           | mg/L          | MO AVG              | 11/30/2015                    | BOD, 5-day, 20 deg. C                          | 87.0          | mg/L          | M0 AVG              |     | 04/30/2014                    | Solids, total suspended                            | 240.0           |               | M0 AVG              |     | 11/30/2015                    | Solids, total suspended                            |         |                | MO AVG              |
| 03/31/2015                       | Chlorine, total residual                             | 0.28         | mg/L          | INST MAX            |    | 4/30/2014                        | BOD, 5-day, 20 deg. C                          | 157.5          | mg/L          | DAILY MX            | 11/30/2015                    | BOD, 5-day, 20 deg. C                          | 131.0         | mg/L          | DAILY MX            |     | 04/30/2014                    | Solids, total suspended                            | 673.0           | mg/L          | DAILY MX            |     | 11/30/2015                    | Solids, total suspended                            |         |                | DAILY MX            |
| 04/30/2015                       | Chlorine, total residual                             | 0.25         | mg/L          | INST MAX            |    | 5/31/2014                        | BOD, 5-day, 20 deg. C                          | 110.6          | mg/L          | MO AVG<br>DAILY MX  | 12/31/2015                    | BOD, 5-day, 20 dag. C                          | 112.0         | mg/L          | MO AVG<br>DAILY MX  |     | 05/31/2014                    | Solids, total suspended                            | 702.2<br>3627.0 | mg/L          | M0 AVG<br>DAILY MX  | _   | 12/31/2015                    | Solids, total suspended                            | 337.0 m |                | MO AVG<br>DAILY MX  |
| 05/31/2015<br>06/30/2015         | Chlorine, total residual<br>Chlorine, total residual | 0.05         | mg/L<br>mg/L  | INST MAX            |    | 5/31/2014<br>6/30/2014           | BOD, 5-day, 20 deg. C<br>BOD, 5-day, 20 deg. C | 182.5<br>69.3  | mg/L<br>mg/L  | MO AVG              | 12/31/2015<br>01/31/2016      | BOD, 5-day, 20 deg. C<br>BOD, 5-day, 20 deg. C | 162.0<br>95.0 | mg/L<br>mg/L  | MO AVG              |     | 05/31/2014<br>06/30/2014      | Solids, total suspended<br>Solids, total suspended | 30.4            | mg/L<br>mg/L  | MO AVG              |     | 12/31/2015<br>01/31/2016      | Solids, total suspended<br>Solids, total suspended |         |                | MO AVG              |
| 07/31/2015                       | Chlorine, total residual                             | 0.04         | mg/L          | INST MAX            |    | 6/30/2014                        | BOD, 5-day, 20 deg. C                          | 86.8           | mg/L          | DAILY MX            | 01/31/2016                    | BOD, 5-day, 20 deg. C                          | 150.0         | mg/L          | DAILY MX            |     | 06/30/2014                    | Solids, total suspended                            | 140.0           |               | DAILY MX            | _   | 01/31/2016                    | Solids, total suspended                            |         |                | DAILY MX            |
| 08/31/2015                       | Chlorine, total residual                             | 0.04         | mg/L          | INST MAX            |    | 7/31/2014                        | BOD, 5-day, 20 deg. C                          | 61.0           | mg/L          | MO AVG              | 02/29/2016                    | BOD, 5-day, 20 deg. C                          | 85.0          | mg/L          | MO AVG              |     | 07/31/2014                    | Solids, total suspended                            | 30.0            | mg/L          | MO AVG              |     | 02/29/2016                    | Solids, total suspended                            |         |                | MO AVG              |
| 09/30/2015                       | Chlorine, total residual                             | 0.05         | mg/L          | INST MAX            |    | 7/31/2014                        | B0D, 5-day, 20 deg. C                          | 133.0          | mg/L          | DAILY MX            | 02/29/2016                    | BOD, 5-day, 20 deg. C                          | 117.0         | mg/L          | DAILY MX            |     | 07/31/2014                    | Solids, total suspended                            | 293.0           |               | DAILY MX            |     | 02/29/2016                    | Solids, total suspended                            |         |                | DAILY MX            |
| 10/31/2015                       | Chlorine, total residual                             | 0.06         | mg/L          | INST MAX            | 08 | 8/31/2014                        | BOD, 5-day, 20 deg. C                          | 63.0           | mg/L          | MO AVG              | 03/31/2016                    | BOD, 5-day, 20 deg. C                          | 85.0          | mg/L          | MO AVG              |     | 08/31/2014                    | Solids, total suspended                            | 141.0           | mg/L          | MO AVG              |     | 03/31/2016                    | Solids, total suspended                            |         |                | MO AVG              |
| 11/30/2015                       | Chlorine, total residual                             | 0.22         | mg/L          | INST MAX            | 08 | 8/31/2014                        | BOD, 5-day, 20 deg. C                          | 92.0           | mg/L          | DAILY MX            | 03/31/2016                    | BOD, 5-day, 20 deg. C                          | 122.0         | mg/L          | DAILY MX            |     | 08/31/2014                    | Solids, total suspended                            | 361.0           |               | DAILY MX            |     | 03/31/2016                    | Solids, total suspended                            | 734.0 m | ng/L [         | DAILY MX            |
| 12/31/2015                       | Chlorine, total residual                             | 0.04         | mg/L          | INST MAX            | 03 | 9/30/2014                        | B0D, 5-day, 20 deg. C                          | 73.5           | mg/L          | M0 AVG              | 04/30/2016                    | B0D, 5-day, 20 deg. C                          | 105.0         | mg/L          | M0 AVG              |     | 09/30/2014                    | Solids, total suspended                            | 206.1           | mg/L          | M0 AVG              |     | 04/30/2016                    | Solids, total suspended                            | 255.0 п | ng/L           | M0 AVG              |
| 01/31/2016                       | Chlorine, total residual                             | 0.05         | mg/L          | INST MAX            |    | 9/30/2014                        | B0D, 5-dsy, 20 deg. C                          | 120.0          | mg/L          | DAILY MX            | 04/30/2016                    | BOD, 5-day, 20 deg. C                          | 127.0         | mg/L          | DAILY MX            |     | 09/30/2014                    | Solids, total suspended                            | 546.0           |               | DAILY MX            |     | 04/30/2016                    | Solids, total suspended                            |         |                | DAILY MX            |
| 02/29/2016                       | Chlorine, total residual                             | 0.02         | mg/L          | INST MAX            |    | 0/31/2014                        | BOD, 5-day, 20 deg. C                          | 88.0           | mg/L          | MO AVG              | 05/31/2016                    | BOD, 5-day, 20 deg. C                          | 104.0         | mg/L          | M0 AVG              |     | 10/31/2014                    | Solids, total suspended                            | 259.0           |               | M0 AVG              |     | 05/31/2016                    | Solids, total suspended                            |         |                | MO AVG              |
| 03/31/2016                       | Chlorine, total residual                             | 0.02         | mg/L          | INST MAX            |    | 0/31/2014                        | B0D, 5-day, 20 deg. C                          | 121.0          | mg/L          | DAILY MX            | 05/31/2016                    | B0D, 5-day, 20 deg. C                          | 136.0         | mg/L          | DAILY MX            |     | 10/31/2014                    | Solids, total suspended                            |                 |               | DAILY MX            |     | 05/31/2016                    | Solids, total suspended                            |         |                | DAILY MX            |
| 04/30/2016                       | Chlorine, total residual                             | 0.04         | mg/L          | INST MAX            |    | 1/30/2014                        | B0D, 5-day, 20 deg. C                          | 114.0          | mg/L          | MO AVG              | 06/30/2016                    | BOD, 5-day, 20 deg. C                          | 79.0          | mg/L          | M0 AVG              |     | 11/30/2014                    | Solids, total suspended                            | 299.0           | mg/L          | M0 AVG              |     | 06/30/2016                    | Solids, total suspended                            |         |                | MO AVG              |
| 05/31/2016                       | Chlorine, total residual                             | 0.02         | mg/L          | INST MAX            |    | 1/30/2014                        | BOD, 5-day, 20 deg. C                          | 153.0          | mg/L          | DAILY MX            | 06/30/2016                    | BOD, 5-day, 20 deg. C                          | 107.0         | mg/L          | DAILY MX            |     | 11/30/2014                    | Solids, total suspended                            | 422.0           |               | DAILY MX            |     | 06/30/2016                    | Solids, total suspended                            |         | -              | DAILY MX            |
| 06/30/2016                       | Chlorine, total residual                             | 0.06         | mg/L          | INST MAX            |    | 2/31/2014                        | BOD, 5-day, 20 deg. C                          | 86.0           | mg/L          | MO AVG              | 07/31/2016                    | BOD, 5-day, 20 deg. C                          | 78.0          | mg/L          | M0 AVG              |     | 12/31/2014                    | Solids, total suspended                            | 118.0           |               | M0 AVG              |     | 07/31/2016                    | Solids, total suspended                            |         |                | MO AVG              |
| 07/31/2016                       | Chlorine, total residual                             | 0.04         | mg/L          | INST MAX            | 12 | 2/31/2014                        | B0D, 5-day, 20 deg. C                          | 148.0          | mg/L          | DAILY MX            | 07/31/2016<br>08/31/2016      | BOD, 5-day, 20 deg. C                          | 109.0         | mg/L          | DAILY MX<br>MD AVG  |     | 12/31/2014                    | Solids, total suspended                            | 187.0           | mg/L          | DAILY MX            |     | 07/31/2016                    | Solids, total suspended                            |         |                | DAILY MX            |
| 08/31/2016                       | Chlorine, total residual                             | 0.23         | mg/L          |                     |    |                                  |                                                |                |               |                     |                               | BOD, 5-day, 20 deg. C                          | 60.0          | mg/L          |                     |     |                               |                                                    |                 |               |                     |     | 08/31/2016                    | Solids, total suspended                            |         |                | MO AVG              |
| 09/30/2016<br>10/31/2016         | Chlorine, total residual<br>Chlorine, total residual | 0.23         | mg/L<br>mg/L  | INST MAX            |    |                                  |                                                |                |               |                     | 08/31/2016<br>09/30/2016      | BOD, 5-day, 20 deg. C<br>BOD, 5-day, 20 deg. C | 82.0<br>87.0  | mg/L<br>mg/L  | DAILY MX<br>MO AVG  |     |                               |                                                    |                 |               |                     |     | 08/31/2016<br>09/30/2016      | Solids, total suspended<br>Solids, total suspended |         |                | MO AVG              |
| 11/30/2016                       | Chlorine, total residual                             | 0.08         | mg/L          | INST MAX            | 1  |                                  |                                                |                |               |                     | 09/30/2016                    | BOD, 5-day, 20 deg. C                          | 125.0         | mg/L          | DAILY MX            |     |                               |                                                    |                 |               |                     | - 1 | 09/30/2016                    | Solids, total suspended                            |         |                | DAILY MX            |
| 12/31/2016                       | Chlorine, total residual                             | 0.00         | mg/L          | INST MAX            | 1  |                                  |                                                |                |               |                     | 10/31/2016                    | BOD, 5-day, 20 deg. C                          | 78.0          | mg/L          | MO AVG              | l . |                               |                                                    |                 |               |                     | - 1 | 10/31/2016                    | Solids, total suspended                            |         |                | MO AVG              |
| 01/31/2017                       | Chlorine, total regidual                             | 0.28         | mg/L          | INST MAX            | 1  |                                  |                                                |                |               |                     | 10/31/2016                    | BOD, 5-day, 20 deg, C                          | 115.0         | mg/L          | DAILY MX            | l . |                               |                                                    |                 |               |                     | - 1 | 10/31/2016                    | Solids, total suspended                            |         |                | DAILY MX            |
| 02/28/2017                       | Chlorine, total residual                             | 0.03         | mg/L          | INST MAX            |    |                                  |                                                |                |               |                     | 11/30/2016                    | BOD, 5-day, 20 deg. C                          | 99.0          | mg/L          | MO AVG              |     |                               |                                                    |                 |               |                     |     | 11/30/2016                    | Solids, total suspended                            |         |                | MO AVG              |
| 03/31/2017                       | Chlorine, total residual                             | 0.08         | mg/L          | INST MAX            |    |                                  |                                                |                |               |                     | 11/30/2016                    | BOD, 5-day, 20 deg. C                          | 136.0         | mg/L          | DAILY MX            | i   |                               |                                                    |                 |               |                     |     | 11/30/2016                    | Solids, total suspended                            | 388.0 п |                | DAILY MX            |
| 04/30/2017                       | Chlorine, total residual                             | 0.03         | mg/L          | INST MAX            |    |                                  |                                                |                |               |                     | 12/31/2016                    | BOD, 5-day, 20 dag. C                          | 90.0          | mg/L          | MO AVG              | 1   |                               |                                                    |                 |               |                     |     | 12/31/2016                    | Solids, total suspended                            |         |                | MO AVG              |
|                                  |                                                      |              |               |                     |    |                                  |                                                |                |               |                     | 12/31/2016                    | BOD, 5-day, 20 deg. C                          | 128.0         | mg/L          | DAILY MX            | 1   |                               |                                                    |                 |               |                     |     | 12/31/2016                    | Solids, total suspended                            | 107.0 п | ng/L [         | DAILY MX            |
|                                  |                                                      |              |               |                     |    |                                  |                                                |                |               |                     | 01/31/2017                    | BOD, 5-day, 20 deg. C                          | 80.0          | mg/L          | MO AVG              | i   |                               |                                                    |                 |               |                     |     | 01/31/2017                    | Solids, total suspended                            | 92.0 п  | ng/L           | M0 AVG              |
|                                  |                                                      |              |               |                     |    |                                  |                                                |                |               |                     | 01/31/2017                    | BOD, 5-day, 20 dag. C                          | 102.0         | mg/L          | DAILY MX            | l   |                               |                                                    |                 |               |                     |     | 01/31/2017                    | Solids, total suspended                            | 167.0 m | ng/L [         | DAILY MX            |
|                                  |                                                      |              |               |                     |    |                                  |                                                |                |               |                     | 02/28/2017                    | BOD, 5-day, 20 deg. C                          | 87.0          | mg/L          | M0 AVG              |     |                               |                                                    |                 |               |                     |     | 02/28/2017                    | Solids, total suspended                            | 124.0 m | ng/L           | MO AVG              |
|                                  |                                                      |              |               |                     |    |                                  |                                                |                |               |                     | 02/28/2017                    | BOD, 5-day, 20 deg. C                          | 122.0         | mg/L          | DAILY MX            |     |                               |                                                    |                 |               |                     |     | 02/28/2017                    | Solids, total suspended                            |         |                | DAILY MX            |
|                                  |                                                      |              |               |                     |    |                                  |                                                |                |               |                     | 03/31/2017                    | BOD, 5-day, 20 dag. C                          | 76.0          | mg/L          | M0 AVG              |     |                               |                                                    |                 |               |                     |     | 03/31/2017                    | Solids, total suspended                            |         | - 9            | MO AVG              |
|                                  |                                                      |              |               |                     |    |                                  |                                                |                |               |                     | 03/31/2017                    | BOD, 5-day, 20 deg. C                          | 124.0         | mg/L          | DAILY MX            |     |                               |                                                    |                 |               |                     |     | 03/31/2017                    | Solids, total suspended                            |         |                | DAILY MX            |
|                                  |                                                      |              |               |                     |    |                                  |                                                |                |               |                     | 04/30/2017                    | BOD, 5-day, 20 deg. C                          | 78.0          | mg/L          | M0 AVG              |     |                               |                                                    |                 |               |                     |     | 04/30/2017                    | Solids, total suspended                            |         |                | MO AVG              |
|                                  |                                                      |              |               |                     |    |                                  |                                                |                |               |                     | 04/30/2017                    | BOD, 5-dsy, 20 deg. C                          | 102.0         | mg/L          | DAILY MX            |     |                               |                                                    |                 |               |                     |     | 04/30/2017                    | Solids, total suspended                            | 193.0 п | ng/L [         | DAILY MX            |

| Monitorina |                                           | DMR   | Limit | Statistical | Monitorino | _                                        | DMR   | Limit | Statistical | Monitoring | _                           | DMR   | Limit | Statistic |
|------------|-------------------------------------------|-------|-------|-------------|------------|------------------------------------------|-------|-------|-------------|------------|-----------------------------|-------|-------|-----------|
| Period End | Parameter                                 | Value | Unit  | Base        | Period End |                                          | Value | Unit  | Base        | Period End | Parameter                   | Value | Unit  | Base      |
| 6/30/2013  | Flow, in conduit or thru treatment plant  | 0.279 | MGD   | M0 AVG      | 01/31/2015 | Flow, in conduit or thru treatment plant | 0.223 | MGD   | M0 AVG      | 06/30/2013 | BOD, 5-day, percent removal | 83.3  | 2     | MN % BN   |
| 06/30/2013 | Flow, in conduit or thru treatment plant  | 0.854 | MGD   | DAILY MX    | 01/31/2015 | Flow, in conduit or thru treatment plant | 0.682 | MGD   | DAILY MX    | 06/30/2013 | BOD, 5-day, percent removal | 89.0  | 2     | MO AV N   |
| 07/31/2013 | Flow, in conduit or thru treatment plant  | 0.236 | MGD   | M0 AVG      | 02/28/201  | Flow, in conduit or thru treatment plant | 0.237 | MGD   | M0 AVG      | 07/31/2013 | BOD, 5-day, percent removal | 84.0  | 2     | MN 2 RN   |
| 07/31/2013 | Flow, in conduit or thru treatment plant  | 0.679 | MGD   | DAILY MX    | 02/28/201  | Flow, in conduit or thru treatment plant | 0.434 | MGD   | DAILY MX    | 07/31/2013 | BOD, 5-day, percent removal | 91.3  | 2     | MO AV N   |
| 08/31/2013 | Flow, in conduit or thru treatment plant  | 0.116 | MGD   | MO AVG      | 03/31/201  | Flow, in conduit or thru treatment plant | 0.347 | MGD   | M0 AVG      | 08/31/2013 | BOD, 5-day, percent removal | 85.5  | 8     | MN 2 BN   |
| 08/31/2013 | Flow, in conduit or thru treatment plant  | 0.243 | MGD   | DAILY MX    | 03/31/201  | Flow, in conduit or thru treatment plant | 0.809 | MGD   | DAILY MX    | 08/31/2013 | BOD, 5-day, percent removal | 93.8  | 2     | MO AV I   |
| 09/30/2013 | Flow, in conduit or thru treatment plant  | 0.094 | MGD   | MO AVG      | 04/30/201  | Flow, in conduit or thru treatment plant | 0.250 | MGD   | MO AVG      | 09/30/2013 | BOD, 5-day, percent removal | 88.0  | 2     | MN % Rf   |
| 09/30/2013 | Flow, in conduit or thru treatment plant  | 0.164 | MGD   | DAILY MX    | 04/30/201  | Flow, in conduit or thru treatment plant | 0.572 | MGD   | DAILY MX    | 09/30/2013 | BOD, 5-day, percent removal | 94.0  | 2     | MO AV N   |
| 10/31/2013 | Flow, in conduit or thru treatment plant  | 0.073 | MGD   | MO AVG      | 05/31/201  | Flow, in conduit or thru treatment plant | 0.089 | MGD   | MO AVG      | 10/31/2013 | BOD, 5-day, percent removal | 88.0  | 2     | MN 2 RM   |
| 10/31/2013 | Flow, in conduit or thru treatment plant  | 0.110 | MGD   | DAILY MX    | 05/31/201  | Flow, in conduit or thru treatment plant | 0.113 | MGD   | DAILY MX    | 10/31/2013 | BOD, 5-day, percent removal | 93.0  | 2     | MO AV N   |
| 11/30/2013 | Flow, in conduit or thru treatment plant  | 0.115 | MGD   | MO AVG      | 06/30/201  | Flow, in conduit or thru treatment plant | 0.083 | MGD   | MO AVG      | 11/30/2013 | BOD, 5-day, percent removal | 92.1  | 2     | MN 2 BN   |
| 11/30/2013 | Flow, in conduit or thru treatment plant  | 0.735 | MGD   | DAILY MX    | 06/30/201  | Flow, in conduit or thru treatment plant | 0.159 | MGD   | DAILY MX    | 11/30/2013 | BOD, 5-day, percent removal | 96.0  | 2     | MO AV N   |
| 12/31/2013 | Flow, in conduit or thru treatment plant  | 0.388 | MGD   | MO AVG      | 07/31/201  | Flow, in conduit or thru treatment plant | 0.287 | MGD   | MO AVG      | 12/31/2013 | BOD, 5-day, percent removal | 82.3  | 2     | MN 2 BN   |
| 12/31/2013 | Flow, in conduit or thru treatment plant  | 0.963 | MGD   | DAILY MX    | 07/31/201  | Flow, in conduit or thru treatment plant | 0.896 | MGD   | DAILY MX    | 12/31/2013 | BOD, 5-day, percent removal | 94.8  | 2     | MO AV N   |
| 01/31/2014 | Flow, in conduit or thru treatment plant  | 0.231 | MGD   | MO AVG      | 08/31/201  | Flow, in conduit or thru treatment plant | 0.162 | MGD   | MO AVG      | 01/31/2014 | BOD, 5-day, percent removal | 88.2  | 2     | MN % RN   |
| 01/31/2014 | Flow, in conduit or thru treatment plant  | 0.625 | MGD   | DAILY MX    | 08/31/201  | Flow, in conduit or thru treatment plant | 0.557 | MGD   | DAILY MX    | 01/31/2014 | BOD, 5-day, percent removal | 92.4  | 2     | MO AV N   |
| 2/28/2014  | Flow, in conduit or thru treatment plant  | 0.352 | MGD   | MO AVG      | 09/30/201  | Flow, in conduit or thru treatment plant | 0.108 | MGD   | MO AVG      | 02/28/2014 | BOD, 5-day, percent removal | 82.9  | 2     | MN 2 BN   |
| 02/28/2014 | Flow, in conduit or thru treatment plant  | 0.796 | MGD   | DAILY MX    | 09/30/201  |                                          | 0.310 | MGD   | DAILY MX    | 02/28/2014 | BOD, 5-day, percent removal | 92.8  | 2     | MO AV N   |
| 03/31/2014 | Flow, in conduit or thru treatment plant  | 0.150 | MGD   | MO AVG      | 10/31/2015 |                                          | 0.166 | MGD   | MO AVG      | 03/31/2014 | BOD, 5-day, percent removal | 89.6  | 2     | MN 2 RN   |
| 03/31/2014 | Flow, in conduit or thru treatment plant  | 0.237 | MGD   | DAILY MX    | 10/31/2015 | Flow, in conduit or thru treatment plant | 0.342 | MGD   | DAILY MX    | 03/31/2014 | BOD, 5-day, percent removal | 92.6  | ×     | MO AV N   |
| 04/30/2014 | Flow, in conduit or thru treatment plant  | 0.156 | MGD   | MO AVG      | 11/30/2015 | Flow, in conduit or thru treatment plant | 0.192 | MGD   | MO AVG      | 04/30/2014 | BOD, 5-day, percent removal | 80.8  | - 2   | MN % RN   |
| 04/30/2014 | Flow, in conduit or thru treatment plant  | 0.585 | MGD   | DAILY MX    | 11/30/2015 | -                                        | 0.589 | MGD   | DAILY MX    | 04/30/2014 | BOD, 5-day, percent removal | 91.1  | - %   | MO AV N   |
| 05/31/2014 | Flow, in conduit or thru treatment plant  | 0.114 | MGD   | MO AVG      | 12/31/2015 |                                          | 0.367 | MGD   | MO AVG      | 05/31/2014 | BOD, 5-day, percent removal | 82.1  | - %   | MN % BN   |
| 05/31/2014 | Flow, in conduit or thru treatment plant  | 0.270 | MGD   | DAILY MX    | 12/31/2015 |                                          | 0.914 | MGD   | DAILY MX    | 05/31/2014 | BOD, 5-day, percent removal | 90.3  | - %   | MO AV N   |
| 6/30/2014  | Flow, in conduit or thru treatment plant  | 0.110 | MGD   | MO AVG      | 01/31/2016 |                                          | 0.222 | MGD   | MO AVG      | 06/30/2014 | BOD, 5-day, percent removal | 85.4  | - 2   | MN 2 BN   |
| 6/30/2014  | Flow, in conduit or thru treatment plant  | 0.324 | MGD   | DAILY MX    | 01/31/2016 |                                          | 0.538 | MGD   | DAILY MX    | 06/30/2014 | BOD, 5-day, percent removal | 91.2  | 2     | MO AV N   |
| 07/31/2014 | Flow, in conduit or thru treatment plant  | 0.111 | MGD   | MO AVG      | 02/29/201  |                                          | 0.326 | MGD   | MO AVG      | 07/31/2014 | BOD, 5-day, percent removal | 80.8  | - 2   | MN 2 BN   |
| 07/31/2014 | Flow, in conduit or thru treatment plant  | 0.318 | MGD   | DAILY MX    | 02/29/201  | <u> </u>                                 | 0.704 | MGD   | DAILY MX    | 07/31/2014 | BOD, 5-day, percent removal | 89.4  | 2     | MO AV N   |
| 08/31/2014 | Flow, in conduit or thru treatment plant  | 0.146 | MGD   | MO AVG      | 03/31/2010 | <u> </u>                                 | 0.164 | MGD   | MO AVG      | 08/31/2014 | BOD, 5-day, percent removal | 79.1  | - 2   | MN % BN   |
| 08/31/2014 | Flow, in conduit or thru treatment plant  | 0.364 | MGD   | DAILY MX    | 03/31/2010 | <u> </u>                                 | 0.301 | MGD   | DAILY MX    | 08/31/2014 | BOD, 5-day, percent removal | 88.1  | - 2   | MOAVI     |
| 09/30/2014 | Flow, in conduit or thru treatment plant  | 0.120 | MGD   | MO AVG      | 04/30/201  | <u> </u>                                 | 0.153 | MGD   | MO AVG      | 09/30/2014 | BOD, 5-day, percent removal | 87.6  | 2     | MN % BN   |
| 09/30/2014 | Flow, in conduit or thru treatment plant  | 0.321 | MGD   | DAILY MX    | 04/30/201  |                                          | 0.407 | MGD   | DAILY MX    | 09/30/2014 | BOD, 5-day, percent removal | 91.8  | 2     | MO AV N   |
| 10/31/2014 | Flow, in conduit or thru treatment plant  | 0.130 | MGD   | MO AVG      | 05/31/2016 | <u> </u>                                 | 0.085 | MGD   | MO AVG      | 10/31/2014 | BOD, 5-day, percent removal | 84.3  | 2     | MN % BN   |
| 10/31/2014 | Flow, in conduit or thru treatment plant  | 0.617 | MGD   | DAILY MX    | 05/31/2016 |                                          | 0.126 | MGD   | DAILY MX    | 10/31/2014 | BOD, 5-day, percent removal | 91.2  | 2     | MO AV N   |
| 11/30/2014 | Flow, in conduit or thru treatment plant  | 0.116 | MGD   | MO AVG      | 06/30/201  |                                          | 0.113 | MGD   | MO AVG      | 11/30/2014 | BOD, 5-day, percent removal | 83.8  | 2     | MN 3 RN   |
| 11/30/2014 | Flow, in conduit or thru treatment plant  | 0.384 | MGD   | DAILY MX    | 06/30/201  | <u> </u>                                 | 0.276 | MGD   | DAILY MX    | 11/30/2014 | BOD, 5-day, percent removal | 91.9  | 2     | MO AV N   |
| 12/31/2014 | Flow, in conduit or thru treatment plant  | 0.183 | MGD   | MO AVG      | 07/31/2016 |                                          | 0.072 | MGD   | MO AVG      | 12/31/2014 | BOD, 5-day, percent removal | 82.5  | 2     | MN % RN   |
| 12/31/2014 | Flow, in conduit or thru treatment plant  | 0.549 | MGD   | DAILY MX    | 07/31/2016 | <u> </u>                                 | 0.087 | MGD   | DAILY MX    | 12/31/2014 | BOD, 5-day, percent removal | 89.5  | 2     | MO AV N   |
| EIGHEGIA   | 1 10 m; in conduct of the destinent plant | 0.540 | Wide  | DAILTHA     | 08/31/2010 | <u>'</u>                                 | 0.069 | MGD   | MO AVG      | ILIUIILUIT | BOD, 5-day, percent removal | 00.5  |       | MONTH     |
|            |                                           |       |       |             | 08/31/2010 |                                          | 0.102 | MGD   | DAILY MX    |            |                             |       |       |           |
|            |                                           |       |       |             |            | <u> </u>                                 | 0.059 | MGD   | MO AVG      |            |                             |       |       |           |
|            |                                           |       |       |             | 09/30/201  |                                          | 0.033 | MGD   | DAILY MX    |            |                             |       |       |           |
|            |                                           |       |       |             |            | <u> </u>                                 |       | MGD   | MO AVG      |            |                             |       |       |           |
|            |                                           |       |       |             | 10/31/2016 |                                          | 0.059 |       |             |            |                             |       |       |           |
|            |                                           |       |       |             | 10/31/2016 | <u> </u>                                 | 0.079 | MGD   | DAILY MX    |            |                             |       |       |           |
|            |                                           |       |       |             | 11/30/2016 | <u> </u>                                 | 0.064 | MGD   | MO AVG      |            |                             |       |       |           |
|            |                                           |       |       |             | 11/30/2016 |                                          | 0.109 | MGD   | DAILY MX    |            |                             |       |       |           |
|            |                                           |       |       |             | 12/31/2016 |                                          | 0.211 | MGD   | MO AVG      |            |                             |       |       |           |
|            |                                           |       |       |             | 12/31/2016 | <u> </u>                                 | 0.420 | MGD   | DAILY MX    |            |                             |       |       |           |
|            |                                           |       |       |             | 01/31/2017 | <u> </u>                                 | 0.221 | MGD   | MO AVG      |            |                             |       |       |           |
|            |                                           |       |       |             | 01/31/2017 | <u> </u>                                 | 0.640 | MGD   | DAILY MX    |            |                             |       |       |           |
|            |                                           |       |       |             | 02/28/201  | <u> </u>                                 | 0.152 | MGD   | MO AVG      |            |                             |       |       |           |
|            |                                           |       |       |             | 02/28/201  | <u> </u>                                 | 0.290 | MGD   | DAILY MX    |            |                             |       |       |           |
|            |                                           |       |       |             | 03/31/2017 |                                          | 0.224 | MGD   | MO AVG      |            |                             |       |       |           |
|            |                                           |       |       |             | 03/31/2017 |                                          | 0.457 | MGD   | DAILY MX    |            |                             |       |       |           |
|            |                                           |       |       |             | 04/30/201  | Flow, in conduit or thru treatment plant | 0.304 | MGD   | MO AVG      |            |                             |       |       |           |
|            |                                           |       |       |             | 04/30/201  | Flow, in conduit or thru treatment plant | 0.697 | MGD   | DAILY MX    |            |                             |       |       |           |

| Monitoring | _                                                          | DMR          | Limit    | Statistical          | 1 1 | Monitoring | _                                                                      | DMR   | Limit | Statistical         | 1 | Monitoring               | _                                                                      | DMR          | Limit | Statistical         |
|------------|------------------------------------------------------------|--------------|----------|----------------------|-----|------------|------------------------------------------------------------------------|-------|-------|---------------------|---|--------------------------|------------------------------------------------------------------------|--------------|-------|---------------------|
| Period End | Parameter                                                  | Value        | Unit     | Base                 |     | Period End | Parameter                                                              | Value | Unit  | Base                |   | Period End               | Parameter                                                              | Value        | Unit  | Base                |
| 01/31/2015 | BOD, 5-day, percent removal                                | 77.0         | 2        | MN % RMV             |     | 06/30/2013 | Solids, suspended percent removal                                      | 92.5  | 2     | MINIMUM             |   | 01/31/2015               | Solids, suspended percent removal                                      | 85.6         | 2     | MINIMUM             |
| 01/31/2015 | BOD, 5-day, percent removal                                | 87.2         | 2        | MO AV MN             |     | 06/30/2013 | Solids, suspended percent removal                                      | 97.8  | 2     | MO AV MN            |   | 01/31/2015               | Solids, suspended percent removal                                      | 96.6         | 2     | MO AV MN            |
| 02/28/2015 | BOD, 5-day, percent removal                                | 85.0         | - %      | MN % BMV             |     | 07/31/2013 | Solids, suspended percent removal                                      | 95.2  | 2     | MINIMUM             |   | 02/28/2015               | Solids, suspended percent removal                                      | 93.2         | 2     | MINIMUM             |
| 02/28/2015 | BOD, 5-day, percent removal                                | 87.9         | 2        | MO AV MN             |     | 07/31/2013 | Solids, suspended percent removal                                      | 98.1  | 2     | MO AV MN            |   | 02/28/2015               | Solids, suspended percent removal                                      | 96.9         | - 2   | MO AV MN            |
| 03/31/2015 | BOD, 5-day, percent removal                                | 79.6         | - 2      | MN 2 BMV             |     | 08/31/2013 | Solids, suspended percent removal                                      | 98.8  | - 2   | MINIMUM             |   | 03/31/2015               | Solids, suspended percent removal                                      | 95.7         | - 2   | MINIMUM             |
| 03/31/2015 | BOD, 5-day, percent removal                                | 86.9         | *        | MO AV MN             |     | 08/31/2013 | Solids, suspended percent removal                                      | 99.2  | 2     | MO AV MN            |   | 03/31/2015               | Solids, suspended percent removal                                      | 98.5         | - %   | MO AV MN            |
| 04/30/2015 | BOD, 5-day, percent removal                                | 86.8         | *        | MN % RMV             |     | 09/30/2013 | Solids, suspended percent removal                                      | 98.0  | 2     | MINIMUM             |   | 04/30/2015               | Solids, suspended percent removal                                      | 96.6         | 2     | MINIMUM             |
| 04/30/2015 | BOD, 5-day, percent removal                                | 90.6         | *        | MO AV MN             |     | 09/30/2013 | Solids, suspended percent removal                                      | 99.0  | 2     | MO AV MN            |   | 04/30/2015               | Solids, suspended percent removal                                      | 98.6         | 2     | MO AV MN            |
| 05/31/2015 | BOD, 5-day, percent removal                                | 82.0         | 2        | MN % RMV             |     | 10/31/2013 | Solids, suspended percent removal                                      | 98.0  | 2     | MINIMUM             |   | 05/31/2015               | Solids, suspended percent removal                                      | 98.9         | 2     | MINIMUM             |
| 05/31/2015 | BOD, 5-day, percent removal                                | 88.9         | 2        | MO AV MN             |     | 10/31/2013 | Solids, suspended percent removal                                      | 99.0  | × ×   | MO AV MN            |   | 05/31/2015               | Solids, suspended percent removal                                      | 99.5         | 2     | MO AV MN            |
| 06/30/2015 | BOD, 5-day, percent removal                                | 84.9         | 2        | MN % RMV             |     | 11/30/2013 | Solids, suspended percent removal                                      | 97.0  | 2     | MINIMUM             |   | 06/30/2015               | Solids, suspended percent removal                                      | 99.4         | 2     | MINIMUM             |
| 06/30/2015 | BOD, 5-day, percent removal                                | 90.8         | 2        | MO AV MN             |     | 11/30/2013 | Solids, suspended percent removal                                      | 99.0  | 2     | MO AV MN            |   | 06/30/2015               | Solids, suspended percent removal                                      | 99.6         | 2     | MO AV MN            |
| 07/31/2015 | BOD, 5-day, percent removal                                | 80.5         | 2        | MN % RMV             |     | 12/31/2013 | Solids, suspended percent removal                                      | 83.7  | 2     | MINIMUM             |   | 07/31/2015               | Solids, suspended percent removal                                      | 87.3         | 2     | MINIMUM             |
| 07/31/2015 | BOD, 5-day, percent removal                                | 85.1         | 2        | MO AV MN             |     | 12/31/2013 | Solids, suspended percent removal                                      | 92.6  | 2     | MO AV MN            |   | 07/31/2015               | Solids, suspended percent removal                                      | 97.9         | 2     | MO AV MN            |
| 08/31/2015 | BOD, 5-day, percent removal                                | 86.6         | 2        | MN % RMV             |     | 01/31/2014 | Solids, suspended percent removal                                      | 94.2  | 2     | MINIMUM             |   | 08/31/2015               | Solids, suspended percent removal                                      | 94.1         | 2     | MINIMUM             |
| 08/31/2015 | BOD, 5-day, percent removal                                | 91.9         | 2        | MO AV MN             |     | 01/31/2014 | Solids, suspended percent removal                                      | 93.7  | 2     | MO AV MN            |   | 08/31/2015               | Solids, suspended percent removal                                      | 98.9         | 2     | MO AV MN            |
| 09/30/2015 | BOD, 5-day, percent removal                                | 90.7         | 2        | MN % RMV             |     | 02/28/2014 | Solids, suspended percent removal                                      | 88.5  | 2     | MINIMUM             |   | 09/30/2015               | Solids, suspended percent removal                                      | 98.7         | 2     | MINIMUM             |
| 09/30/2015 | BOD, 5-day, percent removal                                | 93.0         | *        | MO AV MN             |     | 02/28/2014 | Solids, suspended percent removal                                      | 93.6  | *     | MO AV MN            |   | 09/30/2015               | Solids, suspended percent removal                                      | 99.4         | 2     | MO AV MN            |
| 10/31/2015 | BOD, 5-day, percent removal                                | 88.2         | *        | MN % RMV             |     | 03/31/2014 | Solids, suspended percent removal                                      | 91.5  | - %   | MINIMUM             |   | 10/31/2015               | Solids, suspended percent removal                                      | 99.5         | - 2   | MINIMUM             |
| 10/31/2015 | BOD, 5-day, percent removal                                | 85.0         | - %      | MO AV MN             |     | 03/31/2014 | Solids, suspended percent removal                                      | 96.6  | 2     | MO AV MN            |   | 10/31/2015               | Solids, suspended percent removal                                      | 98.7         | - 2   | MO AV MN            |
| 11/30/2015 | BOD, 5-day, percent removal                                | 81.4         | 2        | MN % RMV             |     | 04/30/2014 | Solids, suspended percent removal                                      | 93.4  | 2     | MINIMUM             |   | 11/30/2015               | Solids, suspended percent removal                                      | 96.3         | 2     | MINIMUM             |
| 11/30/2015 | BOD, 5-day, percent removal                                | 88.5         | 2        | MO AV MN             |     | 04/30/2014 | Solids, suspended percent removal                                      | 97.7  | 2     | MO AV MN            |   | 11/30/2015               | Solids, suspended percent removal                                      | 98.8         | - 2   | MO AV MN            |
| 12/31/2015 | BOD, 5-day, percent removal                                | 84.6         | 2        | MN % RMV             |     | 05/31/2014 | Solids, suspended percent removal                                      | 96.5  | 2     | MINIMUM             |   | 12/31/2015               | Solids, suspended percent removal                                      | 98.7         | 2     | MINIMUM             |
| 12/31/2015 | BOD, 5-day, percent removal                                | 91.1         | - %      | MO AV MN             |     | 05/31/2014 | Solids, suspended percent removal                                      | 98.5  | ×     | MO AV MN            |   | 12/31/2015               | Solids, suspended percent removal                                      | 99.4         | 2     | MO AV MN            |
| 01/31/2016 | BOD, 5-day, percent removal                                | 77.2         | 2        | MN % RMV             |     | 06/30/2014 | Solids, suspended percent removal                                      | 92.6  | 2     | MINIMUM             |   | 01/31/2016               | Solids, suspended percent removal                                      | 94.7         | 2     | MINIMUM             |
| 01/31/2016 | BOD, 5-day, percent removal                                | 86.9         | - %      | MO AV MN             |     | 06/30/2014 | Solids, suspended percent removal                                      | 96.6  | 2     | MO AV MN            |   | 01/31/2016               | Solids, suspended percent removal                                      | 99.0         | 2     | MO AV MN            |
| 02/29/2016 | BOD, 5-day, percent removal                                | 82.5         | - %      | MN % BMV             |     | 07/31/2014 | Solids, suspended percent removal                                      | 92.8  | 2     | MINIMUM             |   | 02/29/2016               | Solids, suspended percent removal                                      | 93.3         | 2     | MINIMUM             |
| 02/29/2016 | BOD, 5-day, percent removal                                | 91.3         | *        | MO AV MN             |     | 07/31/2014 | Solids, suspended percent removal                                      | 97.6  | - 2   | MO AV MN            |   | 02/29/2016               | Solids, suspended percent removal                                      | 98.3         | - 2   | MO AV MN            |
| 03/31/2016 | BOD, 5-day, percent removal                                | 83.3         | - 2      | MN % RMV             |     | 08/31/2014 | Solids, suspended percent removal                                      | 95.1  | 2     | MINIMUM             | - | 03/31/2016               | Solids, suspended percent removal                                      | 97.9         | - 2   | MINIMUM             |
| 03/31/2016 | BOD, 5-day, percent removal                                | 89.6         | *        | MO AV MN             |     | 08/31/2014 | Solids, suspended percent removal                                      | 98.0  | *     | MO AV MN            | - | 03/31/2016               | Solids, suspended percent removal                                      | 98.9         | 2     | MO AV MN            |
| 04/30/2016 | BOD, 5-day, percent removal                                | 91.8         | - 2      | MN % RMV             |     | 09/30/2014 | Solids, suspended percent removal                                      | 96.4  | 2     | MINIMUM             | - | 04/30/2016               | Solids, suspended percent removal                                      | 99.3         | 2     | MINIMUM             |
| 04/30/2016 | BOD, 5-day, percent removal                                | 87.8         | 2        | MO AV MN             |     | 09/30/2014 | Solids, suspended percent removal                                      | 98.6  | 2 2   | MO AV MN            | - | 04/30/2016               | Solids, suspended percent removal                                      | 98.9         | 2     | MO AV MN            |
| 05/31/2016 | BOD, 5-day, percent removal                                | 86.6         | 2 2      | MN % RMV             |     | 10/31/2014 | Solids, suspended percent removal                                      | 98.9  |       | MINIMUM             | - | 05/31/2016               | Solids, suspended percent removal                                      | 98.4         | 2     | MINIMUM             |
| 05/31/2016 | BOD, 5-day, percent removal                                | 90.8<br>89.3 | - 2      | MO AV MN             |     | 10/31/2014 | Solids, suspended percent removal                                      | 99.2  | 2 2   | MO AV MN            | 1 | 05/31/2016               | Solids, suspended percent removal                                      | 99.2<br>96.5 | 2 2   | MO AV MN            |
| 06/30/2016 | BOD, 5-day, percent removal<br>BOD, 5-day, percent removal | 91.4         | 2        | MN % RMV<br>MO AV MN |     | 11/30/2014 | Solids, suspended percent removal<br>Solids, suspended percent removal | 99.4  | 2     | MINIMUM<br>MO AV MN | - | 06/30/2016<br>06/30/2016 | Solids, suspended percent removal<br>Solids, suspended percent removal | 98.1         | 2     | MINIMUM<br>MO AV MN |
| 07/31/2016 | BOD, 5-day, percent removal                                | 87.3         | 2        | MN % BMV             |     | 12/31/2014 | Solids, suspended percent removal                                      | 94.7  | 2     | MINIMUM             | - | 07/31/2016               | Solids, suspended percent removal                                      | 97.9         | 2     | MINIMUM             |
| 07/31/2016 | BOD, 5-day, percent removal                                | 90.2         | 2        | MO AV MN             |     | 12/31/2014 | Solids, suspended percent removal                                      | 98.0  | 2     | MO AV MN            | 1 | 07/31/2016               | Solids, suspended percent removal                                      | 98.7         | 2     | MO AV MN            |
|            |                                                            |              | _        |                      |     | 1213112014 | sonas, suspenaea percent removai                                       | 30.0  | -     | INIO VA IAIIA       |   |                          | · · ·                                                                  | _            | _     |                     |
| 08/31/2016 | BOD, 5-day, percent removal                                | 84.1         | 2        | MN % RMV             |     |            |                                                                        |       |       |                     |   | 08/31/2016               | Solids, suspended percent removal                                      | 95.6         | 2     | MINIMUM             |
| 08/31/2016 | BOD, 5-day, percent removal                                | 89.0         | 2        | MO AV MN             |     |            |                                                                        |       |       |                     |   | 08/31/2016               | Solids, suspended percent removal                                      | 98.4         | 2     | MO AV MN            |
| 09/30/2016 | BOD, 5-day, percent removal                                | 86.0         | 2 .      | MN % RMV             |     |            |                                                                        |       |       |                     |   | 09/30/2016               | Solids, suspended percent removal                                      | 98.5         | 2     | MINIMUM             |
| 09/30/2016 | BOD, 5-day, percent removal                                | 90.1         | 2        | MO AV MN             |     |            |                                                                        |       |       |                     |   | 09/30/2016               | Solids, suspended percent removal                                      | 99.2         | 2     | MO AV MN            |
| 10/31/2016 | BOD, 5-day, percent removal                                | 84.4         | 2 2      | MN % RMV             |     |            |                                                                        |       |       |                     |   | 10/31/2016               | Solids, suspended percent removal                                      | 95.7         | 2     | MINIMUM             |
| 10/31/2016 | BOD, 5-day, percent removal                                | 88.6         | _        | MO AV MN             |     |            |                                                                        |       |       |                     |   | 10/31/2016               | Solids, suspended percent removal                                      | 98.3         | 2     | MO AV MN            |
| 11/30/2016 | BOD, 5-day, percent removal                                | 82.4         | 2 2      | MN % RMV             |     |            |                                                                        |       |       |                     |   | 11/30/2016               | Solids, suspended percent removal                                      | 97.8         | 2     | MINIMUM             |
| 11/30/2016 | BOD, 5-day, percent removal                                | 90.3         | 2        | MO AV MN             |     |            |                                                                        |       |       |                     |   | 11/30/2016               | Solids, suspended percent removal                                      | 98.6<br>95.5 | 2 2   | MO AV MN<br>MINIMUM |
| 12/31/2016 | BOD, 5-day, percent removal                                | 80.2<br>86.5 | 3        | MN % RMV<br>MO AV MN |     |            |                                                                        |       |       |                     |   | 12/31/2016               | Solids, suspended percent removal                                      | 97.8         | 2 2   | MO AV MN            |
| 01/31/2016 | BOD, 5-day, percent removal                                | 85.2         | 3        | MU AV MN<br>MN % BMV |     |            |                                                                        |       |       |                     |   | 01/31/2017               | Solids, suspended percent removal                                      | 95.5         | 2 2   | MINIMUM             |
| 01/31/2017 | BOD, 5-day, percent removal                                | 89.5         | 2        | MO AV MN             |     |            |                                                                        |       |       |                     |   | 01/31/2017               | Solids, suspended percent removal                                      | 97.9         | 2 2   | MO AV MN            |
| 02/28/2017 | BOD, 5-day, percent removal<br>BOD, 5-day, percent removal | 92.2         | 2        | MN % RMV             |     |            |                                                                        |       |       |                     |   | 02/28/2017               | Solids, suspended percent removal<br>Solids, suspended percent removal | 98.0         | 2     | MINIMUM             |
| 02/28/2017 | BOD, 5-day, percent removal                                | 89.5         | 2        | MO AV MN             |     |            |                                                                        |       |       |                     |   | 02/28/2017               | Solids, suspended percent removal                                      | 96.5         | 2     | MO AV MN            |
| 03/31/2017 | BOD, 5-day, percent removal                                | 81.2         | 2        | MN % RMV             |     |            |                                                                        |       |       |                     |   | 03/31/2017               | Solids, suspended percent removal                                      | 96.3         | 2     | MINIMUM             |
| 03/31/2017 | BOD, 5-day, percent removal                                | 89.8         | 2        | MO AV MN             |     |            |                                                                        |       |       |                     |   | 03/31/2017               | Solids, suspended percent removal                                      | 98.3         | 2     | MO AV MN            |
| 04/30/2017 | BOD, 5-day, percent removal                                | 92.1         | - 2      | MN % BMV             |     |            |                                                                        |       |       |                     |   | 03/31/2017               | Solids, suspended percent removal                                      | 98.0         | - 2   | MINIMUM             |
| 04/30/2017 | BOD, 5-day, percent removal                                | 87.8         | 2        | MO AV MN             |     |            |                                                                        |       |       |                     |   | 04/30/2017               | Solids, suspended percent removal                                      | 93.4         | 2 2   | MO AV MN            |
| 0413012011 | DOD, 3-day, percent removal                                | 01.0         | <u> </u> | MIN VA MIN           |     |            |                                                                        |       |       |                     | - | 0413012011               | Sonus, suspended percent removal                                       | 33.4         | +~    | MO WA MIN           |

| Monitoring Period |                        | DUD          |            | 0                    | Monitoring Period |                              | DMR   |            | 0                    |   | Monitoring Period | _                      | DIAD         |            | Statistical          |
|-------------------|------------------------|--------------|------------|----------------------|-------------------|------------------------------|-------|------------|----------------------|---|-------------------|------------------------|--------------|------------|----------------------|
| End Date          | Parameter              | DMR<br>Value | Limit Unit | Statistical<br>Base  | End Date          | Parameter                    | Value | Limit Unit | Statistical<br>Base  |   | End Date          | Parameter              | DMR<br>Value | Limit Unit | Base                 |
| 06/30/2013        | Overflows              |              | occurłmo   | MO TOTAL             | 06/30/2013        | Bypass valve                 |       | occur/mo   | MO TOTAL             |   | 06/30/2013        | Overflows              | 3            | occurłmo   | MO TOTAL             |
| 07/31/2013        | Overflows              |              | occur/mo   | MO TOTAL             | 07/31/2013        | Bypass valve                 |       | occur/mo   | MO TOTAL             |   | 07/31/2013        | Overflows              | 7            | occurłmo   | MO TOTAL             |
| 08/31/2013        | Overflows              |              | occur/mo   | MO TOTAL             | 08/31/2013        | Bypass valve                 |       | occur/mo   | MO TOTAL             |   | 08/31/2013        | Overflows              | 0            | occurłmo   | MO TOTAL             |
| 09/30/2013        | Overflows              |              | occur/mo   | MO TOTAL             | 09/30/2013        | Bypass valve                 |       | occur/mo   | MO TOTAL             |   | 09/30/2013        | Overflows              | 1            | occur/mo   | MO TOTAL             |
| 10/31/2013        | Overflows              |              | occur/mo   | MO TOTAL             | 10/31/2013        | Bypass valve                 |       | occur/mo   | MO TOTAL             |   | 10/31/2013        | Overflows              | 0            | occur/mo   | MO TOTAL             |
| 11/30/2013        | Overflows              |              | occur/mo   | MO TOTAL             | 11/30/2013        | Bypass valve                 |       | occur/mo   | MO TOTAL             |   | 11/30/2013        | Overflows              | 2            | occurimo   | MO TOTAL             |
| 12/31/2013        | Overflows              |              | occur/mo   | MO TOTAL             | 12/31/2013        | Bypass valve                 |       | occur/mo   | MO TOTAL             |   | 12/31/2013        | Overflows              | 14           | occurimo   | MO TOTAL             |
| 01/31/2014        | Overflows              |              | occur/mo   | MO TOTAL             | 01/31/2014        | Bypass valve                 |       | occur/mo   | MO TOTAL             |   | 01/31/2014        | Overflows              | 0            | occurimo   | MO TOTAL             |
| 02/28/2014        | Overflows              |              | occur/mo   | MO TOTAL             | 02/28/2014        | Bypass valve                 |       | occurłmo   | MO TOTAL             |   | 02/28/2014        | Overflows              | 4            | occur/mo   | MO TOTAL             |
| 03/31/2014        | Overflows              |              | occur/mo   | MO TOTAL             | 03/31/2014        | Bypass valve                 |       | occur/mo   | MO TOTAL             |   | 03/31/2014        | Overflows              | 0            | occurimo   | MOTOTAL              |
| 04/30/2014        | Overflows              |              | occur/mo   | MO TOTAL             | 04/30/2014        | Bypass valve                 |       | occur/mo   | MO TOTAL             |   | 04/30/2014        | Overflows              | 2            | occur/mo   | MOTOTAL              |
| 05/31/2014        | Overflows              |              | occur/mo   | MO TOTAL             | 05/31/2014        | Bypass valve                 |       | occur/mo   | MO TOTAL             |   | 05/31/2014        | Overflows              | 0            | occur/mo   | MO TOTAL             |
| 06/30/2014        | Overflows              |              | occur/mo   | MO TOTAL             | 06/30/2014        | Bypass valve                 |       | occur/mo   | MO TOTAL             |   | 06/30/2014        | Overflows              | 0            | occur/mo   | MO TOTAL             |
| 07/31/2014        | Overflows              |              | occur/mo   | MO TOTAL             | 07/31/2014        | Bypass valve                 |       | occur/mo   | MO TOTAL             |   | 07/31/2014        | Overflows              | 0            | occur/mo   | MO TOTAL             |
| 08/31/2014        | Overflows              |              | occur/mo   | MO TOTAL             | 08/31/2014        | Bypass valve                 |       | occur/mo   | MO TOTAL             |   | 08/31/2014        | Overflows              | 4            | occurimo   | MO TOTAL             |
| 09/30/2014        | Overflows              |              | occur/mo   | MO TOTAL             | 09/30/2014        | Bypass valve                 |       | occur/mo   | MO TOTAL             |   | 09/30/2014        | Overflows              | 0            | occurimo   | MO TOTAL             |
| 10/31/2014        | Overflows              |              | occur/mo   | MO TOTAL             | 10/31/2014        | Bypass valve                 |       | occur/mo   | MO TOTAL             |   | 10/31/2014        | Overflows              | 0            | occurimo   | MO TOTAL             |
| 11/30/2014        | Overflows              |              | occur/mo   | MO TOTAL             | 11/30/2014        | Bypass valve                 |       | occur/mo   | MO TOTAL             |   | 11/30/2014        | Overflows              | 0            | occurimo   | MO TOTAL             |
| 12/31/2014        | Overflows              |              | occur/mo   | MO TOTAL             | 12/31/2014        | Bypass valve                 |       | occur/mo   | MO TOTAL             |   | 12/31/2014        | Overflows              | 1            | occurimo   | MO TOTAL             |
| 01/31/2015        | Overflows              |              | occur/mo   | MO TOTAL             | 01/31/2015        | Bypass valve                 |       | occur/mo   | MO TOTAL             |   | 01/31/2015        | Overflows              | 1            | occurimo   | MO TOTAL             |
| 02/28/2015        | Overflows              |              | occur/mo   | MO TOTAL             | 02/28/2015        | Bypass valve                 |       | occur/mo   | MO TOTAL             |   | 02/28/2015        | Overflows              | 1            | occurimo   | MO TOTAL             |
| 03/31/2015        | Overflows              |              | occur/mo   | MO TOTAL             | 03/31/2015        | Bypass valve                 |       | occur/mo   | MO TOTAL             |   | 03/31/2015        | Overflows              | 0            | occurimo   | MO TOTAL             |
| 04/30/2015        | Overflows              |              | occur/mo   | MO TOTAL             | 04/30/2015        | Bypass valve                 |       | occur/mo   | MO TOTAL             |   | 04/30/2015        | Overflows              | 0            | occurimo   | MO TOTAL             |
| 05/31/2015        | Overflows              |              | occur/mo   | MO TOTAL             | 05/31/2015        | Bypass valve                 |       | occur/mo   | MO TOTAL             |   | 05/31/2015        | Overflows              | 1            | occurimo   | MO TOTAL             |
| 06/30/2015        | Overflows              |              | occur/mo   | MO TOTAL             | 06/30/2015        | Bypass valve                 |       | occur/mo   | MO TOTAL             |   | 06/30/2015        | Overflows              | 0            | occur/mo   | MO TOTAL             |
| 07/31/2015        | Overflows              |              | occur/mo   | MOTOTAL              | 07/31/2015        | Bypass valve                 |       | occur/mo   | MO TOTAL             |   | 07/31/2015        | Overflows              | 4            | occur/mo   | MOTOTAL              |
| 08/31/2015        | Overflows              |              | occur/mo   | MO TOTAL             | 08/31/2015        | Bypass valve                 |       | occur/mo   | MO TOTAL             |   | 08/31/2015        | Overflows              | 0            | occur/mo   | MOTOTAL              |
| 09/30/2015        | Overflows              |              | occur/mo   | MOTOTAL              | 09/30/2015        | Bypass valve                 |       | occur/mo   | MO TOTAL             |   | 09/30/2015        | Overflows              | 0            | occur/mo   | MOTOTAL              |
| 10/31/2015        | Overflows              |              | occur/mo   | MOTOTAL              | 10/31/2015        | Bypass valve                 |       | occur/mo   | MO TOTAL             |   | 10/31/2015        | Overflows              | 0            | occur/mo   | MO TOTAL             |
| 11/30/2015        | Overflows              |              | occur/mo   | MOTOTAL              | 11/30/2015        | Bypass valve                 |       | occurimo   | MO TOTAL             |   | 11/30/2015        | Overflows              | 9            | occurimo   | MO TOTAL             |
| 12/31/2015        | Overflows              |              | occur/mo   | MO TOTAL             | 12/31/2015        | Bypass valve                 |       | occurłmo   | MO TOTAL             |   | 12/31/2015        | Overflows              | 18           | occur/mo   | MO TOTAL             |
| 01/31/2016        | Overflows              |              | occurimo   | MO TOTAL             | 01/31/2016        | Bypass valve                 |       | occur/mo   | MO TOTAL             |   | 01/31/2016        | Overflows              | 0            | occur/mo   | MO TOTAL             |
| 02/29/2016        | Overflows              |              | occur/mo   | MO TOTAL<br>MO TOTAL | 02/29/2016        | Bypass valve                 |       | occur/mo   | MO TOTAL<br>MO TOTAL |   | 02/29/2016        | Overflows              | 12           | occur/mo   | MO TOTAL<br>MO TOTAL |
| 03/31/2016        | Overflows<br>Overflows |              | occur/mo   | MOTOTAL              | 03/31/2016        | Bypass valve<br>Bypass valve |       | occur/mo   | MOTOTAL              |   | 03/31/2016        | Overflows<br>Overflows | 0            | occur/mo   | MOTOTAL              |
| 05/31/2016        | Overflows              |              | occur/mo   | MO TOTAL<br>MO TOTAL | 05/31/2016        |                              |       | occurrmo   | MOTOTAL              |   | 05/31/2016        | Overflows              | 0            | occur/mo   | MOTOTAL              |
| 06/30/2016        | Overflows              |              | occur/mo   | MOTOTAL              | 06/30/2016        | Bypass valve<br>Bypass valve |       | occurimo   | MOTOTAL              |   | 06/30/2016        | Overflows              | 0            | occur/mo   | MOTOTAL              |
| 07/31/2016        | Overflows              |              | occurimo   | MO TOTAL             | 07/31/2016        | Bypass valve                 |       | occurimo   | MOTOTAL              |   | 07/31/2016        | Overflows              | 0            | occur/mo   | MOTOTAL              |
| 08/31/2016        | Overflows              |              | occur/mo   | MOTOTAL              | 08/31/2016        | Bypass valve                 |       | occur/mo   | MOTOTAL              |   | 08/31/2016        | Overflows              | 0            | occur/mo   | MOTOTAL              |
| 09/30/2016        | Overflows              |              | occur/mo   | MO TOTAL             | 09/30/2016        | Bypass valve                 |       | occur/mo   | MOTOTAL              | - | 09/30/2016        | Overflows              | 0            | occur/mo   | MOTOTAL              |
| 10/31/2016        | Overflows              |              | occur/mo   | MOTOTAL              | 10/31/2016        | Bypass valve                 |       | occur/mo   | MO TOTAL             |   | 10/31/2016        | Overflows              | 0            | occur/mo   | MOTOTAL              |
| 11/30/2016        | Overflows              |              | occurimo   | MOTOTAL              | 11/30/2016        | Bypass valve                 |       | occurimo   | MOTOTAL              |   | 11/30/2016        | Overflows              | 1            | occur/mo   | MOTOTAL              |
| 12/31/2016        | Overflows              |              | occurimo   | MOTOTAL              | 12/31/2016        | Bypass valve                 |       | occurimo   | MOTOTAL              |   | 12/31/2016        | Overflows              | 0            | occur/mo   | MOTOTAL              |
| 01/31/2017        | Overflows              |              | occurimo   | MOTOTAL              | 01/31/2017        | Bypass valve                 |       | occurimo   | MOTOTAL              |   | 01/31/2017        | Overflows              | 0            | occur/mo   | MOTOTAL              |
| 02/28/2017        | Overflows              |              | occurimo   | MOTOTAL              | 02/28/2017        | Bypass valve                 |       | occur/mo   | MOTOTAL              |   | 02/28/2017        | Overflows              | 0            | occur/mo   | MOTOTAL              |
| 03/31/2017        | Overflows              |              | occurimo   | MOTOTAL              | 03/31/2017        | Bypass valve                 |       | occur/mo   | MOTOTAL              |   | 03/31/2017        | Overflows              | 1            | occur/mo   | MOTOTAL              |
| 04/30/2017        | Overflows              |              | occurimo   | MO TOTAL             | 04/30/2017        | Bypass valve                 |       | occur/mo   | MO TOTAL             |   | 04/30/2017        | Overflows              | 1            | occur/mo   | MOTOTAL              |
| 05/31/2017        | Overflows              |              | occur/mo   | MOTOTAL              | 05/31/2017        | Bypass valve                 |       | occurłmo   | MOTOTAL              |   | 05/31/2017        | Overflows              |              | occur/mo   | MOTOTAL              |
| 0913112017        | Overnows               |              | occurrm0   | MOTOTAL              | 0313112011        | □gpass valve                 |       | occurrmo   | MOTOTAL              |   | 0973172017        | Overnows               |              | occurrmo   | MOTOTAL              |