

Rcd DWR TENNESSEE DEPARTMENT OF ENVIRONMENT AND CONSERVATION

Division of Water Resources

Division of Water Resources William R. Snodgrass Tennessee Tower, 312 Rosa L. Parks Avenue, 11th Floor, Nachville Tennessee 37243 9.20.2022

1-888-891-8332 (TDEC)

Application for Aquatic Resource Alteration Permit (ARAP) & State §401 Water Quality Certification

OFFICIAL STATE USE ONLY Site #:	Permit #: NR2204.288
Section 1. Applicant Information (individual responsible for site, signs of	certification below)
Applicant Name (company or individual): Regent Development, LL	.C SOS #: 000343007 Status: Active
Primary Contact/Signatory: David McGowan	Signatory's Title or Position: President
Mailing Address: 6901 Lenox Village Drive - Suite 107	City: Nashville State: TN Zip: 37211
Phone: (615) 333-9000 Fax:	E-mail: david.mcgowan@regenthomes-tn.com
Section 2. Alternate Contact/Consultant Information (a consultant is n	not required)
Alternate Contact Name: Todd Olsen	
Company: Anderson, Delk, Epps & Associates, Inc.	Title or Position: Engineer
Mailing Address: 618 Grassmere Park Drive, Suite 4	City: Nashville State: TN Zip: 37211
Phone: (615) 331-0809 Fax: (615) 331-0110	E-mail: AndersonDelk@bellsouth.net
Section 3. Fee (application will be incomplete until fee is received)	
No Fee Fee Submitted with Application	Amount Submitted: \$ <u>500</u>
Current application fee schedules can be found at the Division of Water <i>https://www.tn.gov/environment/permit-permits/water-permits1/aquatic-re</i> or by calling (615) 532-0625. Please make checks payable to "Treasurer Billing Contact (if different from Applicant): Name:	esource-alteration-permitaraphtml r, State of Tennessee". Email:
Address:	Phone:
Section 4. Project Details (fill in information and check appropriate boxed	es)
Site or Project Name: Carothers Crossing Phase 5B	Nearest City, Town or Major Landmark: Cane Ridge Park
Street Address or Location (include zip): 7211 Carothers Roa	ad, Nolensville, TN 37135
County/ico): Douidoor	diction: Latitude (dd.dddd): 35.9834
County(ies): Davidson	Longitude (dd.dddd): -86.6086
Resources Proposed for Alteration: Stream / River	Wetland Reservoir
Name of Water Resource (for more information, access http://tdeconline.	tn.gov/dwr): Unnamed Drain to East Branch Hurricane Creek
Brief Project Description (a more detailed description is required under S	ection 8): Installation of a minor road crossing on Badric Drive (35.9834, -86.6086).
Does the proposed activity require approval from the U.S. Army Corps of federal, state, or local government agency?	Engineers, the Tennessee Valley Authority, or any other
If Yes, provide the permit reference numbers:	
Will the activity require a 401 Water Quality Certification: I Yes	No
If Yes, attach any 401 WQC pre-filing meeting request documentation	
Is the proposed activity associated with a larger common plan of develop	ment: Yes No
If Yes, submit site plans and identify the location and overall scope of t	he common plan of development.
Plans attached? If applicable, indicate any other federal, state, or local permits that are as development) that have been obtained in the past (e.g., construction generation).	

Application for Aquatic Resource Alteration Permit (ARAP) & State §401 Water Quality Certification

Section 5. Project Schedule (fill in information and check appropriate boxes)						
Proposed start date: Unknown Estimated end date: Unknown						
Is any portion of the activity complete now?	Yes	No				
If yes, describe the extent of the completed portion	on:					

The required information in Sections 6-11 must be submitted on a separate sheet(s) and submitted in the same numbered format as presented below. If any question in not applicable, state the reason why it is not applicable.

Secti	on 6. Description	Attac	ched
0000		Yes	No
6.1	A narrative description of the scope of the project		
6.2	USGS topographic map indicating the exact location of the project (can be a photographic copy)		
6.3	Photographs of the resource(s) proposed for alteration with location description (photo locations should be noted on map)		
6.4	A narrative description of the existing stream and/or wetland characteristics including, but not limited to, dimensions (e.g., depth, length, average width), substrate and riparian vegetation		
6.5	A narrative description of the proposed stream and/or wetland characteristics including, but not limited to, dimensions (e.g., depth, length, average width), substrate and riparian vegetation		
6.6	In the case of wetlands, include a wetland delineation with delineation forms and site map denoting location of data points		
6.7	A copy of all hydrologic or jurisdictional determination documents issued for water resources on the project site		

Section 7. Project Rationale Attached Yes No Describe the need for the proposed activity, including, but not limited to the purpose, alternatives considered and rationale for selection of least impactful alternative, and what will be done to avoid or minimize impacts to water resources Image: Constraint of the proposed activity of the purpose of the purpo

Secti	on 8. Technical Information	Attao Yes	ched No
8.1	Detailed plans, specifications, blueprints, or legible sketches of present site conditions and the proposed activity. Plans must be 8.5.x 11 inches. Additional larger plans may also be submitted to aid in application review. The detailed plans should be superimposed on existing and new conditions (e.g., stream cross sections where road crossings are proposed)	∎	
8.2	For the proposed activity and compensatory mitigation, provide a discussion regarding the sequencing of events and construction methods and any proposed monitoring		
8.3	Depiction and narrative on the location and type of erosion prevention and sediment control (EPSC) measures for the proposed alterations and any other measures to treat, control, or manage impacts to waters	•	

Section 9. Water Resources Degradation (degree of proposed impact)

Note that in most cases, activities that exceed the scope of the General Permit limitations are considered greater than *de minimis* degradation to water quality.

Please provide your basis for concluding the proposed activity will cause one of the following levels of water quality degradation:

De minimis degradation, no appreciable permanent loss of resource values

Greater than de minimis degradation (if greater than de minimis complete Sections 10-11)

For information and guidance on the definition of de minimis and degradation, refer to the Antidegradation Statement in Chapter 0400-40-03-.06 of the Tennessee Water Quality Criteria Rule: https://publications.tnsosfiles.com/rules/0400/0400-40.htm

For more information on specifics on what General Permits can cover, refer to the Natural Resources Unit webpage at: https://www.tn.gov/environment/permit-permits/water-permits1/aquatic-resource-alteration-permit--arap-.html

Application for Aquatic Resource Alteration Permit (ARAP) & State §401 Water Quality Certification

Section 10. Detailed Alternatives Analysis					
10.1	Analyze all reasonable alternatives and describe the level of degradation and permanent loss of resource 0.1 value caused by each alternative. Assessment must consider options other than the "Preferred" and "No Action" alternatives. Provide associated rationale for selecting or rejecting all alternatives considered and demonstration that the least impactful practicable alternative was selected.		·		
10.2	Discuss the social and economic consequences of each alternative				
10.3	Demonstrate that the degradation associated with the preferred alternative will not violate water quality criteria for uses designated in the receiving waters, and is necessary to accommodate important economic and social development in the area		⊡		

Section	Section 11. Compensatory Mitigation					
11.1	A detailed discussion of the proposed compensatory mitigation. Provide evidence of credit reservation if proposing to utilize a third-party provider.					
11.2	Analysis of any proposed appreciable loss of resource value using the TN Stream Mitigation Guidelines. Provide Stream Quantification Tool (SQT) results if applicable. Include Existing Condition Score (ECS) and debit/credit calculations.		⊡			
11.3	Describe how the compensatory mitigation would result in no net loss of resource value		•			
11.4	Provide a detailed monitoring plan for the compensatory mitigation site if permittee-responsible project is proposed					
11.5	Describe the long-term protection measures for the compensatory mitigation site if permittee-responsible project is proposed (e.g., deed restrictions, conservation easement)		•			

Certification and Signature

An application submitted by a corporation must be signed by a principal executive officer; from a partnership or proprietorship, by the partner or proprietor respectively; from a municipal, state, federal or other public agency or facility, the application must be signed by either a principal executive officer, ranking elected official, or other duly authorized employee. I certify under penalty of law that this document and all attachments were prepared by me, or under my direction or supervision. The submitted information is to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment. As specified in Tennessee Code Annotated Section 39-16-702(a)(4), this declaration is made under penalty of perjury. The project proponent hereby requests that the certifying authority review and take action on this CWA 401 certification request within the applicable reasonable period of time.

David McGowan Jr.	President	UILX	9-19-2022
Printed Name	Official Title	Signature	Date

Note that this form must be signed by the principal executive officer, partner or proprietor, or a ranking elected official in the case of a municipality; for details see **Certification and Signature** statement above. For more information, contact your local EFO at the toll-free number 1-888-891-8332 (TDEC). Submit the completed ARAP Application form (keep a copy for your records) to the appropriate EFO for the county(ies) where the proposed activity is located, addressed to **Attention: ARAP Processing**. You may also electronically submit the complete application and all associated attachments to water.permits@tn.gov.

EFO	Street Address	Zip Code	EFO	Street Address	Zip Code
Memphis	8383 Wolf Lake Drive, Bartlett	38133-4119	Cookeville	1221 South Willow Ave.	38506
Jackson	1625 Hollywood Drive	38305-4316	Chattanooga	1301 Riverfront Pkwy., Ste. 206	37402
Nashville	711 R S Gass Boulevard	37243	Knoxville	3711 Middlebrook Pike	37921
Columbia	1421 Hampshire Pike	38401	Johnson City	2305 Silverdale Road	37601

- **Subject:** COPY of Applicant TDEC 401 Water Quality Certification Pre-Filing Meeting Request Confirmation
- From: "TDEC Division of Water Resources" <<u>noreply+16dee34ceceac9f3@formstack.com</u>>
- **Sent:** 9/13/2022 7:11:23 AM
- To: <u>andersondelk@bellsouth.net;</u>

Dear Applicant,

Thank you for your request for a pre-filing meeting related to an anticipated filing of a Section 401 Water Quality Certification request with the Tennessee Department of Environment and Conservation (TDEC). Due to a recent change in the federal 401 Certification Rules, a pre-filing meeting request is now required at least 30 days before submittal of a 401 Certification request for a federal permitting agency (such as the U.S. Army Corps of Engineers) to consider it to be valid (see 40 CFR § 121.4).

This automated response confirms TDEC's receipt of your request and fulfills your compliance with the federal rule 40 CFR § 121.4.

Please be sure to include this confirmation receipt in your 401 Certification request to the U.S. Army Corps of Engineers when applying for a 404 or Section 10 federal permit (see 40 CFR § 121.5).

Note that this pre-filing meeting request provision is a federal requirement and is not a part of TDEC's Aquatic Resource Alteration Permitting (ARAP) process. No further action is necessary at this time related to any ARAP application with TDEC. You do not have to wait 30 days to apply for an ARAP permit, and ARAP applications will continue to be processed by TDEC according to state rules and regulations.

Please also note that this online meeting request form that you just filled out, does not serve as an application for any state or federal permit. The Aquatic Resource Alteration Permit forms from TDEC can be found <u>HERE</u>.

Requiring pre-filing meetings to be held for 401 Certification requests is optional for the certifying agency (TDEC). At this time TDEC has chosen not to hold routine pre-application inperson meetings. However, if your project is large, complex, includes on-site mitigation, or otherwise has the potential to significantly impact water resources and you believe that it would be beneficial to schedule a meeting prior to applying for an ARAP permit, please visit our <u>Regulatory Coordination Web Page for more information</u>.

Thank you.

TDEC Division of Water Resources

FORM INFORMATION SUBMITTED:

Name: David McGowan

E-Mail: <u>david.mcgowan@regenthomes-tn.com</u>

Phone: (615) 333-9000

Project Name: Carothers Crossing Phase 5B

Project Location: 7211 Carothers Road, Nolensville, TN 37135

County: Davidson

Waterbody: Unnamed Drain to East Branch Hurricane Creek

Project Description: We submitted an NOI for Carothers Crossing Phase 5A, which has a proposed roadway ending at the unnamed drain to East Branch Hurricane Creek. The future Phase 5B is on the other side of the creek and will need an ARAP for roadway crossing and an ARAP for gravity sewer and water crossings. Although Carothers Crossing Phase 5B is a future phase, we were informed by the reviewer of the Carothers Crossing Phase 5A NOI (TNR 246193) that an ARAP for the future crossing in the Phase 5B (not part of the current Phase 5A NOI or construction plans) must be obtained prior to issuance of the 5A NPDES Permit. As such, we are looking to submit the ARAP for the Carothers Crossing Phase 5B creek crossing. The timing of the development for Carothers Crossing Phase 5B is unknown at this time, so there is no current proposed start of construction for Phase 5B and the crossings in the phase.

The future proposed roadway crossing at Carothers Crossing Phase 5B consists of a 2-span concrete slab bridge, 14 feet wide by 5 feet high and is 77 feet long along a 75 degree skew. The development timeframe of Phase

Date/Time Submitted: Sep 13, 2022 8:11 AM

Application for Aquatic Resource Alteration Permit (ARAP)

Carothers Crossing Phase 5B

Property Map 188, p/o Parcel 8.00 Davidson County 7211 Carothers Road, Nolensville, TN 37135

September 19, 2022

ROADWAY CROSSING WITH UTILITY- BADRIC DRIVE

Federal, state, or local permits associated with the overall project site (common plan of development) that have been obtained in the past:

TNR243031, NR1804.314, NR1804.315, TNR244414, TNR245125

Section 6 : Description

(6.1) A narrative description of the scope of the project :

The future proposed roadway connects Carothers Crossing Phase 5A and the future Carothers Crossing Phase 5B by crossing an unnamed drain of the East Branch Hurricane Creek. We submitted an NOI for Carothers Crossing Phase 5A, which has a proposed roadway ending prior to the buffer of the unnamed drain. The proposed roadway crossing is located in and a part of the future Phase 5B; however, we were informed by the reviewer of the Phase 5A NOI (TNR 246193) that the ARAP for the future crossing must be obtained prior to the issuance of the Phase 5A NPDES Permit. As such, we are submitting this ARAP as requested for the future crossing of the future Phase 5B. The time frame for Phase 5B is unknown at this time with no proposed start of construction on the future phase.

We've met with Metro Planning to discuss the possibility of removing the crossing from the plans, but at this time they insist that the crossing is to remain for connectivity and since it is indicated on the Master Development Plan.

The proposed future crossing in the future Carothers Crossing Phase 5B is approximately 87 linear feet of a two-span, 14 feet wide by 5 feet high bottomless slab bridge (State Drawing No. STD-17-139 or equal) with telecom utility crossing. The underground telecom utility will be installed in the fill above the bridge.

(6.2) USGS topographic map indicating the exact location of the project :

See attached map

(6.3) Photographs of the resource(s) proposed for alteration with location description :

See attached photos

(6.4) A narrative description of the existing stream and/or wetland characteristics including, but not limited to, dimensions (e.g., depth, length, average width), substrate and riparian vegetation :

There was no flow at the time of examination. It is well defined with bedrock and cobble substrates. The drain is roughly 17' wide with steep eroded banks covered in grass and scattered vegetation.

(6.5) A narrative description of the proposed stream and/or wetland characteristics including, but not limited to, dimensions (e.g., depth, length, average width), substrate and riparian vegetation :

The existing drain characteristics upstream and downstream of the proposed bottomless slab bridge are to be maintained. The slopes along the headwall are to be stabilized using rip rap. Graded slopes are to be 3 to 1 slopes maximum.

(6.6) In the case of wetlands, include a wetland delineation with delineation forms and site map denoting location of data points :

Not applicable

(6.7) A copy of all hydrologic or jurisdictional determination documents issued for water resources on the project site :

A copy of the Hydrologic Determination and Wetland Delineations report for Carothers Crossing Phases 5A, 5B, and 10-Section 2A, prepared by BDY Natural Science Consultants on March 14, 2022, has been included in the ARAP submittal.

A copy of the Hydrologic Determination (DWR ID No.31057) for Carothers Crossing Phases 5A, 5B, and 10-Section 2A, prepared by TDEC on April 25, 2022 in response to the aforementioned determination report, has been included in the ARAP submittal.

Section 7 : Project Rationale

The purpose of the proposed project is to provide roadway and utility connection between Phase 5A and Phase 5B within the Carothers Crossing development. The existing drain runs through the length of the entire remaining site, so the crossing provides additional access within the development between both sides of the drain. Additionally, the crossing is indicated on the Approved Master Development Plan for the Carothers Crossing Urban Design Overlay (UDO).

Towards the end of 2021, the Developer originally proposed developing Phase 5 in its entirety. At that time, we considered the option of removing the crossing from the plans in order to minimize impacts to the stream since there would still be sufficient access to the entire Phase. Since the crossing is called for on the UDO Master Development Plan, we met with Metro Planning on January 13, 2022 to discuss the possibility of removing the crossing from the plans. It was deemed by Metro that they wanted the crossing to remain for connectivity, especially pedestrian connectivity, and due to the crossing being indicated on the approved Master Development Plan. At that time, the Developer decided to split Phase 5 into Phase 5A and Phase 5B and move forward with the development of Phase 5A.

The proposed roadway was designed to have the least amount of fill at the bridge location possible and a bottomless slab bridge was used to minimize the obstruction to migrating wildlife. The proposed fill is sloped at a 3 to 1 slope from the edge of sidewalk to the toe of slope. This was to minimize the width of the proposed crossing.

An alternative to the proposed slab bridge would be to install a span bridge. While this would limit the fill and the enclosure of the crossing, it would be significantly more expensive. The price of such a bridge would be more than could be justified for such a development.

Section 8 : Technical Information

(8.1) Detailed plans, specifications, blueprints, or legible sketches of present site conditions and the proposed activity. Plans must be 8.5 x 11 inches. Additional larger plans may also be submitted to aid in application review. The detailed plans should be superimposed on existing and new conditions (e.g., stream cross sections where road crossings are proposed) :

See attached detailed plans

(8.2) For the proposed activity and compensatory mitigation, provide a discussion regarding the sequencing of events and construction methods and any proposed monitoring :

Proposed Sequence of Events : 1) Install perimeter silt fence. Any flow at time of construction to be blocked off and diverted using coffer dams, geotextile tubes, and/or pumps. **2)** Area to be grubbed. Disturbance of the are to be done no greater then 20 days prior to planed grading or construction activity. **3)** Bridge footing locations are to be excavated to suitable material. All excavation to be done by hoe ram. **4)** Bridge to be constructed. **5)** Backfill along bridge sides to be done as shown on bridge plans. **6)** Remaining area to be filled as shown on approved plan. Silt fence, rip rap, and slope protection to be installed as shown on plan. All disturbed areas are to be seeded and strawed, unless planed grading activities are to resume within 14 days. **7)** Install underground utilities in fill above bridge. **8)** Roadway construction. **9)** Final stabilization.

Construction Methods: Excavation to be done by hoe ram. Back fill around bridge to be done as shown on state standard details or bridge plan. Any unsuitable material excavated is to be removed from crossing area and disposed of properly.

(8.3) Depiction and narrative on the location and type of erosion prevention and sediment control (EPSC) measures for the proposed alterations and nay other measures to treat, control, or manage impacts to waters :

Silt fence will be used to limit the amount of sediments being discharged. 3 to 1 slopes are to be stabilized with erosion control matting, and rip rap is to be used to stabilize the slopes along the banks of the wingwalls. All work to be in the dry by the contractor using coffer dams, geotextile tubes, and/or pumps. (see attached plan)

Section 9: Water Resources Degradation (degree of proposed impact) :

Will only cause de minimis degradation to water quality

Since there is no known start of construction date for Phase 5B and this ARAP is being submitted as requested by the reviewer of the Phase 5A NOI, there will be no degradation during the construction of Phase 5A. All Phase 5A construction activities will be outside of the 30 foot minimum buffer and a 60 foot average buffer shall be maintained during Phase 5A construction.

Section 10 : Detailed Alternative Analysis

(10.1) Analyze all reasonable alternatives and describe the level of degradation and permanent loss of resource value caused by each alternative. Assessment must consider options other than the "Preferred" and "No Action" alternatives. Provide associated rational for selecting or rejecting all alternatives considered and demonstration that the least impactful practicable alternative was selected :

See Section 9.

(10.2) Discuss the social and economic consequences of each alternative :

See Section 9.

(10.3) Demonstrate that the degradation associated with the preferred alternative will not violate water quality criteria for uses designated in the receiving waters, and is necessary to accommodate important economic and social development in the area :

See Section 9.

Section 11 : Mitigation

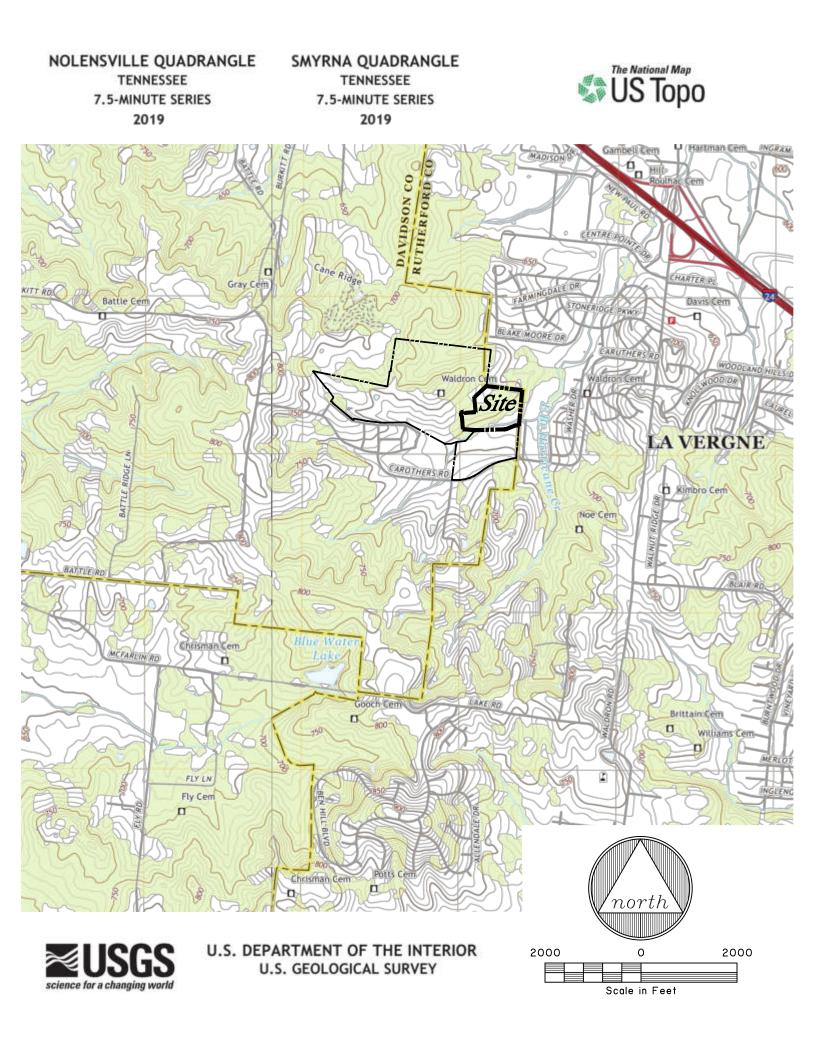
(11.1) A detailed discussion of the proposed compensatory mitigation. Provide evidence of credit reservation if proposing to utilize a third-party provider :

See Section 9.

(11.2) Analysis of any propsoed appreciable loss of resources value using the TN Stream Mitigation Guidelines. Provide Stream Quantification Tool (SQT) results if applicable. Existing Condition Score (ECS) and debit/credit calculations :

See Section 9.

(11.3) Describe how the compensatory mitigation would result in no net loss of resource value :

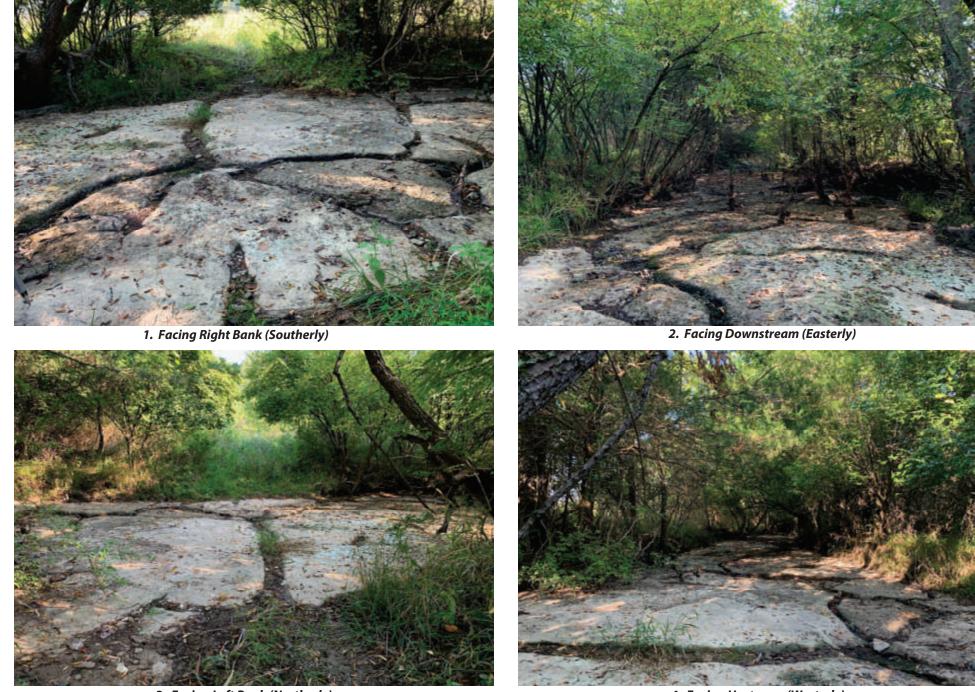

See Section 9.

(11.4) Provide a detailed monitoring plan for the compensatory mitigation site if permiteeresponsible project is proposed :

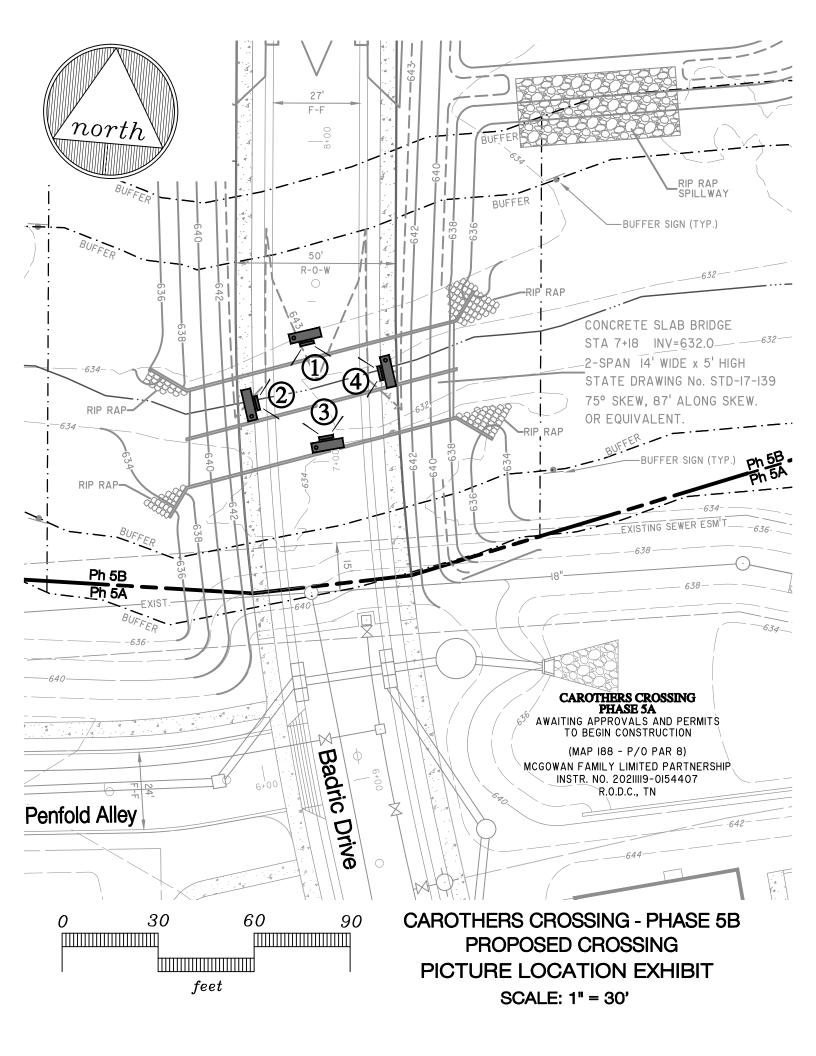
See Section 9.

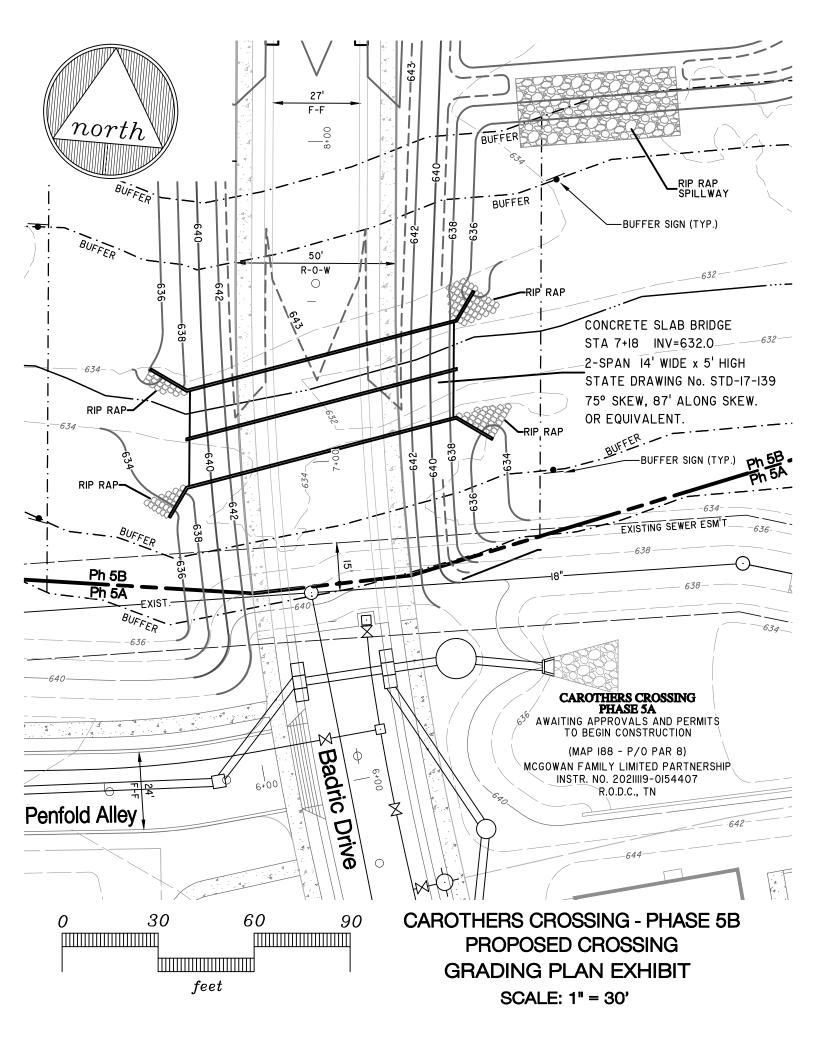

(11.5) Describe the long-term protection measures for the compensatory mitigation site if permitee-responsible project is proposed (e.g., deed restrictions, conservation easement) :

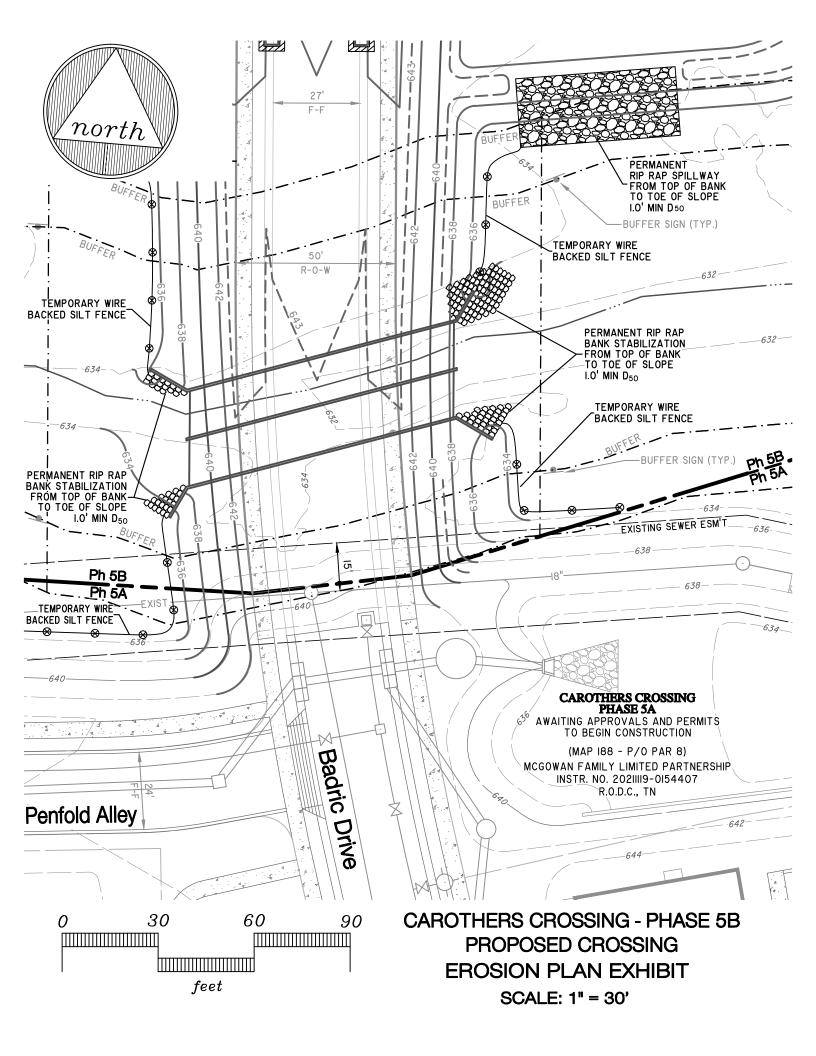
See Section 9.



MASTER PLAN




Carothers Crossing Phase 5B - Proposed Road Crossing - Badric Drive Photos taken September 19, 2022


3. Facing Left Bank (Northerly)

4. Facing Upstream (Westerly)

Badric Drive Concrete SLAB BRIDGE STATION CONCRETE SLAB B		i							1			-		-	1		<u> </u>	1
0 0					<u>م</u>	EXISTI	NG PRO	FILE	— —									<u> </u>
00 0					<u>2</u>	PROPC	SED PE							2				+
00 0				<u> </u>	64									က် ထိ				
000 000 <td></td> <td></td> <td></td> <td>84</td> <td>Ł</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>5.4</td> <td></td> <td></td> <td></td> <td></td>				84	Ł									5.4				
O I <thi< th=""> <thi< th=""> <thi< th=""> <thi< th=""></thi<></thi<></thi<></thi<>	95													<u>'''</u> . 				
O Image: Concrete stab bridge View Concrete stab bridge View State brawning No. StD=17-39 Total Total Total					ບ		3.							0				
O I <thi< th=""> <thi< th=""> <thi< th=""> <thi< th=""></thi<></thi<></thi<></thi<>	64				TRI		4											
O Image: Concrete stab bridge View Concrete stab bridge View State brawning No. StD=17-39 Total Total Total	1			_ LO	Sz		, i							- E				
O Image: Concrete stab bridge View Concrete stab bridge View State brawning No. StD=17-39 Total Total Total				.0	<u> </u>													
O Image: Concrete SLAB BRIDGE Image: Concrete SLAB	1			4 4 0-	Ā		<u> </u>											
O Image: Concrete SLAB BRIDGE Image: Concrete SLAB	<u> </u>			<u>40</u>	12		<u>ò</u>							<u>2</u> -			 	
O Image: Concrete SLAB BRIDGE U U U<	<u>ب</u>				£		0.0							5.0				
O Image: Concrete SLAB BRIDGE U U U<	4			نمت	2		လို							- 10 10 10 10 10 10 10 10 10 10			 	
O Image: Concrete SLAB BRIDGE Image: Concrete SLAB	Č			6 6 9	Ψ		$\overset{+}{\sim}$							<u></u> ნ თ				
O Image: Concrete stab bridge View Concrete stab bridge View State brawning No. StD=17-39 Total Total Total					4												<u> </u>	
O Image: Concrete stab bridge View Concrete stab bridge View State brawning No. StD=17-39 Total Total Total				N NO	47										,			
O Image: Concrete stab bridge View Concrete stab bridge View State brawning No. StD=17-39 Total Total Total				<u>``` & @</u>	5	<u>├ </u>					59			+2.207	×		<u> </u>	+
Badric Drive Concrete SLAB BRIDGE										+1.0	13%							
O V V O V <td></td> <td> </td> <td></td> <td></td> <td></td> <td></td> <td></td> <td><u> </u></td> <td>+</td>																	<u> </u>	+
Image: Start 18 - INV=632.0 Image: Start 18 - INV=632.0 Image: Start 18 - INV=632.0 Image: Start 10 relation of the start 10 r																		
Image: Start 18 - INV=632.0 Image: Start 18 - INV=632.0 Image: Start 18 - INV=632.0 Image: Start 10 relation of the start 10 r											-0-							
Image: Start 18 - INV=632.0 Image: Start 18 - INV=632.0 Image: Start 18 - INV=632.0 Image: Start 10 relation of the start 10 r																		
Image: Start 18 - INV=632.0 Image: Start 18 - INV=632.0 Image: Start 18 - INV=632.0 Image: Start 10 relation of the start 10 r		\sim										-					<u> </u>	
Image: Start 18 - INV=632.0 Image: Start 18 - INV=632.0 Image: Start 18 - INV=632.0 Image: Start 10 relation of the start 10 r		<u> </u>		M														-
Image: Start 18 - INV=632.0 Image: Start 18 - INV=632.0 Image: Start 18 - INV=632.0 Image: Start 10 relation of the start 10 r						┝━──┼┨、╴┨											<u> </u>	<u> </u>
Image: Start 18 - INV=632.0 Image: Start 18 - INV=632.0 Image: Start 18 - INV=632.0 Image: Start 10 relation of the start 10 r																		
Image: Start 18 - INV=632.0 Image: Start 18 - INV=632.0 Image: Start 18 - INV=632.0 Image: Start 10 relation of the start 10 r																	<u> </u>	<u> </u>
Image: Start 18 - INV=632.0 Image: Start 18 - INV=632.0 Image: Start 18 - INV=632.0 Image: Start 10 relation of the start 10 r																		
Image: Start 18 - INV=632.0 Image: Start 18 - INV=632.0 Image: Start 18 - INV=632.0 Image: Start 10 relation of the start 10 r																		
Image: Start 18 - INV=632.0 Image: Start 18 - INV=632.0 Image: Start 18 - INV=632.0 Image: Start 10 relation of the start 10 r					28		CONCRE	TF SI		GF								
Image: Construction of the second					шш		STA 7+		V=632 (
Image: Construction of the second					A S A													
0 1 75° SKEW, 87 ALONG SKEW 0 <td></td> <td></td> <td></td> <td></td> <td><u><u> </u></u></td> <td></td> <td>2-SPAN</td> <td></td> <td></td> <td></td> <td>170</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>					<u><u> </u></u>		2-SPAN				170							
Image: state of the state							STATE	URAWI	NG NO.		128						<u> </u>	
Image: state of the state							75° SK	EW, 87	ALON	SKEW								
0 1 1 9 8 1							OR EQU	IVALE	¥T								F	
0 1 1 9 8 1																		
0 1 1 9 8 1																		+
0 1 1 9 8 1					1	D												
6 10 12 <th13< th=""> 12 12 1</th13<>					aoric	Drive											L	
6 10 12 <th13< th=""> 12 12 1</th13<>															воты			JC
Image: Second					53	<u> </u>		50	-	28		- 2	8	_ UA				JU
Image: Second		~i	Āi		_~~i	, , ,		<u> </u>		М		4	4	_	PF	1495 3	D	
		4	4		4	4		4		4		4	4					ß
		11	- Û					<u> </u>				11						
		<u>0</u>	<u> </u>		<u> </u>	<u>9</u>		<u> </u>		<u> </u>		- <u> </u>	<u> </u>	- Roa	DWAY	' PLAN	EXHIB	ЯТ
6+00 7+00 8+00 9+00 SCALE: 1" = 50' hor. / 1" = 10' vert.		-										L.		_				
			6+00			7+00			8+	00			9+00	SCALE	: 1" = 50	0 ' hor. / '	1" = 10'	vert.

STATE OF TENNESSEE DEPARTMENT OF ENVIRONMENT AND CONSERVATION DIVISION OF WATER RESOURCES

Nashville Environmental Field Office 711 R.S. Gass Boulevard Nashville, TN 37216 687-7000 Statewide 1-888-891-8332 Fa

Phone 615-687-7000

Fax 615-687-7078

April 25, 2022

David McGowan 6901 Lenox Village Drive, Suite 107 Nashville, TN 37211 615-333-9000 davidmcgowan@regenthomestn.com

Re: Hydrologic Determination (DWR ID No.31057) Carothers Crossing, Phases 5A, 5B, and 10-Section 2A, Nashville, Davidson County, Tennessee

Dear Landowner:

On March 14, 2022, the Division of Water Resources (division) received a jurisdictional waters report submitted on your behalf by Silas Mathes with, BDY Environmental LLC. These water features are located on property located at: 35.984833, -86.611243 (Lat/Long), in Nashville, Davidson County, Tennessee. Please note that all geographic coordinates provided in this letter have a limited precision and should be considered approximate.

Please see the attached map and table for a summary of the jurisdictional determinations made by the division for the water features on site. These determinations are based on the information and documentation in the submitted report as well as the division's observations, rules, and guidance regarding hydrologic determinations.

Alterations to streams, wetlands, or other waters may only be performed under the coverage of, and conformance to, a valid *Aquatic Resource Alteration Permit (ARAP)* issued by the division, except where authorized by Rule. ARAP applications and provisions are available on-line at http://www.tn.gov/environment/article/permit-water-aquatic-resource-alteration-permit.

Any alterations to wet weather conveyances must be made in accordance with the requirements of Tenn. Code Ann. § 69-3-108(q).

Hydrologic determinations are advised and governed by Tennessee Department of Environment and Conservation (TDEC) rules and regulations, and therefore only apply to the State's

April 25, 2022 Page 2 of 11

permitting process. Because these and other various water features on-site may potentially also be considered jurisdictional Waters of the United States, any alterations to them should only be performed after consultation with the U.S. Army Corps of Engineers.

Discharges and alterations to sinkholes may require the submittal of an application and written authorization under the provisions of TDEC Rules. You may contact Mr. Brian Ham at (615) 532-9224 to help identify permit requirements related to sinkhole alterations.

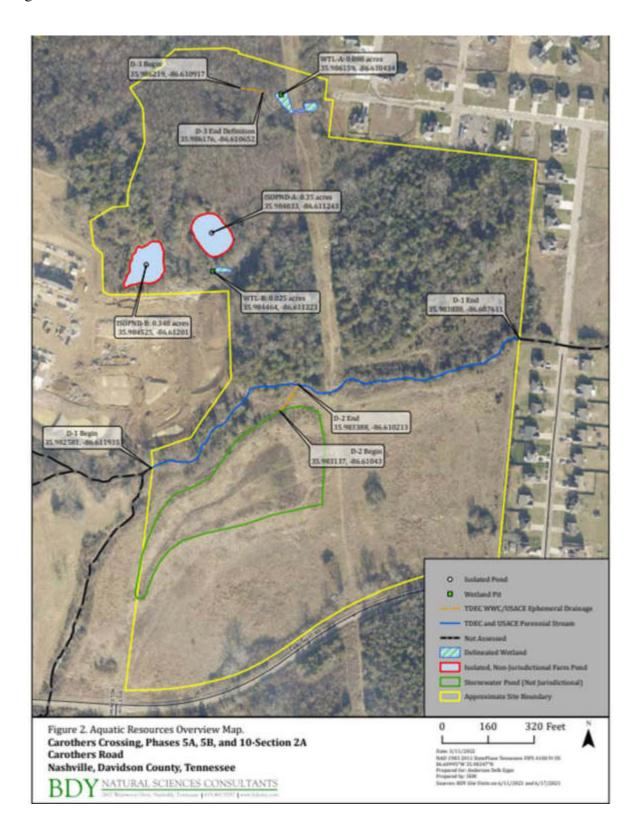
If the disturbed area of this project is one acre or greater, coverage under the *General NPDES Permit for Stormwater Discharges from Construction Activities (CGP)* will be required from this division before any clearing or earth moving activities are started. Information on the construction stormwater permit is available online at <u>http://www.tn.gov/environment/article/permit-water-npdes-stormwater-construction-permit</u>.

I appreciate the opportunity to assess the water features on site prior to site plan finalization and initiation of construction activities. Because natural variation and human activities can alter hydrologic conditions, the division reserves the right to reassess the status of the water features in the future.

Thank you for your interest in water quality in Tennessee. If you have any questions or need additional information, please contact me at 615-714-0730 or by email at Virginia.Lawrence@tn.gov.

Sincerely,

Virginia Human


Division of Water Resources

cc:

U.S. Army Corp of Engineers, <u>NashvilleRegulatory@usace.army.mil</u> Michael Hunt, Davidson County MS4, <u>michael.hunt@nashville.gov</u> April 25, 2022 Summary of Features Page 3 of 11

Feature Name	Classisfcation	Lat/Long Start	Lat/Long End
D-1	Stream	35.982581, -86.611935	35.983838, -86.607611
D-2	Wet Weather Conveyance	35.983137, -86.61043	35.983388, -86.610213
D-3	Wet Weather Conveyance	35.986219, -86.610917	35.986176, -86.610652
WTL-A	Wetland	35.986159, -86.610434	
WTL-B	Wetland	35.984464, -86.611223	
ISOPND-A	Not waters of the State	35.984833, -86.611243	
ISOPND-B	Not waters of the State	35.984525, -86.61201	

April 25, 2022 Map Attachment Page 4 of 11

BDY NATURAL SCIENCES CONSULTANTS

March 14, 2022

Via electronic mail

Mr. Timmy Jennette Tennessee Department of Environment & Conservation Division of Water Resources 711 R.S. Gass Blvd. Nashville, Tennessee 37243

Re: Hydrologic Determinations and Wetland Delineations East Branch Hurricane Creek and Unnamed Tributaries Carothers Crossing Phases 5A, 5B, and 10-Section 2A Carothers Road Nashville, Davidson County, Tennessee

Dear Mr. Jennette:

BDY Environmental LLC (BDY) has conducted hydrologic determinations for 3 watercourses on approximately 52-acres located north of Carothers Road in the Carothers Crossing Residential Development (Phases 5 and 10) in Nashville, Davidson County, Tennessee. We are forwarding the accompanying Hydrologic Determination Field Data Sheets, figures, and representative photographs, which are provided in support of our determinations that the assessed watercourses are either wet-weather conveyances or streams, as defined by Tennessee statute and associated administrative regulations.^{1,2}

BDY also conducted delineations for 2 wetlands identified on the site based on guidelines established in the *Regional Supplement to the Corps of Engineers Wetland Delineation Manual: Eastern Mountains and Piedmont Region (Version 2.0).* Tables, maps, field data sheets, and photos supporting these delineations are also included in this report.

This report is submitted on behalf the project engineer, Anderson Delk Epps and Associates at the request of the property owner/developer:

Regent Development, LLC David McGowan 6901 Lenox Village Drive, Suite 107 Nashville, TN 37211 615-333-9000 davidmcgowan@regenthomestn.com

The purpose of this report is to obtain TDEC's concurrence with these hydrologic determinations and wetland delineations to inform site planning for a proposed residential development. The project may require watercourse and/or wetland alterations; however, the developer is considering

¹ Tennessee Code Annotated §69-3-103 (38) & (43) (A-D)

² TDEC Rules of the Tennessee Water Quality Control Board 1200-04-03-.04 (23, 28)

March 14, 2022 Mr. Timmy Jennette Carothers Crossing Phases 5A, 5B, and 10-Section 2A HD Letter Report

practicable design alternatives to minimize or avoid impacts pending the determination of jurisdiction.

Project Site

The site consists of Phases 5A, 5B, and 10-Section 2A of the Carothers Crossing residential development. The subject phases comprise approximately 52 acres of mixed hardwood and eastern red cedar forest, with a TVA utility line corridor in the eastern portion of the site, and a large, currently unused detention area and pasture in the southern portion of the site. Site topography is characterized by a rolling central ridge and a west-east trending stream valley. Small karst depressions are scattered across the site. Two farm ponds are located on the site. Surrounding land use consists of forest to the north, ongoing Carothers Crossing development areas to the west, and residential subdivisions to the east. Water features on the site have diminished resource value due to erosion from historic agricultural and silvicultural practices.

The site is mapped on the US Geological Survey (USGS) Smyrna 7.5-minute Topographic Quadrangle (see Figure 1). The topographic map depicts a single stream, a tributary to East Branch Hurricane Creek, in the southern portion of the site. The site lies within the Hurricane Creek watershed, 12-digit hydrologic unit code (HUC) [051302030304]. East Branch Hurricane Creek is listed by TDEC as impaired due to sedimentation/siltation from development/channelization, and due to alteration in streamside or littoral vegetative covers due to channelization. The US Fish and Wildlife Service National Wetland Inventory (NWI) Mapper identifies the same unnamed tributary to East Branch Hurricane Creek as the USGS Topo and additionally depicts 2 farm ponds (PUBH) on the site (see attached NWI overview map). A soil map from the Natural Resources Conservation Service (NRCS) Web Soil Survey is also included with this letter. Based on a review of NRCS soils data, no hydric soils are mapped on the site. Soils mapped along watercourses are the Arrington silt loam, the Talbott-Rock outcrop complex, and the Hampshire silt loam.

Hydrologic Determinations

Silas Mathes (TNQHP #1112-TN13) and Hali Steinmann conducted the hydrologic determinations of the 3 watercourses within the subject site's boundaries on June 17 and June 22, 2021. Table 1 lists the dates for each watercourse assessment as well as previous rainfall as measured at the Nashville International Airport.

Date Assessed	Featuress	7 Day Previous Rain (in.)	48 Hour Previous Rain (in.)	90 Day Climate Analysis
6/17/2021	D-2, Wetland A	0.20	0	Normal
6/22/2021	D-1, D-3, Wetland B	0.26	0.07	Normal

Table 1: HD/Wetland Assessment Dates and Previous Rainfall

March 14, 2022 Mr. Timmy Jennette Carothers Crossing Phases 5A, 5B, and 10-Section 2A HD Letter Report

A 90-day antecedent precipitation analysis data sheet and raw precipitation data are attached. Summary sheets generated by the US Army Corps of Engineers Antecedent Precipitation Tool are also included.

BDY identified 2 wet weather conveyances and 1 jurisdictional stream (see Table 2 immediately following this letter). Both of the site's wet weather conveyances are shallow channels dominated by soil substrate well above subsurface bedrock. D-2 is an artificial stormwater outlet channel leading from a large detention pond on the site. D-3 is a short erosional feature that loses definition above Wetland A. These channels exhibit poor to moderate bed and bank differentiation with limited to no connection to subsurface flow inputs. During site visits, wet weather conveyances were dry and BDY observed no macrobenthos.

D-1 is a well defined, obvious stream with bedrock and cobble substrates and multiple connections to subsurface seepage. BDY observed fish and multiple populations of wood- and stone-case building caddisfly larvae in D-1.

Representative photographs of the watercourses are attached. Figure 3A provides photo locations. Hydrologic Determination Field Data Sheets for the assessed watercourses are also included.

Non-Jurisdictional Farm Ponds

Two artificial, isolated farm ponds are located on the Site. Neither feature has inlet or outlet channels. Both features have large, constructed berms to hold back water, and appear to retain water throughout the year, sourced from direct precipitation and gathered sheetflow. Both ponds have clay liners. As the features are isolated from groundwater and surface water connections, we assert that they are not jurisdictional and respectfully ask for your concurrence.

<u>Wetlands</u>

BDY identified and delineated 2 jurisdictional wetlands on the site. These wetlands were delineated utilizing the protocols outlined in the *Regional Supplement to the Corps of Engineers Wetland Delineation Manual: Eastern Mountains and Piedmont Region (Version 2.0)* and in *NRCS Field Indicators of Hydric Soils in the United State Version 8.2, 2018.* BDY field mapped wetland boundaries using a sub-meter accuracy GPS unit with positioning corrections tied to the TN Department of Transportation reference network. BDY also completed wetland determination data forms for 2 upland locations near the delineated wetlands.

Both wetlands are shallow seasonally saturated features with no inlet or outlet channels. Wetland A consists of a small valley blocked by the utility line easement on the site and the berm of a silted pond further downslope. Wetland B is a shallow depression with vehicle ruts that collects shallow hillslope seepage on compacted soils below the steep berm of Isolated Pond A.

March 14, 2022 Mr. Timmy Jennette Carothers Crossing Phases 5A, 5B, and 10-Section 2A HD Letter Report

A summary table for the two wetlands and their corresponding upland sample pits is included as Table 3 immediately following the body of this letter. Eastern Mountains and Piedmont Wetland Determination Data Forms completed during the delineation are included with this report and photos are also provided in the attached photo page. Photo locations are mapped on Figure 3A and wetland delineation points and sample pit locations are mapped on Figure 3B.

Request for Concurrence

We attest that all information submitted herein and in the accompanying attachments is true, accurate, and complete. We appreciate your review of this information and request your concurrence of our jurisdictional determination. Please contact us at (615) 812-8960 if we may provide additional information or address your questions regarding our findings.

Very truly yours,

BDY ENVIRONMENTAL LLC

Mathes

Silas Mathes Project Scientist, TNQHP #1112-TN13

<u>TABLE 2: Hydrologic Determination Summary for Carothers Crossing Phases 5A, 5B, and 10-</u> <u>Section 2A</u>

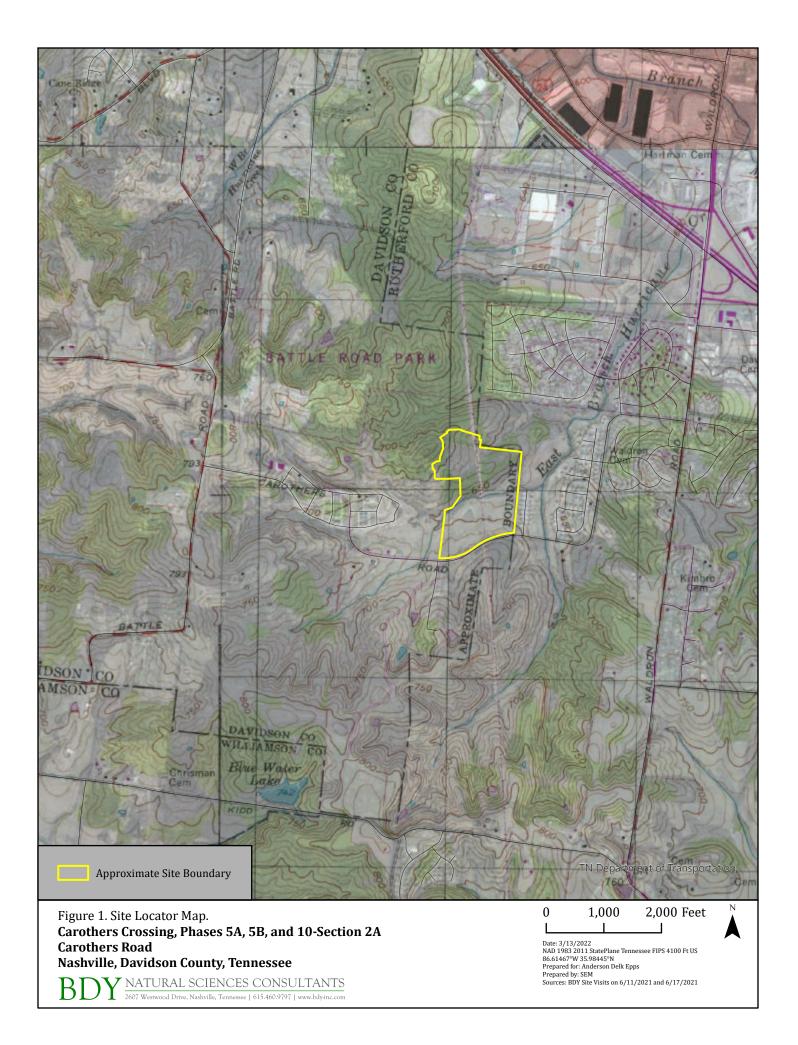
Watercourse	Jurisdictional Status	From	То	Length on Site	Description	Watershed Acres
D-1	Perennial	35.982581,	35.983838,	1513	East Branch Hurricane	538
	Stream	-86.611935	-86.607611		Creek	
D-2	Wet Weather	35.983137,	35.983388,	113	Artificial Detention	14
	Conveyance	-86.61043	-86.610213		Pond Outlet	
D-3	Wet Weather	35.986219,	35.986176,	81	Erosional Channel,	10.25
	Conveyance	-86.610917	-86.610652		Loses Definition above	
					WTL-A	

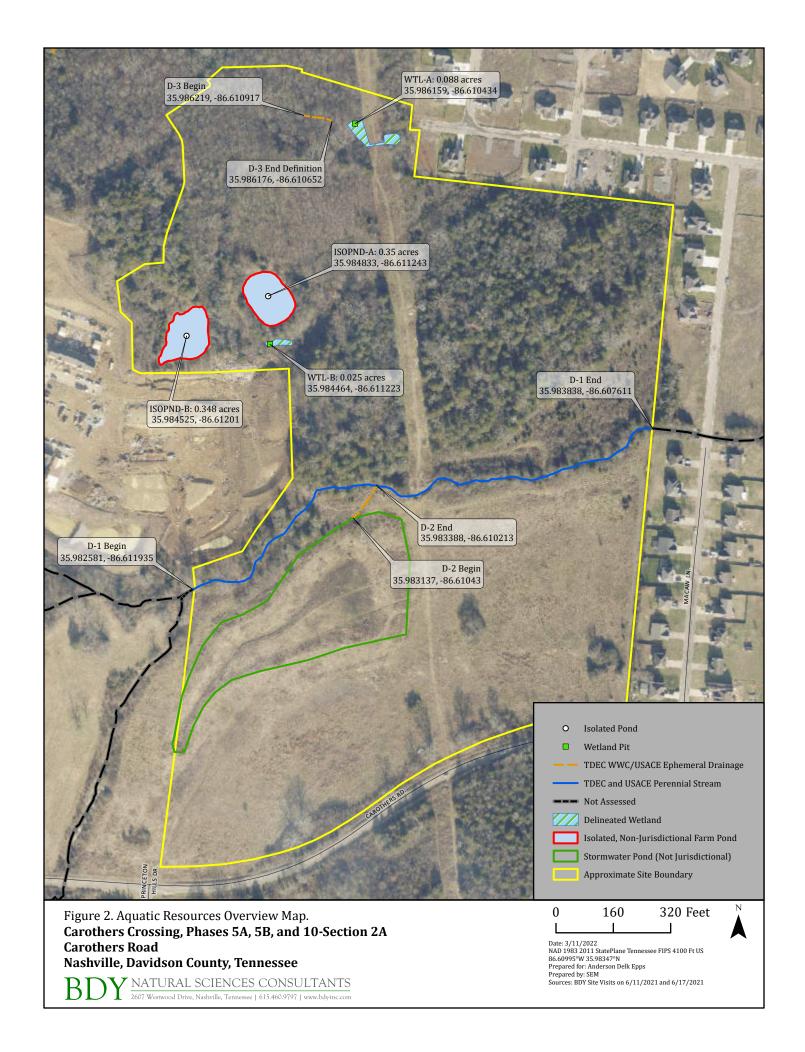
TABLE 3: Wetland and Pond Summary for Carothers Crossing Phases 5A, 5B, and 10-Section 2A

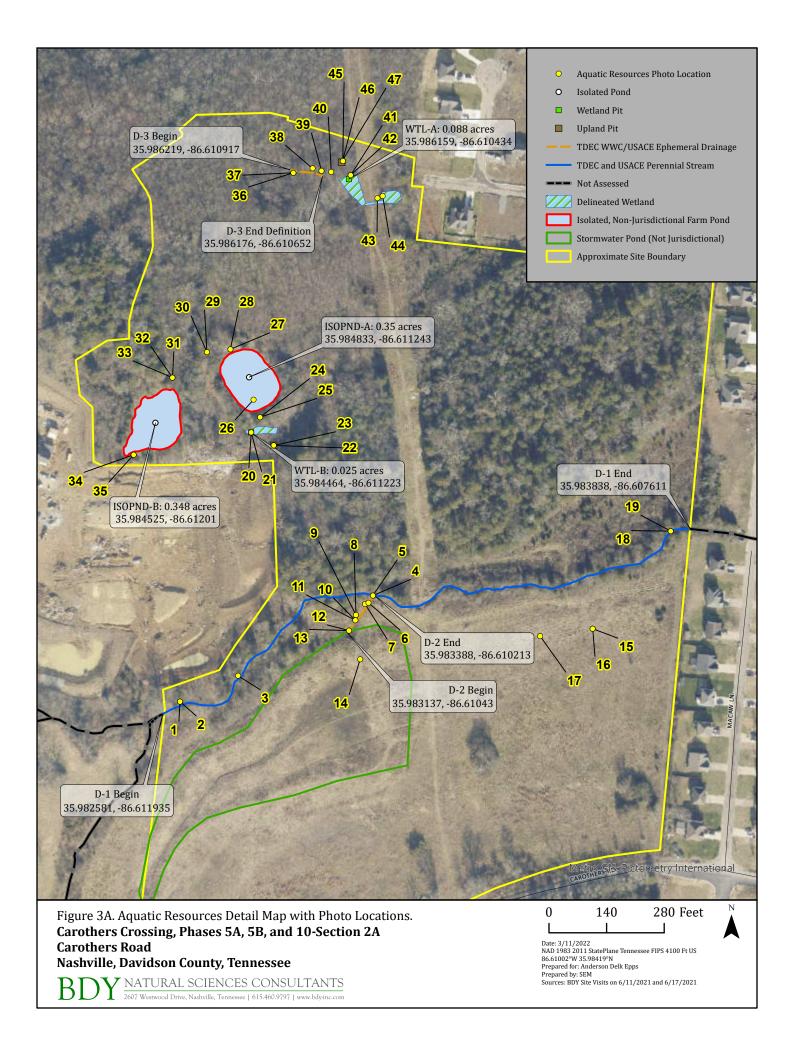
Feature	Jurisdictional Status	Description	Acres	Coordinates
WTL-A	Wetland	Palustrine forested feature and former pond in small valley constricted by utility right of way.	0.088	35.986159, -86.610434
WTL-B	Wetland	Shallow hillslope seepage feature at base of steep pond berm.	0.025	35.984464, -86.611223
ISOPND-A	Isolated Pond	Artificially bermed farm pond with clay liner and no inlet or outlet channels.	0.35	35.984833, -86.611243
ISOPND-B	Isolated Pond	Artificially bermed and excavated farm pond with clay liner and no inlet or outlet channels.	0.348	35.984525, -86.61201
UPL-A	Upland Sample Pit			35.986272, -86.610494
UPL-B	Upland Sample Pit			35.984379, -86.611037

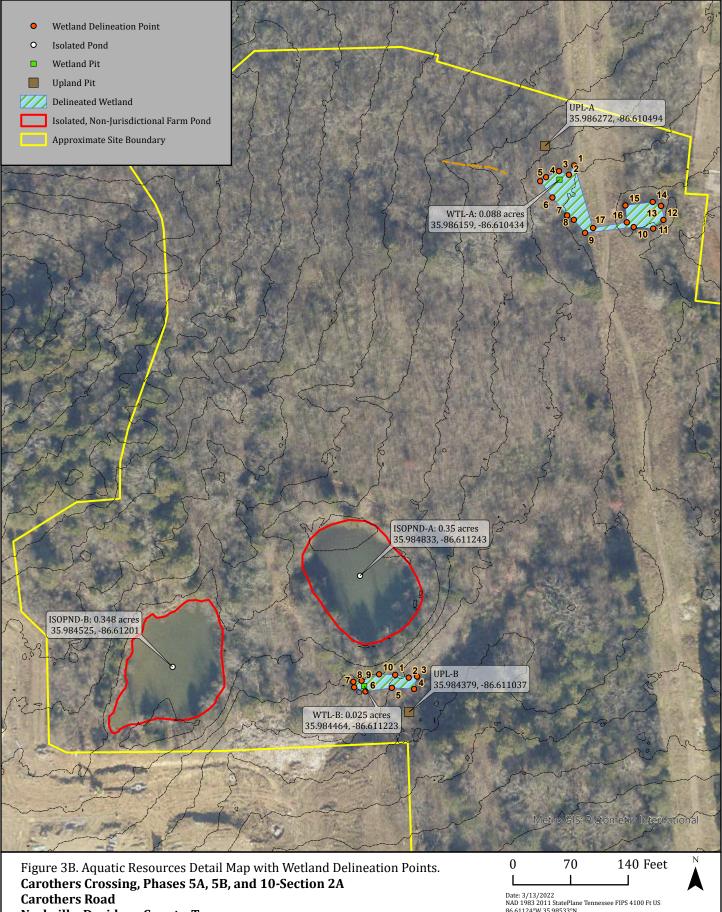
McGowan Family Limited Partnership 6901 Lenox Village Drive – Suite 107 Nashville, TN 37211

July 15, 2021


Tennessee Department of Environment & Conservation Division of Water Resources 711 R.S. Gass Boulevard Nashville, Tennessee 37243


To Whom it May Concern,


As the owner of the property at 7211 Carothers Road in Davidson County (Metro Parcel ID 18800000800), I, David McGowan Jr. having full authority to sign on behalf of McGowan Family Limited Partnership, am authorizing and give permission for TDEC to visit the site for the purpose of verifying a hydrologic determination report being submitted by BDY Environmental.

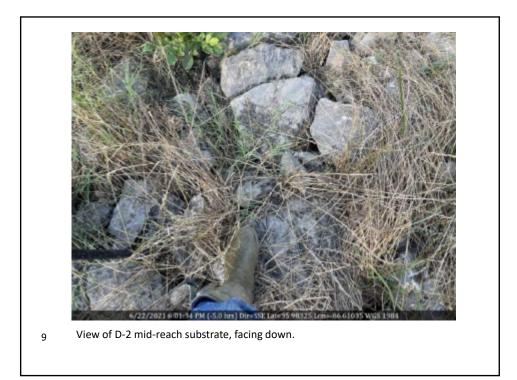

Sincerely,

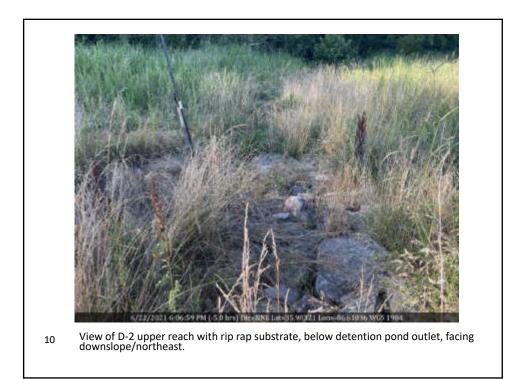
Phone: 615-333-9000 Email: Cavid Mcgowan@regenthomes-tn.com

Nashville, Davidson County, Tennessee

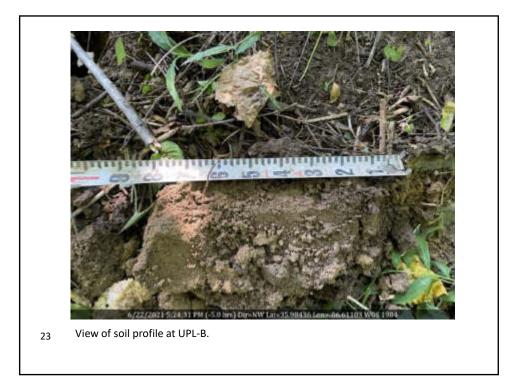
К

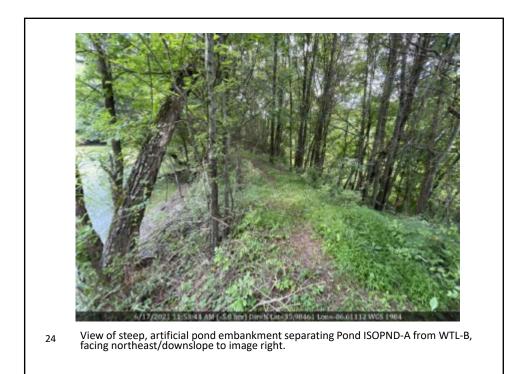
NATURAL SCIENCES CONSULTANTS 2607 Westwood Drive, Nashville, Tennessee | 615.460.9797 | www.bdy-inc.com Date: 3/13/2022 NAD 1983 2011 StatePlane Tennessee FIPS 4100 Ft US 86.61124²W 35.98533²N Prepared for: Anderson Delk Epps Prepared by: SEM Sources: BDY Site Visits on 6/11/2021 and 6/17/2021



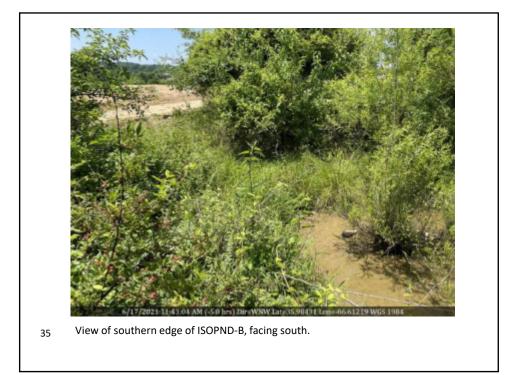
















Hydrologic Determination Field Data Sheet

Tennessee Division of Water Pollution Control, Version 1.5

Named Waterbody: East Branch Hurricane Creek		Date/Time: 6/22/2021 18:19
Assessors/Affiliation: Silas Mathes (1112-TN13)		Project ID :
Site Name/Description: Carothers Crossing, Phases 5 and 10	ng, Phases 5 and 10 D-1	
Site Location: Carothers Road, Nashville, Davidson County		
HUC (12 digit): Hurricane Creek (051302030304)		Lat/Long:
Previous Rainfall (7-days): 0.26 in. Prev. 7 Days (0.07 in. Prev. 48 hrs	;)	from: 35.982581, -86.611935 to: 35.983838, -86.607611
Precipitation this Season vs. Normal : abnormally wet elevated av argage Source of recent & seasonal precip data : NOAA GHCND Nashville Airport	low abn	ormally dry unknown
Watershed Size : 538.5 acres	County: D	avidson
Soil Type(s) / Geology : Arrington silt loam, 0 to 2 percent slopes, occasionally flooded/0	Carters Limes	stone Source: Recorded Second
Surrounding Land Use : Forest and Residential Subdivision		
Degree of historical alteration to natural channel morphology & hydrology (circ Severe Mockrate Slight		escribe fully in Notes) : osent

Primary Field Indicators Observed

Primary Indicators	NO	YES	
1. Hydrologic feature exists solely due to a process discharge	X	WWC	
2. Defined bed and bank absent, vegetation composed of upland and FACU species	X	WWC	
 Watercourse dry anytime during February through April 15th, under normal precipitation / groundwater conditions 		WWC	× N/A
4. Daily flow and precipitation records showing feature only flows in direct response to rainfall		WWC	× N/A
 Presence of multiple populations of obligate lotic organisms with ≥ 2 month aquatic phase 		✓ Stream	
6. Presence of fish (except <i>Gambusia</i>)		🗸 Stream	
7. Presence of naturally occurring ground water table connection		✓ Stream	
8. Flowing water in channel and 7 days since last precip >0.1" in local watershed	X	Stream	
9. Evidence watercourse has been used as a supply of drinking water	X	Stream	

NOTE: If any Primary Indicators 1-9 = "Yes", then no further investigation is necessary. However, assessors may choose to score secondary indicators as supporting evidence.

In the absence of a primary indicator, or other definitive evidence, complete the secondary indicator table on page 2 of this sheet, and provide score below.

Guidance for the interpretation and scoring of both the primary & secondary indicators is provided in TDEC-WPC Guidance For Making Hydrologic Determinations, Version 1.5

Overall Hydrologic Determination = Stream	
Secondary Indicator Score (if applicable) = ⁰	OR 🗸 N/A

Justification / Notes :

Well defined, bedrock substrate stream with obvious connection to groundwater, multiple caddisfly species, and fish. Alterations from surrounding residential development and historic ag practices.

Secondary Field Indicator Evaluation

A. Geomorphology (Subtotal = 0)	Absent	Weak	Moderate	Strong
1. Continuous bed and bank	0	1	2	3
2. Sinuous channel	0	1	2	3
3. In-channel structure: riffle-pool sequences	0	1	2	3
4. Sorting of soil textures or other substrate	0	1	2	3
5. Active/relic floodplain	0	0.5	1	1.5
6. Depositional bars or benches	0	1	2	3
7. Braided channel	0	1	2	3
8. Recent alluvial deposits	0	0.5	1	1.5
9. Natural levees	0	1	2	3
10. Headcuts	0	1	2	3
11. Grade controls	0	0.5	1	1.5
12. Natural valley or drainageway	0	0.5	1	1.5
13. At least second order channel on existing USGS				
or	No = 0		Yes	= 3
NRCS map				

B. Hydrology (Subtotal = 0)	Absent	Weak	Moderate	Strong]
14. Subsurface flow/discharge into channel	0	1	2	3	
15. Water in channel and >48 hours since sig. rain	0	1	2	3	N/A
16. Leaf litter in channel (January – September)	1.5	1	0.5	0	N/A
17. Sediment on plants or on debris	0	0.5	1	1.5	
18. Organic debris lines or piles (wrack lines)	0	0.5	1	1.5	
19. Hydric soils in channel bed or sides of channel	No = 0		Yes =	= 1.5	

C. Biology (Subtotal = 0)	Absent	Weak	Moderate	Strong
20. Fibrous roots in channel bed 1	3	2	1	0
21. Rooted plants in the thalweg 1	3	2	1	0
22. Crayfish in stream (exclude in floodplain)	0	1	2	3
23. Bivalves/mussels	0	1	2	3
24. Amphibians	0	0.5	1	1.5
25. Macrobenthos (record type & abundance)	0	1	2	3
26. Filamentous algae; periphyton	0	1	2	3
27. Iron oxidizing bacteria/fungus	0	0.5	1	1.5
28.Wetland plants in channel bed 2	0	0.5	1	1.5

¹ Focus is on the presence of terrestrial plants. ² Focus is on the presence of aquatic or wetland plants.

Total Points = _	0
	ons, Watercourse is a Wet Weather ary Indicator Score < 19 points

Notes :

Hydrologic Determination Field Data Sheet

Tennessee Division of Water Pollution Control, Version 1.5

Named Waterbody: East Branch Hurricane Creek		Date/Time: 6/22/2021 18:01
Assessors/Affiliation: Silas Mathes (1112-TN13)		Project ID :
Site Name/Description: Carothers Crossing, Phases 5 and 10	D-2	
Site Location: Carothers Road, Nashville, Davidson County		
HUC (12 digit): Hurricane Creek (051302030304)		Lat/Long:
Previous Rainfall (7-days): 0.26 in. Prev. 7 Days (0.07 in. Prev. 48 hrs	from: 35.983137, -86.61043 to: 35.983388, -86.610213	
Precipitation this Season vs. Normal : abnormally wet elevated average Source of recent & seasonal precip data : NOAA GHCND Nashville Airport	low abn	ormally dry unknown
Watershed Size : 14.1 acres	County: D	avidson
Soil Type(s) / Geology : Arrington silt loam, 0 to 2 percent slopes, occasionally flooded/0	Carters Lime	stone Source: Geoquad
Surrounding Land Use : Forest and Residential Subdivision		
Degree of historical alteration to natural channel morphology & hydrology (circ Severe Moderate Slight		escribe fully in Notes) : osent

Primary Field Indicators Observed

Primary Indicators	NO	YES	
1. Hydrologic feature exists solely due to a process discharge	X	WWC	
2. Defined bed and bank absent, vegetation composed of upland and FACU species	X	WWC	
3. Watercourse dry anytime during February through April 15th, under normal precipitation / groundwater conditions		WWC	× N/A
4. Daily flow and precipitation records showing feature only flows in direct response to rainfall		WWC	× N/A
 Presence of multiple populations of obligate lotic organisms with ≥ 2 month aquatic phase 	×	Stream	
6. Presence of fish (except Gambusia)	X	Stream	
7. Presence of naturally occurring ground water table connection	X	Stream	
8. Flowing water in channel and 7 days since last precip >0.1" in local watershed	X	Stream	
9. Evidence watercourse has been used as a supply of drinking water	X	Stream	

NOTE: If any Primary Indicators 1-9 = "Yes", then no further investigation is necessary. However, assessors may choose to score secondary indicators as supporting evidence.

In the absence of a primary indicator, or other definitive evidence, complete the secondary indicator table on page 2 of this sheet, and provide score below.

Guidance for the interpretation and scoring of both the primary & secondary indicators is provided in TDEC-WPC Guidance For Making Hydrologic Determinations, Version 1.5

Overall Hydrologic Determination = Wet Weather Conveyance

Secondary Indicator Score (if applicable) = 2.5 OR N/A

Justification / Notes :

Short, fescue-lined artificial swale leading from large detention pond. Soil exposed in bed in only two locations. Rip-rap present at either end of reach. No biology indicators present. No evidence of subsurface seep connections; channel flows very infrequently and is elevated above typical pool level of detention area (detention pond does not appear to receive flows from impervious areas or other stormwater infrastructure). Mowed infrequently.

Secondary Field Indicator Evaluation

A. Geomorphology (Subtotal = 1.5)	Absent	Weak	Moderate	Strong
1. Continuous bed and bank	0 🗸	1	2	3
2. Sinuous channel	Ø 🗸	1	2	3
3. In-channel structure: riffle-pool sequences	Ø	1	2	3
4. Sorting of soil textures or other substrate	Ø	1	2	3
5. Active/relic floodplain	Ø	0.5	1	1.5
6. Depositional bars or benches	Ø	1	2	3
7. Braided channel	Ø	1	2	3
8. Recent alluvial deposits	Ø	0.5	1	1.5
9. Natural levees	Ø	1	2	3
10. Headcuts	Ø	1	2	3
11. Grade controls	Ø	0.5	1	1.5
12. Natural valley or drainageway	0	0,5	1	1.5
13. At least second order channel on existing USGS				
or	No = 0 🗸		Yes	= 3
NRCS map				

B. Hydrology (Subtotal = 0.5)	Absent	Weak	Moderate	Strong]
14. Subsurface flow/discharge into channel	Ø	1	2	3	
15. Water in channel and >48 hours since sig. rain	Ø	1	2	3	N/A
16. Leaf litter in channel (January – September)	1.5	1	0.5	0	N/A
17. Sediment on plants or on debris	0	0.5	1	1.5	
18. Organic debris lines or piles (wrack lines)	0	0.5	1	1.5	
19. Hydric soils in channel bed or sides of channel	No = 0 🗸		Yes =	= 1.5]

C. Biology (Subtotal = 0.5)	Absent	Weak	Moderate	Strong
20. Fibrous roots in channel bed 1	3	2	1	Ø
21. Rooted plants in the thalweg 1	3	2	1	Ø
22. Crayfish in stream (exclude in floodplain)	V	1	2	3
23. Bivalves/mussels	V	1	2	3
24. Amphibians	V	0.5	1	1.5
25. Macrobenthos (record type & abundance)	V	1	2	3
26. Filamentous algae; periphyton	Ń	1	2	3
27. Iron oxidizing bacteria/fungus	Ø	0.5	1	1.5
28.Wetland plants in channel bed 2	0	0,5	1	1.5

¹ Focus is on the presence of terrestrial plants. ² Focus is on the presence of aquatic or wetland plants.

Total Points = _	2.5	
	tions, Watercourse is a ndary Indicator Score <	

Notes :

1. Artificial stormwater swale leading from large detention pond; poorly defined banks with bed almost completely covered by upland vegetation (fescue). 2. One bend 3. No riffles or pools present. 10/11. No headcuts. 12. Weak natural valley (side of larger floodplain). 14/15 No water present, no evidence of subsurface inputs. Detention structure rarely outlets to channel. 16. No trees present within detention pond or area surrounding channel. 17. minor stains on grass. 18. minor amount of in-channel wrack at bottom of reach. 20. Strong fibrous roots throughout. 21. Fescue chokes thalweg. 22-27 not present. 28. FAC scattered at bottom.

Hydrologic Determination Field Data Sheet

Tennessee Division of Water Pollution Control, Version 1.5

Named Waterbody: East Branch Hurricane Creek		Date/Time: 6/17/2021 14:02
Assessors/Affiliation: Silas Mathes (1112-TN13)		Project ID :
Site Name/Description: Carothers Crossing, Phases 5 and 10		D-3
Site Location: Carothers Road, Nashville, Davidson County		
HUC (12 digit): Hurricane Creek (051302030304)		Lat/Long:
Previous Rainfall (7-days): 0.2 in. Prev. 7 Days (0 in. Prev. 48 hrs)		from: 35.986219, -86.610917 to: 35.986176, -86.610652
Precipitation this Season vs. Normal : abnormally wet elevated av aga lo Source of recent & seasonal precip data : NOAA GHCND Nashville Airport	w abr	ormally dry unknown
Watershed Size : 3.2 acres	ounty: D	avidson
Soil Type(s) / Geology : Hampshire silt loam, 5 to 12 percent slopes, eroded/Carters	Limest	one Source: Geoquad
Surrounding Land Use : Forest and Residential Subdivision		
Degree of historical alteration to natural channel morphology & hydrology (circle Severe Moderate Slight		escribe fully in Notes) : bsent

Primary Field Indicators Observed

Primary Indicators	NO	YES	
1. Hydrologic feature exists solely due to a process discharge	X	WWC	
2. Defined bed and bank absent, vegetation composed of upland and FACU species	X	WWC	
3. Watercourse dry anytime during February through April 15th, under normal precipitation / groundwater conditions		WWC	× N/A
4. Daily flow and precipitation records showing feature only flows in direct response to rainfall		WWC	× N/A
 Presence of multiple populations of obligate lotic organisms with ≥ 2 month aquatic phase 	×	Stream	
6. Presence of fish (except Gambusia)	X	Stream	
7. Presence of naturally occurring ground water table connection	X	Stream	
8. Flowing water in channel and 7 days since last precip >0.1" in local watershed	X	Stream	
9. Evidence watercourse has been used as a supply of drinking water	X	Stream	

NOTE: If any Primary Indicators 1-9 = "Yes", then no further investigation is necessary. However, assessors may choose to score secondary indicators as supporting evidence.

In the absence of a primary indicator, or other definitive evidence, complete the secondary indicator table on page 2 of this sheet, and provide score below.

Guidance for the interpretation and scoring of both the primary & secondary indicators is provided in TDEC-WPC Guidance For Making Hydrologic Determinations, Version 1.5

Overall Hydrologic Determination = Wet Wea	ther Conveyance	
Secondary Indicator Score (if applicable) = 10.25	OR N	I/A

Justification / Notes :

Short, erosional, soil-substrate channel that loses definition at slope break. No evidence of seepage inputs, sorting, or macrobenthos observed. Erosion from historic ag practices.

Secondary Field Indicator Evaluation

A. Geomorphology (Subtotal = 5)	Absent	Weak	Moderate	Strong
1. Continuous bed and bank	0	1 🗸	2	3
2. Sinuous channel	Ø	1	2	3
3. In-channel structure: riffle-pool sequences	0 🗸	1	2	3
4. Sorting of soil textures or other substrate	0 🗸	1	2	3
5. Active/relic floodplain	Ø	0.5	1	1.5
6. Depositional bars or benches	Ø	1	2	3
7. Braided channel	Ø	1	2	3
8. Recent alluvial deposits	Ø	0.5	1	1.5
9. Natural levees	Ø	1	2	3
10. Headcuts	0	*	2	3
11. Grade controls	0	0.5 🗸	1	1.5
12. Natural valley or drainageway	0	0.5 🗸	1	1.5
13. At least second order channel on existing USGS				
or	No = 0 🗸 Yes = 3		= 3	
NRCS map				

B. Hydrology (Subtotal = 3.25)	Absent	Weak	Moderate	Strong]
14. Subsurface flow/discharge into channel	Ø	1	2	3	
15. Water in channel and >48 hours since sig. rain	Ø	1	2	3	N/A
16. Leaf litter in channel (January – September)	1.5	1	0.5	0	N/A
17. Sediment on plants or on debris	Ø	0.5	1	1.5	
18. Organic debris lines or piles (wrack lines)	0	0.5	1	1.5	
19. Hydric soils in channel bed or sides of channel	No	= 0	Yes =	= 1.5 🖌]

C. Biology (Subtotal = 2)	Absent	Weak	Moderate	Strong
20. Fibrous roots in channel bed 1	3	2	1	Ø
21. Rooted plants in the thalweg 1	3	2 🛚	1	0
22. Crayfish in stream (exclude in floodplain)	V	1	2	3
23. Bivalves/mussels	V	1	2	3
24. Amphibians	Ń	0.5	1	1.5
25. Macrobenthos (record type & abundance)	Ń	1	2	3
26. Filamentous algae; periphyton	Ń	1	2	3
27. Iron oxidizing bacteria/fungus	V	0.5	1	1.5
28.Wetland plants in channel bed 2	0	0,5	1	1.5

¹ Focus is on the presence of terrestrial plants. ² Focus is on the presence of aquatic or wetland plants.

Total Points =	10.25
	ns, Watercourse is a Wet Weather ry Indicator Score < 19 points

Notes :

1. soil bed moderately defined until slope break; banks poorly defined. 2. straight. 3. no pools or riffles--one long run. 7. soil bed marginally different from surrounding profile, but no coarse material present. 10. one at top. 11. moderate longevity root grade controls. 16. 10% leaf litter. 18 at bottom, not outside channel. 19. Hydric soil present in 10' length at bottom of reach where channel loses definition. 21. Scattered FAC and UPL species, trees at bottom of reach. 28. infrequent FAC.

Project/Site:	Carothers Cros	sing, Phases 5 and 10	City/Count	ty: Nashvill	le/Davidson	Sampling D	ate: 6/17/2021	
Applicant/Own	er: Regent			State:	Tennessee	Samplir	ng Point: WTL-A	
Investigator(s):	Silas Mathes/H	lali Steinmann		Section	, Township,	Range:		
Landform (hills	lope, terrace, et	c.): hillslope	Local relief (co	oncave, conve	ex, none):	concave	Slope (%)	3
Subregion (LR	R or MRLA): MF	RLA 123 Lat	.: 35.986159) Lon	g.: <u>-86.61</u> (0434	Datum: WGS84	ŀ
Soil Map Unit N	Name: Hamps	hire silt loam, 5 to 12 pe	rcent slopes, e	roded/Talbott-	-Bar NWI C	lassification:	PUBHx	
Are climatic/hy	drologic conditio	ns of the site typical for	this time of the	year? Yes	(If no, e	explain in ren	narks)	
Are vegetation	, soil	, or hydrology	Yes signific	cantly disturbe	ed?	Are "normal	l	
Are vegetation	, soil	, or hydrology	natura	lly problemati	c?	circumstanc	ces" present?	Yes
(If needed, exp	lain any answer	s in remarks)						

SUMMARY OF FINDINGS

Hydrophytic vegetation present? Y Hydric soil present? Y Indicators of wetland hydrology present? Y	Is the sampled area within a wetland? Y
Remarks: (Explain alternative procedures here or in a se	eparate report.)
Gentle slope with hydric soils and mixed FAC	J/FAC vegetation, includes small silted farm pond.

HYDROLOGY

Primary Indicators (minimur Surface Water (A1) High Water Table (A2) Saturation (A3) Water Marks (B1) Sediment Deposits (B2) Drift Deposits (B3) Algal Mat or Crust (B4) Iron Deposits (B5) Inundation Visible on Aer Water-Stained Leaves (B Aquatic Fauna (B13)	ial Imagery (B7)	True Aqua Hydrogen S X Oxidized Rhi Presence o Recent Iron I Thin Muck	that apply) tic Plants (B14) Sulfide Odor (C1) izospheres on Living Roots (C3) of Reduced Iron (C4) Reduction in Tilled Soils (C6) Surface (C7) olain in Remarks)	Secondary Indicators (minimum of two required) Surface Soil Cracks (B6) Sparsely Vegetated Concave Surface (B8) X Drainage Patterns (B10) Moss Trim Lines (B16) Dry-Season Water Table (C2) Crayfish Burrows (C8) Saturation Visible on Aerial Imagery (C9) Stunted or Stressed Plants (D1) Geomorphic Position (D2) Shallow Aquitard (D3) Microtopographic Relief (D4)
				FAC-Neutral Test (D5)
Field Observations: Surface water present? Water table present? Saturation present? (includes capillary fringe)	Yes Yes Yes	No X No X No X	Depth (inches): Depth (inches): Depth (inches):	Wetland Hydrology Present?
Describe recorded data (str	eam gauge, moi	nitoring well, a	erial photos, previous inspec	ctions), if available:
Remarks: Drainage from small, shallo	w valley slowed	by downslope	powerline easement mainte	enance and small farm pond.

1 2

3

4

9

10

1 2

3

1

2

3

4

5

6

7

8

> 1 2

3

4

5

GETATION - Use scientific names	of plants			Sampling Point: WTL-A
				50/20 Thresholds
rea Stratum Diat Size (20'	, Absolute	Dominant	Indicator	20% 50%
ree Stratum Plot Size (30') % Cover	Species	Status	Tree Stratum 17 43
Celtis laevigata	75	Ý	FACW	Sapling/Shrub Stratum 5 12
Maclura pomifera	5	N	UPL	Herb Stratum 17 44
Robinia pseudoacacia	4	N	FACU	Woody Vine Stratum 7 18
Fraxinus pennsylvanica	2	N	FACW	
, ,				Dominance Test Worksheet
				Number of Dominant
				Species that are OBL,
				FACW, or FAC: 7 (A)
		·		Total Number of Dominant
		·		Species Across all Strata: 8 (B)
	86	= Total Cover		·
		•		Percent of Dominant
unling (Chauch	Abaaluta	Deminant	Indiantan	Species that are OBL,
pling/Shrub Plot Size (15') Absolute	Dominant	Indicator	FACW, or FAC: <u>87.50%</u> (A/E
Stratum	/ % Cover	Species	Status	
Celtis laevigata	15	Y	FACW	Prevalence Index Worksheet
Fraxinus pennsylvanica	6	Y	FACW	Total % Cover of:
Ligustrum sinense	2	N	FACU	OBL species 0 x 1 = 0
				FACW species 137 x 2 = 274
		·		FAC species $41 \times 3 = 123$
		•		FACU species $49 \times 4 = 196$
				UPL species $5 \times 5 = 25$
				Column totals 232 (A) 618 (B)
				Prevalence Index = $B/A = 2.66$
	23	= Total Cover		
	23			Hydrophytic Vegetation Indicators:
	Absolute	Dominant	Indicator	Rapid test for hydrophytic vegetation
erb Stratum Plot Size (5') Absolute) % Cover		Status	X Dominance test is >50%
O a mark a market a market		Species		
Carex cherokeensis	20	<u> </u>	FACW	\overline{X} Prevalence index is $\leq 3.0^*$
Toxicodendron radicans	20	<u>Y</u>	FAC	Morphogical adaptations* (provide
Elymus virginicus	15	<u>Y</u>	FACW	supporting data in Remarks or on a
Ligustrum sinense	12	N	FACU	separate sheet)
Symphoricarpos orbiculatus	8	N	FACU	Problematic hydrophytic vegetation*
Parthenocissus quinquefolia	4	<u>N</u>	FACU	(explain)
Solidago gigantea	4	<u>N</u>	FACW	*Indicators of hydric soil and wetland hydrology must
Desmodium paniculatum	3	N	FACU	present, unless disturbed or problematic
Quercus rubra	1	N	FACU	
				Definitions of Vegetation Strata:
		·		Tree Mondy plants 2 in (7.6 cm) or more in diamot
				Tree - Woody plants 3 in. (7.6 cm) or more in diament at breast height (DBH), regardless of height.
				at breast height (DDF), regardless of height.
				Sapling/shrub - Woody plants less than 3 in. DBH a
				greater than 3.28 ft (1 m) tall.
	87	= Total Cover		
		•		Herb - All herbaceous (non-woody) plants, regardles
/oody Vine	Absolute	Dominant	Indicator	size, and woody plants less than 3.28 ft tall.
Stratum Plot Size (30') % Cover	Species	Status	Woody vines All woody vines greater than 2.29 ft
Toxicodendron radicans	15	Y	FAC	Woody vines - All woody vines greater than 3.28 ft in height.
Parthenocissus quinquefolia	15	- <u> </u>	FACU	noight
Smilax rotundifolia	4	- <u> </u>	FAC	
Vitis vulpina	2	<u>N</u>	FAC	Hydrophytic
				vegetation
		= Total Cover	-	present? Y
	36			

Sampling Point: WTL-A

Depth	Matrix					Texture		Remarks	
(Inches)	Color (moist)	%	Color (moist)	%	Type*	Loc**	C**		
0-2	10YR 3/2	95	7.5YR 4/4	5	С	PL/M	M silt loam		
2-8	10YR 4/2		7.5YR 4/6	8	С	М	I silt loam Mn Masses		
8-11	10YR 5/4		7.5YR 4/6	5	С	М	silty clay loam		
	Concentration, D PL=Pore Lining			ed Matri	x, MS=N	/lasked S	Sand Grains		
De Thi Sai N , Sai Sai	m Muck (A10) (I pleted Below Da ick Dark Surface ndy Mucky Miner MLRA 147, 148) ndy Gleyed Matr ndy Redox (S5) ipped Matrix (S6	rk Sufac (A12) ral (S1) ix (S4)	xe (A11) Rec Dep (LRR Rec Iron Um Pie	dox Darl bleted D dox Dep I-Mangai RA 136) bric Sur dmont F	ressions nese Ma face (F1 Floodplai	e (F6) face (F7) s (F8) sses (F1 13) (MLF in Soils (2) (LRR N, * RA 136, 122) (F19) (MLRA 148)	RA 136, 147) Shallow Dark Surface (TF12) r (Explain in Remarks) Indicators of hydrophytic egetation and weltand ydrology must be present, nless disturbed or problematic	
ype:	e Layer (if obser	rved):			<u>-</u>		Hydric soil pre	sent? Y	
epth (inch									

SOIL

Project/Site:	Carothers	Crossing, F	hases 5 and 10	City	//County:	Nashvil	e/Davidson	Sampling D	ate: <u>6/22/2021</u>	
Applicant/Own	er: Regei	nt				State:	Tennessee	Samplir	ng Point WTL-B	
Investigator(s):	Silas Matl	nes				Section	, Township,	Range:		
Landform (hills	lope, terrac	ce, etc.): hi	Islope	Local re	elief (concav	e, conve	ex, none):	concave	Slope (%)	3
Subregion (LR					984464	Lon	g.: -86.61 1	223	Datum: WGS84	ł
Soil Map Unit N	Name: St	tiversville loa	m, 5 to 12 perce	ent slopes	s, eroded		NWI CI	assification:	Upland	
Are climatic/hy	drologic co	nditions of th	ne site typical for	this time	of the year?	? Yes	(lf no, e	explain in ren	narks)	
Are vegetation	, s	soil	, or hydrology	Yes	significantly	[,] disturbe	ed?	Are "norma	I	
Are vegetation	, s	soil	, or hydrology		naturally pro	oblemati	c?	circumstand	ces" present?	Yes
(If needed, exp	olain any an	swers in ren	narks)		-					

SUMMARY OF FINDINGS

Hydrophytic vegetation present? Y Hydric soil present? Y Indicators of wetland hydrology present? Y	Is the sampled area within a wetland? Y						
Remarks: (Explain alternative procedures here or in a second	eparate report.)						
Artificial seepage wetland at base of steep isolated farm pond berm. Disturbed by tractor ruts.							

HYDROLOGY

r

Primary Indicators (minimum of one is required; check all that apply) Surface Water (A1) True Aquatic Plants (B14) High Water Table (A2) Hydrogen Sulfide Odor (C1) X Saturation (A3) X Oxidized Rhizospheres on Living Roots (C3) Water Marks (B1) Presence of Reduced Iron (C4) Sediment Deposits (B2) Recent Iron Reduction in Tilled Soils (C6) Drift Deposits (B3) Thin Muck Surface (C7) Algal Mat or Crust (B4) Other (Explain in Remarks) Iron Deposits (B5) Inundation Visible on Aerial Imagery (B7) Water-Stained Leaves (B9) Aquatic Fauna (B13)	Secondary Indicators (minimum of two required) Surface Soil Cracks (B6) Sparsely Vegetated Concave Surface (B8) Drainage Patterns (B10) Moss Trim Lines (B16) Dry-Season Water Table (C2) Crayfish Burrows (C8) Saturation Visible on Aerial Imagery (C9) Stunted or Stressed Plants (D1) X Geomorphic Position (D2) Shallow Aquitard (D3) Microtopographic Relief (D4) FAC-Neutral Test (D5)
Field Observations: Surface water present? Yes No X Depth (inches): Water table present? Yes No X Depth (inches): Saturation present? Yes X No Depth (inches): (includes capillary fringe) Yes X No Depth (inches): 0	Wetland Hydrology Present?
Describe recorded data (stream gauge, monitoring well, aerial photos, previous inspec	
Remarks: Seepage has collected in rutted area below steep earthen dam of isolated farm pond.	

2 Celtis laevigata 5 Y FACW 3	halda
Tree Stratum Piot Size (30" 30" % Cover Species Status Tree Stratum 2	
** Cover Species Status Tree Fightun Saping/Shrub Piot Size (15' Y FACW, or F Saping/Shrub Piot Size (15' Y FACW, or F Saping/Shrub Piot Size (15' Y FACW, or F Saping/Shrub Piot Size (15' Y FACW, or F 2 Celtis laevigata 5 Y FACW, or F 2 Celtis laevigata 5 Y FACW, or F 3 Cover Species Status Prevalence 4 Cover Species Status Prevalence 5 Y FACW FACW, or F FACU species 6 Cover Species Status Prevalence 20 = Total Cover FAC species Status 7 = Total Cover Species Status 1 Carex nupinoidea 2 N FAC 3 Cover species Species Status Y 4 Cover Species Status Y 6 N FAC Species Status 7 = Total Cover Species Status 8 Cover	20% 50%
2	
Image: Second	
Image: Stratum Plot Size (15') Absolute bit of the second	
Image: Second	Stratum 0 1
Image: Stratum Plot Size (15') Absolute % Cover Dominant % Cover Indicator % Easting sensylvanica Image: Cellus laevigata 5 Y FACW, or F. Image: Cellus laeviga	
Image: Species status Image: Species status Species status Image: Species status Species status Species status<	
iapling/Shrub Plot Size (15') Absolute Dominant Indicator Stratum 15 Y FACW	
Image: Stratum Plot Size (15') Absolute Model and Species Status Species Acrows Species Status Fraxinus pennsylvanica 15 Y FACW FACW Celtis laevigata 5 Y FACW Total % Cover Species Status Fraxinus pennsylvanica 15 Y FACW Total % Cover OBL Species Status Celtis laevigata 5 Y FACW Total % Cover OBL Species Status Microsteging winnica 15 Y FACW OBL Species Status Carex vulpinoidea 60 Y FAC Prevalence Total % Cover Species Status Microsteging winnineum 5 N OBL Rapid ter X Dominant Indicator Species Status Microsteging winnineum 5 N OBL X Prevalence I Microsteging winnineum 5 N OBL X Dominant Indicator Species Status Sepcies Acrows 5 N OBL X Dominant Indicator Species Status X Prevalence I Microsteging winnineum 5 N OBL X Dominant Indicator Species Status X Prevalence I Microteging winnine	,
Image: Species Acr Image: Species Acr Sapling/Shrub Plot Size (15') Absolute Dominant Indicator Fraxinus pennsylvanica 15 Y FACW Prevalence Celtis laevigata 5 Y FACW Prevalence Image: Species Status 5 Y FACW Prevalence Image: Species Species Species Y FACW Prevalence Image: Species Species Species Y FACW Species Acr Image: Species Species Y FACW Species Acr Image: Species Species Y FACW Species Acr Image: Species Species Y FAC Species Acr Image: Species Species Species Species Species Acr Species Acr Image: Species Species Species Species Species Species Species Acr Image: Species Species Species Species Species Species Species Species Image: Species Species N PGBL Morphog Image: Species Species N FAC Species Image: Species Species N FACW Specie	
0 = Total Cover Percent of D stapling/Shrub Plot Size (15') Absolute Dominant Indicator Stratum 15 Y FACW Prevalence Celtis laevigata 5 Y FACW OBL species Stratum 5 Y FACW OBL species Celtis laevigata 5 Y FACW OBL species Columnotation 5 Y FACW OBL species Columnotation 20 = Total Cover FAC OBL species Carex vulpinoidea 60 Y OBL Species Status Microstegium vimineum 10 N FAC Morphog Carex frankii 5 N OBL Separate Supporting 2 N FACW Saplingshrub Violey 2 N FACW Saplingshrub Woody Vine Plot Size (30') Absolute Dominant Indicator Moody Vine Plot Size (30') Absolute Dominant Saplingshrub Moody Vine Plo	
iapling/Shrub Plot Size (15') Absolute Dominant Indicator Fraxinus pennsylvanica 15 Y FACW Prevalence Celtis laevigata 5 Y FACW OBL Status Celtis laevigata 5 Y FACW OBL Species that Celtis laevigata 5 Y FACW OBL Species that Celtis laevigata 5 Y FACW OBL Species FACW Celtis laevigata 5 Y FACW OBL Species FACW Carex vulpinoidea 60 Y OBL Species of N Status Todactor of N Boehmeria cylindrica 2 N FACW FACW Species of N Sapingehrub gearet frantai Carex trankii 5 N OBL Species of N Sapingehrub gearet frantai Boehmeria cylindrica 2 N FACW FACW Species frantai Carex trankii Species frantai 2 N FACW Species frantai Morphog Species frantai 2	oss all Strata: <u>3</u> (B
iapling/Shrub Plot Size (15') Absolute Dominant Indicator Stratum 15 Y FACW FACW Celtis laevigata 5 Y FACW Total % Cover Celtis laevigata 5 Y FACW Prevalence Celtis laevigata 5 Y FACW OBL species Celtis laevigata 5 Y FACW OBL species Columnotation 10 N FAC Species Status 20 = Total Cover	ominant
Stratum Piol Size (15 Y FACW Prevalence Celtis laevigata 5 Y FACW OBL species Total % Cow Celtis laevigata 5 Y FACW OBL species FACU specie Celtis laevigata 5 Y FACW OBL species FACU specie Celtis laevigata 5 Y FACU Species FACU species FACU species Column total Prevalence Column total Status Y PSC Column total Prevalence Column total Prevalence Column total Column total Status Y PSC Column total Column total Column total Status Column total Columotal	are OBL,
Stratum % Cover Species Status Fraxinus pennsylvanica 15 Y FACW Celtis laevigata 5 Y FACW Cerex trankii 5 N FACW Microstegium vimineum 10 N FACW Carex frankii 5 N FACW Boehmeria cylindrica 2 N FACW Tree - Woody Vine Plot Size (30') Absolute % Cover Dominant % Cover Tree - Woody Vine Plot Size (30') Absolute % Cover Dominant % Cover Indicator Sapling/shrub 2 FACU FACU Heb </td <td>AC: 100.00% (A</td>	AC: 100.00% (A
Celtis laevigata 5 Y FACW Total % Cov Celtis laevigata 5 Y FACW OBL species Columa total	
Celtis laevigata 5 Y FACW Total % Cov Celtis laevigata 5 Y FACW OBL species Column total Column total FAC species FAC species Column total Column total Prevalence I Iterb Stratum Plot Size (5') Absolute Dominant Indicator Microstegium vinineum 10 N FACW Rapid ter Carex frankli 5 N OBL Morphog Boehmeria cylindrica 2 N FACW Supportin Statum Facu Cover Species Status Moody Vine Plot Size (30') Absolute Dominant Indicator Stratum Plot Size (30') Absolute Dominant Status Zo Total Cover Status FACU Status Rosa carolina 2 Total Cover Herb - All herb Ste, and woody Vine Status Total Cover Status FACU Herb - All herb Ste, and woody Vines 2 Total Cover FACU <t< td=""><td>Index Worksheet</td></t<>	Index Worksheet
OBL species Gamma Control Image: Stratum Plot Size (20 = = = = = = = = <td></td>	
FACW species FACW species FACU species Carex vulpinoidea Microsteginum vimineum 10 Nicrosteginum vimineum 10 Nicrosteginum vimineum 10 Carex vulpinoidea 60 Y Boehmeria cylindrica 2 Nicrosteginum vimineum 10 N FAC Nergene Boehmeria cylindrica 2 N FACW Problemeria cylindrica 2 N FACW Problemeria cylindrica 2 77 Total Cover Yoody Vine Plot Size (30') Absolute % Cover 2 Total Cover Yoody Vine Plot Size (30') Absolute Yoody Vine Rosa carolina 2 2 Total Cover	
Image: Section of the section of th	
Image: Section of the section of th	
Image: Second stratum Plot Size (5') Absolute % Cover Dominant Species Indicator Species Hydrophytic Rapid ter X Prevalence I Microstegium vimineum 10 N FAC X Prevalence Morphog Carex rhakii 5 N OBL Supportin Boehmeria cylindrica 2 N FAC Image: Second stratum 10 N FAC Supportin 2 N FAC Second stratum 10 N FAC Image: Second stratum 10 N FAC Second stratum 10 N FAC Image: Second stratum 10 N FAC Image: Second stratum 2 N FACW Image: Second stratum 10 N OBL Imarks: (Include photo numbers here or on a separate sheet) Image: Second stratus Image: Second stratus	
Column total 20 = Total Cover 21 = Total Cover 22 = Total Cover 23 = Total Cover 24 = Total Cover 25 = Total Cover 22 = Total Cover 23 = Total Cover 24 = Total Cover <tr< td=""><td></td></tr<>	
20 = Total Cover 4erb Stratum Plot Size (5') Absolute % Cover Dominant Species Indicator Status <i>Carex vulpinoidea</i> 60 Y OBL <i>Microstegium vinineum</i> 10 N FAC <i>Carex frankii</i> 5 N OBL Boehmeria cylindrica 2 N FACW Problema 2 N FACU Woody Vine Plot Size (30') Absolute Dominant Moody Vine Plot Size (30') Absolute Dominant <i>Rosa carolina</i> 2 FACU Herb - All herbe size, and woody 2 FACU FACU Herb - All herbe size, and woody 2 FACU FACU Heig	
Hydrophytic Absolute Dominant Indicator Rapid tex Carex vulpinoidea 60 Y OBL X Microstegium vimineum 10 N FAC Morphog Carex frankii 5 N OBL X Prevalen Boehmeria cylindrica 2 N FAC Morphog supportir separate 2 N FAC Problemi (explain) "	ndex = B/A = 1.48
Hydrophytic Absolute Dominant Indicator Carex vulpinoidea 60 Y OBL Microstegium vimineum 10 N FAC Carex frankii 5 N OBL Boehmeria cylindrica 2 N FACW Problemi 2 N FACW Wordy Vine Status 0BL Supportin Stratum 10 N FACW Woody Vine Plot Size (30') Mordy Vine Plot Size (30') Xoody Vine Plot Size (30') Z Total Cover FACU Herb - All herba size, and woody Z Total Cover FACU Herb - All herba size, and woody Yoody Vine Plot Size (30') Z Total Cover FACU Herb - All herba size, and woody Yoody Vine FACU Hydrophytic Question Z FACU Herb - All herba size, and woody	
Herb Stratum Plot Size (5' Absolute % Cover Dominant Species Indicator Status Rapid test X Carex vulpinoidea 60 Y OBL X Prevalen Microstegium vimineum 10 N FAC Morphog Carex frankli 5 N OBL Supportir Boehmeria cylindrica 2 N FACW Prevalen	
Herb Stratum Plot Size (5 * % Cover Species Status X Dominant Microstegium vimineum 10 N FAC Morphog Supportin Seehmeria cylindrica 2 N FACW Supportin Seehrat Boehmeria cylindrica 2 N FACW Separate Problema 2 10 N Separate Problema 2 2 10 N Separate Supportin Separate 2 10 N Separate N Separate 2 2 10 N Separate N N Separate 2 10 10 10 N Separate N Se	CVegetation Indicators:
Carex vulpinoidea 60 Y OBL Microstegium vimineum 10 N FAC Carex frankii 5 N OBL Boehmeria cylindrica 2 N FACW	st for hydrophytic vegetation
Microstegium vimineum 10 N FAC Morphog Carex frankii 5 N OBL supportin Boehmeria cylindrica 2 N FACW Problema	nce test is >50%
Carex frankii 5 N OBL Supporting Boehmeria cylindrica 2 N FACW Supporting Supporting	nce index is ≤3.0*
Carex frankii 5 N OBL supportin Boehmeria cylindrica 2 N FACW separate Problema	jical adaptations* (provide
Boehmeria cylindrica 2 N FACW separate Problema	ng data in Remarks or on a
Problema Problema (explain) "Indicators of hypresent, unless Definitions of Tree - Woody p at breast height Sapling/shrub greater than 3.2 77 Total Cover Herb - All herbe Size, and woody Woody Vine Stratum Plot Size (30') Absolute % Cover Species Status FACU Height. 2 Total Cover Herb - All herbe size, and woody Woody Vine Rosa carolina 2 Total Cover Herb - All herbe size, and woody Woody vines - height. Total Cover Herb - Vegetati present* narks: (Include photo numbers here or on a separate sheet)	
	atic hydrophytic vegetation*
*Indicators of hypresent, unless *Indicators of hypresent, unless Definitions of hypresent, unless Image: Stratum Plot Size (30') Absolute % Cover Species Stratum Plot Size (30') Absolute % Cover Species Status FACU Hight. Imarks: (Include photo numbers here or on a separate sheet)	
Image: Second status in the second status is second status in the second status in the second status in the second status in the second status is second sta	ydric soil and wetland hydrology mu
Image: Second status Image: Second status <td< td=""><td>disturbed or problematic</td></td<>	disturbed or problematic
Image: Second status Tree - Woody part breast height Image: Status Tree - All herbasize, and woody Image: Status FACU	·
Tree - Woody p at breast height Sapling/shrub greater than 3.2 77 = Total Cover Moody Vine Plot Size (30') Absolute Dominant % Cover Species Stratum FACU Woody vines - 2 FACU Height. 2 Total Cover Provertion Facu Height. Height. Provertion Facu Height. Height. Provertion Facu Provertion Facu <td< td=""><td>of Vegetation Strata:</td></td<>	of Vegetation Strata:
Absolute Absolute Dominant Indicator Stratum Plot Size (30') Absolute Dominant Indicator Stratum 2 FACU Woody vines - height. 2 FACU Herb - All herbasize, and woody Voody vine 2 FACU Herb - All herbasize, and woody Voody vines 2 FACU Height. Imarks: (Include photo numbers here or on a separate sheet) Total Cover Hydroph	or regetation official
Moody Vine Plot Size (30') Absolute Dominant Indicator Stratum Plot Size (30') Absolute Dominant Indicator Stratum 2 FACU Woody vines - height. 2 Total Cover FACU Herb - All herba 2 2 FACU Height. 2 Total Cover Facu Hydroph 2 Total Cover Total Cover Hydroph 2 Total Cover Hydroph Hydroph 2 Total Cover Herb - All herba Herb - All herba 3 2 Total Cover Herb - All herba 2 Total Cover Hydroph Herb - All herba 2 Total Cover Hydroph Herb - All herba 3 Total Cover Hydroph Herb - All herba 4 Total Cover Hydroph Herb - All herba 4 Hydroph	plants 3 in. (7.6 cm) or more in diam
Image: Stratum Plot Size (30') 30' Absolute Dominant Indicator Stratum Plot Size (30') Absolute Dominant Indicator Stratum 2 FACU Woody vines - 2 1 1 1 2 1 1 1 3 2 1 1 3 2 1 1 4 2 1 1 4 2 1 1 5 2 1 1 2 1 1 1 3 2 1 1 4 1 1 1 4 1 1 1 5 2 1 1 1 4 1 1 1 1 4 1 1 1 1 5 2 1 1 1 4 2 1 1 1 5 2 1 1 1 6	t (DBH), regardless of height.
Image: Stratum Plot Size (30') 30' Absolute Dominant Indicator Stratum Plot Size (30') Absolute Dominant Indicator Stratum 2 FACU Woody vines - 2 1 1 1 2 1 1 1 3 2 1 1 3 2 1 1 4 2 1 1 4 2 1 1 5 2 1 1 2 1 1 1 3 2 1 1 4 1 1 1 4 1 1 1 5 2 1 1 1 4 1 1 1 1 4 1 1 1 1 5 2 1 1 1 4 2 1 1 1 5 2 1 1 1 6	- Woody plants less than 3 in. DBH
77 = Total Cover Herb - All herbasize, and woody Stratum Plot Size (30') Absolute Dominant Indicator <i>Rosa carolina</i> 2 FACU Woody vines - height. 2 2 FACU Hydroph vegetati 2 = Total Cover Herb - All herbasize, and woody 2 2 FACU Height. 2 = Total Cover Hydroph vegetati 10 10 10 Herb - All herbasice 11 10 10 10 12 = Total Cover Hydroph vegetati 13 10 10 10 14 10 10 10 15 10 10 10 16 10 10 10 17 10 10 10 18 10 10 10	
Voody Vine Stratum Plot Size (30') Absolute % Cover 2 Dominant Species Indicator Status Woody vines - height. 2 FACU Hydroph vegetati present	
Noody Vine Stratum Plot Size (30') Absolute % Cover 2 Dominant Species Indicator Status size, and woody Woody vines - height. 2 2 FACU Woody vines - height. Hydroph vegetati present* 2 = Total Cover Total Cover Hydroph vegetati	aceous (non-woody) plants, regardle
Stratum Plot Size (30°) % Cover Species Status Woody vines - height. Rosa carolina 2 FACU Hydroph	y plants less than 3.28 ft tall.
Stratum % Cover Species Status Woody vines - Rosa carolina 2 FACU Height.	
Hydroph 2 = Total Cover Hydroph vegetati present* marks: (Include photo numbers here or on a separate sheet)	All woody vines greater than 3.28 f
Hydroph 2 = Total Cover Hydroph vegetati present* narks: (Include photo numbers here or on a separate sheet)	
Hydroph 2 = Total Cover Hydroph vegetati present*	
2 = Total Cover vegetati present	
2 = Total Cover vegetati present	vtic
2 = Total Cover present*	
marks: (Include photo numbers here or on a separate sheet)	
	·
lo trees in feature.	

Sampling Point: WTL-B

Depth nches)	Matrix	[Rec	lox Feat	tures	Texture Ren			Domorko
	Color (moist)	%	Color (moist)	%	Type*	Loc**	Tex	lure	Remarks
0-6	2.5Y 5/1	85	5YR 4/6	15	С	PL/M	silty clay		
6-10	5YR 4/6	90	2.5Y 4/1	10	D	М	silty clay		
0-12+	5YR 4/6	100					clay		
			on, RM=Reduce	ed Matri	x, MS=№	lasked S	and Grains		
	PL=Pore Lining	y, ivi-ividi							·
	I Indicators:		_		(0-)			Indicators	for Problematic Hydric So
	tisol (A1)	0)			ce (S7)			0 14	
	tic Epipedon (A ck Histic (A3)	2)		yvalue E ', 148)	selow Su	rface (S8			uck (A10) (MLRA 147) Prairie Redox (A16)
	drogen Sulfide (Δ4)			urface (S	9) (MI RA	147, 148)		147, 148)
	atified Layers (A				yed Mat		·, ·,		ont Floodplain Soils (F19)
	m Muck (A10)				, latrix (F3				136, 147)
	pleted Below Da		· · · ·		k Surfac	• •	-		nallow Dark Surface (TF12)
	ck Dark Surface	• •				ace (F7)	-	Other (Explain in Remarks)
	ndy Mucky Mine		•	-	pressions				
	MLRA 147, 148					sses (F1	2) (LRR N,	*!	liantana of hurduna hurdin
	ndy Gleyed Mat ndy Redox (S5)			RA 136) bric Su		(MI R	A 136, 122)		licators of hydrophytic etation and weltand
	ipped Matrix (Se				-		F19) (MLRA		rology must be present,
		- /				•	MLRA 127,	· · · · · · · · · · · · · · · · · · ·	ess disturbed or problematic
						. , .			
						T			
	Layer (if obse	m co al) -							
trictive		rveu).					Hydric	soil prese	nt? ∨
	•						I I Y GI I G		
e: 0	Clay				-		,	p	<u> </u>
e: 0	•				-			p	<u> </u>
e: <u>C</u>	Clay				-				

SOIL

	ann ope Lat. am, 5 to 12 pe site typical for t or hydrology or hydrology	rcen <mark>t slopes, erodec</mark> this time of the year	Long.: -86.6 d NWI ? Yes (If no y disturbed?	see Samplin hip, Range: : convex	g Point:UPL-A Slope (%) 2 Datum: WGS84 Upland aarks)
Hydrophytic vegetation present?	N	Is the sampled	d area within a w	etland?	N
Hydric soil present? Indicators of wetland hydrology present?	Ν	-	wetland site ID:	UPL	
Remarks: (Explain alternative procedures	here or in a s	eparate report.)			
Upland pit taken on slope above	WTL-A				
HYDROLOGY					
Primary Indicators (minimum of one is rea	quired: check :	all that annly)		ondary Indicator ired)	s (minimum of two
Surface Water (A1)		quatic Plants (B14)	•	Surface Soil Crac	cks (B6)
High Water Table (A2)		en Sulfide Odor (C1)			ed Concave Surface (B8)
Saturation (A3)	Oxidized	Rhizospheres on Living		Drainage Pattern	
Water Marks (B1)		ce of Reduced Iron (C		Moss Trim Lines	
Sediment Deposits (B2)		ron Reduction in Tilled S		Dry-Season Wate	
Drift Deposits (B3)		uck Surface (C7)		Crayfish Burrows	
Algal Mat or Crust (B4) Iron Deposits (B5)		Explain in Remarks)		Saturation Visible Stunted or Stress	e on Aerial Imagery (C9) ed Plants (D1)
Inundation Visible on Aerial Imagery (B	7)			Geomorphic Posi	. ,
Water-Stained Leaves (B9)	')			Shallow Aquitard	
Aquatic Fauna (B13)				Vicrotopographic	
				FAC-Neutral Test	
Field Observations:					
Surface water present? Yes	No	Depth (inches): Depth (inches):		Wetland Hy	drology Present?
Water table present? Yes Saturation present? Yes	No No	Depth (inches): Depth (inches):			
(includes capillary fringe)		Deptir (monos).	·	N	<u> </u>
Describe recorded data (stream gauge, n	nonitoring well	, aerial photos, prev	ious inspections)	, if available:	
Remarks:					
No indicators					

VEGETATION - Use scientific names	of plan	nts			Sampling Poir	nt: UPL-A
					50/20 Thresholds	
Tree Stratum Plot Size (30')	Absolute	Dominant	Indicator		20% 50%
Thee Stratum Phot Size (50)	% Cover	Species	Status	Tree Stratum	16 40
1 Celtis occidentalis		50	Y	FACU	Sapling/Shrub Stratum	10 24
2 Maclura pomifera		30	Y	UPL	Herb Stratum	20 50
3					Woody Vine Stratum	4 10
4						
5					Dominance Test Workshe	et
6					Number of Dominant	
7					Species that are OBL,	
8					FACW, or FAC:	3 (A)
9					Total Number of Dominant	
10					Species Across all Strata:	8 (B)
		80	 Total Cover 		Percent of Dominant	
					Species that are OBL,	
Sapling/Shrub		Absolute	Dominant	Indicator	FACW, or FAC:	37.50% (A/B)
Stratum Plot Size (15')	% Cover	Species	Status	- ,	(` ')
1 Celtis occidentalis		20	Y	FACU	Prevalence Index Worksh	t
						Bel
2 Maclura pomifera		20	Y	UPL	Total % Cover of:	0
3 Fraxinus pennsylvanica		8	Ν	FACW	OBL species 0 x 1 =	
4					FACW species 12 x 2 =	
5					FAC species 80 x 3 =	
6					FACU species 106 x 4 =	
7					UPL species 50 x 5 =	
8				, ,	Column totals 248 (A)	<u>938</u> (B)
9					Prevalence Index = B/A =	3.78
10				, ,		
		48	 Total Cover 			
					Hydrophytic Vegetation In	
Herb Stratum Plot Size (5')	Absolute	Dominant	Indicator	Rapid test for hydrophyt	ic vegetation
)	% Cover	Species	Status	Dominance test is >50%	0
1 Toxicodendron radicans		65	Y	FAC	Prevalence index is ≤3.0)*
2 Symphoricarpos orbiculatus		15	Ν	FACU	Morphogical adaptation	s* (provide
3 Lonicera japonica		6	Ν	FACU	supporting data in Rema	arks or on a
4 Fraxinus pennsylvanica		3	N	FACW	separate sheet)	
5 Ligustrum sinense		3	N	FACU	Problematic hydrophytic	vegetation*
6 Potentilla indica		3	N	FACU	(explain)	
7 Geum canadense		2	N	FACU	*Indicators of hydric soil and wetla	and hydrology must be
8 Parthenocissus quinquefolia		2	Ν	FACU	present, unless disturbed or proble	ematic
9 Boehmeria cylindrica		1	N	FACW		
10					Definitions of Vegetation	Strata:
11						
12					Tree - Woody plants 3 in. (7.6 cm at breast height (DBH), regardless	
13					at bleast height (DBH), regardless	s of height.
14					Sapling/shrub - Woody plants les	ss than 3 in. DBH and
15					greater than 3.28 ft (1 m) tall.	
		100 =	Total Cover			
					Herb - All herbaceous (non-woody	
Woody Vine		Absolute	Dominant	Indicator	size, and woody plants less than 3	3.28 ft tall.
Stratum Plot Size (30')	% Cover	Species	Status	Woody vines - All woody vines gr	reater than 3.28 ft in
1 Toxicodendron radicans		10	Y	FAC	height.	Sator than 0.20 it III
2 Smilax bona-nox		5	Y	FACU		
3 Vitis vulpina		5	Y	FAC		
4			<u> </u>			
					Hydrophytic	
5					vegetation	
		20 =	 Total Cover 		present? N	
Remarks: (Include photo numbers here or o	on a sepa	arate sheet)				
Poncirus trifoliata (NI) is 5% of sapl	ing/shru	ub stratum; L	onicera mac	kii (NI) is 10	% of sapling shrub stratum	
	-					

SOIL Sampling Point: UPL-A Profile Description: (Describe to the depth needed to document the indicator or confirm the absence of indicators.) Depth Matrix **Redox Features** Texture Remarks Type* Loc** (Inches) Color (moist) % Color (moist) % 0-12 10YR 3/4 100 silt-loam *Type: C=Concentration, D=Depletion, RM=Reduced Matrix, MS=Masked Sand Grains **Location: PL=Pore Lining, M=Matrix Hydric Soil Indicators: Indicators for Problematic Hydric Soils:* Histisol (A1) Dark Surface (S7) 2 cm Muck (A10) (MLRA 147) Histic Epipedon (A2) Polyvalue Below Surface (S8) (MLRA Black Histic (A3) 147, 148) Coast Prairie Redox (A16) Hydrogen Sulfide (A4) Thin Dark Surface (S9) (MLRA 147, 148) (MLRA 147, 148) Stratified Layers (A5) Loamy Gleyed Matrix (F2) Piedmont Floodplain Soils (F19) 2 cm Muck (A10) (LRR N) Depleted Matrix (F3) (MLRA 136, 147) Depleted Below Dark Suface (A11) Redox Dark Surface (F6) Very Shallow Dark Surface (TF12) Other (Explain in Remarks) Thick Dark Surface (A12) Depleted Dark Surface (F7) Redox Depressions (F8) Sandy Mucky Mineral (S1) (LRR N, MLRA 147, 148) Iron-Manganese Masses (F12) (LRR N, *Indicators of hydrophytic Sandy Gleved Matrix (S4) MLRA 136) Umbric Surface (F13) (MLRA 136, 122) vegetation and weltand Sandy Redox (S5) hydrology must be present, Piedmont Floodplain Soils (F19) (MLRA 148) Stripped Matrix (S6) unless disturbed or problematic Red Parent Material (F21) (MLRA 127, 147) **Restrictive Layer (if observed):** Type: Hydric soil present? N Depth (inches): Remarks: No redox.

Project/Site:	Carothers Cross	sing, Phases 5 and	10	City/County:	Nashvill	e/Davidsor	Sampling E	Date: <u>6/22/2021</u>	
Applicant/Own	er: Regent			_	State:	Tennessee	e Sampli	ng Point UPL-B	
Investigator(s):	Silas Mathes				Section,	Township	, Range:		
Landform (hills	lope, terrace, etc	.): hillslope	Lo	cal relief (concav	/e, conve	x, none):	convex	Slope (%)	3
Subregion (LR	R or MRLA): MRI	_A 123	Lat.:	35.984379	Long	g.: - 86.61	1037	Datum: WGS8	4
Soil Map Unit N	lame: Stiversv	ille loam, 5 to 12 p	ercent s	lopes, eroded		NWI C	lassification:	Upland	
Are climatic/hy	drologic conditior	is of the site typica	l for this	time of the year	? Yes	(If no, o	explain in rei	marks)	
Are vegetation	, soil	, or hydrold	ogy	significantly	y disturbe	ed?	Are "norma	al	
Are vegetation	, soil	, or hydrold	ogy 🗌	naturally pr	oblemation	c?	circumstan	ces" present?	Yes
(If needed, exp	lain any answers	in remarks)							

SUMMARY OF FINDINGS

Hydrophytic vegetation present?NHydric soil present?NIndicators of wetland hydrology present?N	Is the sampled area within a wetland? N							
Remarks: (Explain alternative procedures here or in a separate report.)								
Upland pit taken below WTL-A, artificial seepage area.								

HYDROLOGY

Primary Indicators (minimur	m of one is requ	ired: check (Secondary Indicators (minimum of two required)
Surface Water (A1) High Water Table (A2) Saturation (A3) Water Marks (B1) Sediment Deposits (B2) Drift Deposits (B3) Algal Mat or Crust (B4) Iron Deposits (B5) Inundation Visible on Aer Water-Stained Leaves (E Aquatic Fauna (B13)	ial Imagery (B7)	True Aq Hydroge Oxidized Presence Recent Ir Thin Mu	an triat apply) juatic Plants (B14) en Sulfide Odor (C1) Rhizospheres on Living Roots (C3) ce of Reduced Iron (C4) ron Reduction in Tilled Soils (C6) uck Surface (C7) Explain in Remarks)	Surface Soil Cracks (B6) Sparsely Vegetated Concave Surface (B8) Drainage Patterns (B10) Moss Trim Lines (B16) Dry-Season Water Table (C2) Crayfish Burrows (C8) Saturation Visible on Aerial Imagery (C9) Stunted or Stressed Plants (D1) Geomorphic Position (D2) Shallow Aquitard (D3) Microtopographic Relief (D4) FAC-Neutral Test (D5)
Field Observations: Surface water present? Water table present?	Yes Yes	No	Depth (inches): Depth (inches):	Wetland Hydrology Present?
Saturation present? (includes capillary fringe)	Yes	<u>No</u>	Depth (inches):	<u>N</u>
Describe recorded data (str	eam gauge, mo	nitoring well	, aerial photos, previous inspe	ctions), if available:
Remarks: No hydrology indicators.				

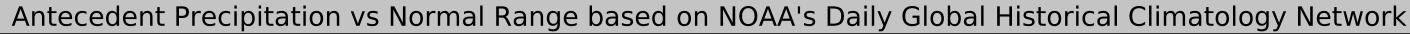
VEGETATION - Use scientific names of plar	nts		Sampling Point: UPL-B
	Absolute Do	ominant Indicator	50/20 Thresholds 20% 50%
Tree Stratum Plot Size (30')		pecies Status	Tree Stratum 6 15
1 Juglans nigra	30	Y FACU	Sapling/Shrub Stratum 12 30
2			Herb Stratum 10 26
3			Woody Vine Stratum 2 6
4			
5			Dominance Test Worksheet
6			Number of Dominant
7			Species that are OBL,
8			FACW, or FAC: <u>3</u> (A)
9			Total Number of Dominant
10	<u> </u>		Species Across all Strata: 7 (B)
	<u>30</u> = To	al Cover	Percent of Dominant
			Species that are OBL,
Sapling/Shrub Plot Size (15')		ominant Indicator	FACW, or FAC: <u>42.86%</u> (A/B)
Stratum	% Cover S	pecies Status	
1 Ulmus rubra	20	Y FAC	Prevalence Index Worksheet
2 Celtis occidentalis	20	Y FACU	Total % Cover of:
3 Juglans nigra	15	Y FACU	OBL species 0 x 1 = 0
4 Fraxinus pennsylvanica	4	N FACW	FACW species 6 x 2 = 12
5			FAC species 74 x 3 = 222
6			FACU species 72 x 4 = 288
7			UPL species 0 x 5 = 0
8			Column totals 152 (A) 522 (B)
9			Prevalence Index = B/A = 3.43
10			
	<u>59</u> = To	al Cover	
			Hydrophytic Vegetation Indicators:
Herb Stratum Plot Size (5')		minant Indicator	Rapid test for hydrophytic vegetation
, , , , , , , , , , , , , , , , , , ,		pecies Status	Dominance test is >50%
1 Viola sororia	40	Y FAC	Prevalence index is ≤3.0*
2 Geum canadense	4	N FACU	Morphogical adaptations* (provide
3 Microstegium vimineum	4	N FAC	supporting data in Remarks or on a
4 Eupatorium serotinum	$\frac{2}{2}$	N FAC N FACW	separate sheet)
5 Boehmeria cylindrica	Z	N FACW	Problematic hydrophytic vegetation*
6			(explain)
8			*Indicators of hydric soil and wetland hydrology must be
9			present, unless disturbed or problematic
10			Definitions of Vegetation Strata:
11			bennitorio er vegetation ottata.
12			Tree - Woody plants 3 in. (7.6 cm) or more in diameter
13			at breast height (DBH), regardless of height.
14			Sapling/shrub - Woody plants less than 3 in. DBH and
15			greater than 3.28 ft (1 m) tall.
	52 = To	al Cover	
			Herb - All herbaceous (non-woody) plants, regardless of
Woody Vine	Absolute Do	minant Indicator	size, and woody plants less than 3.28 ft tall.
Stratum Plot Size (30')	% Cover S	pecies Status	Woody vines - All woody vines greater than 3.28 ft in
1 Vitis vulpina	8	Y FAC	height.
2 Parthenocissus quinquefolia	3	Y FACU	
3			
4			Hydrophytic
5			vegetation
-	11 = Tot	al Cover	present? N
Remarks: (Include photo numbers here or on a sepa	arate sheet)		L
Edge of clearingfew mature trees presen			
Lage of cleaning-rew mature trees present	ι.		

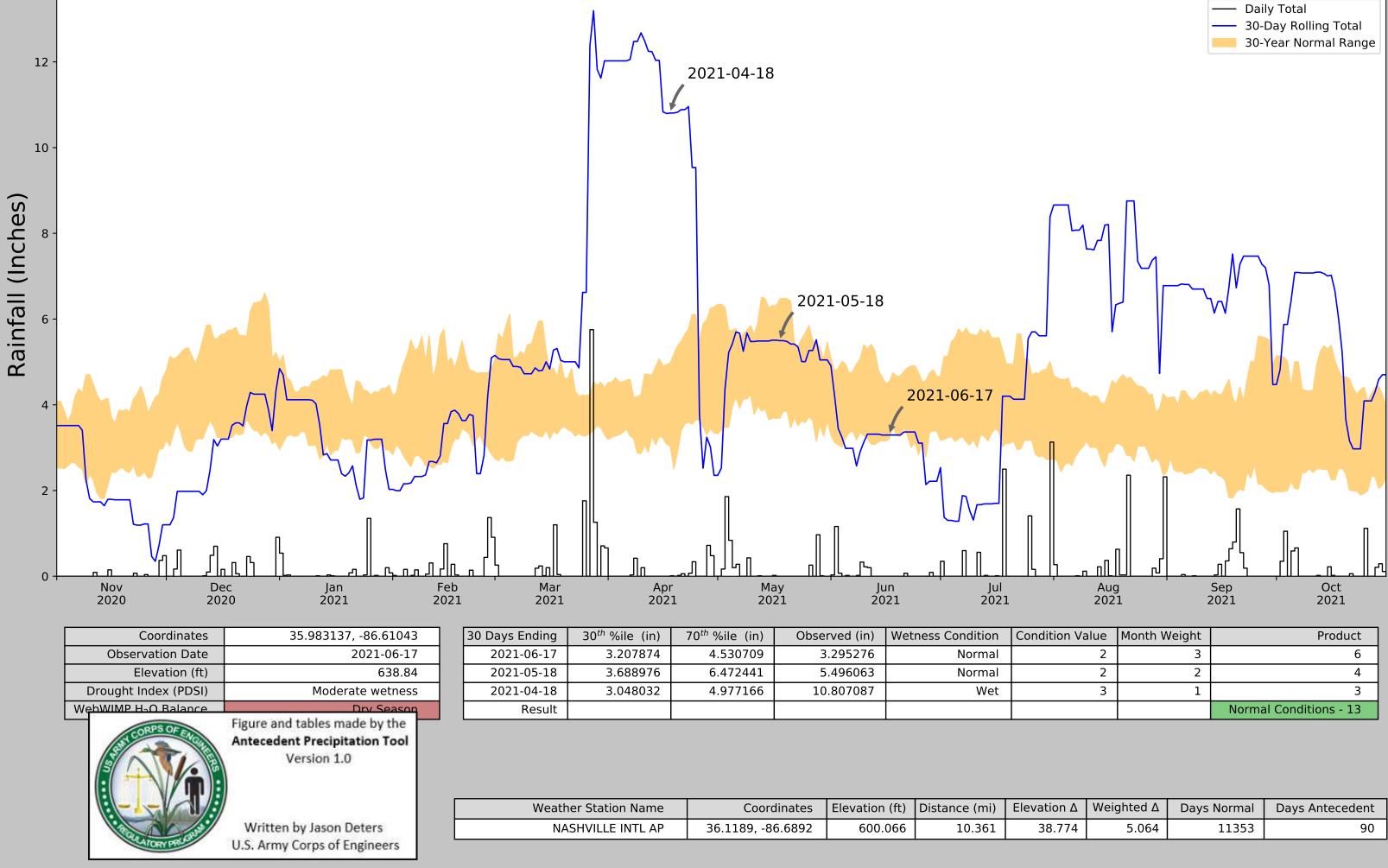
Sampling Point: UPL-B

Depth	Matrix			Redox Fea					nce of indicators.) Remarks
(Inches)	Color (moist)	%	Color (mois	t) %	Type*	Loc**	Te	kture	Remarks
0-3	10YR 3/3	100					silty clay		
3-12	10YR 3/6	100					silty clay		
					_				
					-				
	Concentration, D	-Doplet	ion DM-Dod	Lood Matr	iv MO-N	Acaked 9	Cond Crains		
	PL=Pore Lining			uced matr	IX, IVIS=I	viasked	Sand Grains	5	
	I Indicators:	, 111-1110						Indianter	s for Problematic Hydric So
	itisol (A1)		Г	Dark Surfa	ace (S7)			mulcator	S IN FINNEINAUL HYUNC 50
	tic Epipedon (A2	2)		Polyvalue I		rface (S8) (MLRA	2 cm	Muck (A10) (MLRA 147)
	ick Histic (A3)	,	1	47, 148)					Prairie Redox (A16)
	drogen Sulfide (. 147, 148)		A 147, 148)
	atified Layers (A			oamy Gle					nont Floodplain Soils (F19)
	m Muck (A10) (pleted Below Da			Depleted I Redox Da					A 136, 147)
De	pieleu Deiuw Da	iin Sulat							Shallow Dark Surface (TE12)
	ck Dark Surface					. ,)		Shallow Dark Surface (TF12) (Explain in Remarks)
Thi	ck Dark Surface ndy Mucky Mine	e (A12)		Depleted [Dark Sur	face (F7))		Shallow Dark Surface (TF12) (Explain in Remarks)
Thi Sai	ck Dark Surface ndy Mucky Mine MLRA 147, 148	e (A12) ral (S1)	(LRR	Depleted [Redox De	Dark Surf	face (F7) s (F8)) 2) (LRR N,		
Thi Sai N , Sai	ndy Mucky Mine MLRA 147, 148 ndy Gleyed Matr	e (A12) ral (S1))	(LRRF	Depleted [Redox De ron-Manga /ILRA 136	Dark Sur pression anese Ma)	face (F7) s (F8) isses (F1	2) (LRR N,	Other	(Explain in Remarks)
Thi Sai N , Sai Sai	ndy Mucky Mine MLRA 147, 148 ndy Gleyed Matr ndy Redox (S5)	e (A12) ral (S1)) rix (S4)	(LRRF	Depleted I Redox Dep ron-Manga /ILRA 136 Jmbric Su	Dark Surf pression: anese Ma) Irface (F ⁻	face (F7) s (F8) isses (F1 13) (MLF	2) (LRR N, RA 136, 122	Other *In •) ve	(Explain in Remarks) ndicators of hydrophytic egetation and weltand
Thi Sai N , Sai Sai	ndy Mucky Mine MLRA 147, 148 ndy Gleyed Matr	e (A12) ral (S1)) rix (S4)		Depleted I Redox Dep ron-Manga /ILRA 136 Jmbric Su Piedmont	Dark Surf pression: anese Ma) Irface (F ⁻ Floodpla	face (F7) s (F8) isses (F1 13) (MLF in Soils (2) (LRR N, RA 136, 122 (F19) (MLR	Other *Ii >) ve A 148) hy	(Explain in Remarks) ndicators of hydrophytic egetation and weltand vdrology must be present,
Thi Sai N , Sai Sai	ndy Mucky Mine MLRA 147, 148 ndy Gleyed Matr ndy Redox (S5)	e (A12) ral (S1)) rix (S4)		Depleted I Redox Dep ron-Manga /ILRA 136 Jmbric Su Piedmont	Dark Surf pression: anese Ma) Irface (F ⁻ Floodpla	face (F7) s (F8) isses (F1 13) (MLF in Soils (2) (LRR N, RA 136, 122	Other *Ii >) ve A 148) hy	(Explain in Remarks) ndicators of hydrophytic egetation and weltand
Thi Sai N , Sai Sai	ndy Mucky Mine MLRA 147, 148 ndy Gleyed Matr ndy Redox (S5)	e (A12) ral (S1)) rix (S4)		Depleted I Redox Dep ron-Manga /ILRA 136 Jmbric Su Piedmont	Dark Surf pression: anese Ma) Irface (F ⁻ Floodpla	face (F7) s (F8) isses (F1 13) (MLF in Soils (2) (LRR N, RA 136, 122 (F19) (MLR	Other *Ii >) ve A 148) hy	(Explain in Remarks) ndicators of hydrophytic egetation and weltand vdrology must be present,
Thi Sai Sai Sai Sai	ndy Mucky Mine MLRA 147, 148 ndy Gleyed Matr ndy Redox (S5) ipped Matrix (S6	e (A12) ral (S1)) rix (S4)		Depleted I Redox Dep ron-Manga /ILRA 136 Jmbric Su Piedmont	Dark Surf pression: anese Ma) Irface (F ⁻ Floodpla	face (F7) s (F8) isses (F1 13) (MLF in Soils (2) (LRR N, RA 136, 122 (F19) (MLR	Other *Ii >) ve A 148) hy	(Explain in Remarks) ndicators of hydrophytic egetation and weltand vdrology must be present,
Thi Sau N, Sau Sau Stri	ndy Mucky Mine MLRA 147, 148 ndy Gleyed Matr ndy Redox (S5)	e (A12) ral (S1)) rix (S4)		Depleted I Redox Dep ron-Manga /ILRA 136 Jmbric Su Piedmont	Dark Surf pression: anese Ma) Irface (F ⁻ Floodpla	face (F7) s (F8) isses (F1 13) (MLF in Soils (2) (LRR N, RA 136, 122 (F19) (MLR (MLRA 127)	Other *II • ve •	(Explain in Remarks) ndicators of hydrophytic egetation and weltand /drology must be present, nless disturbed or problematic
Thi Sau N, Sau Sau Stri Stri	ndy Mucky Mine MLRA 147, 148 ndy Gleyed Matri ndy Redox (S5) ipped Matrix (S6 A Layer (if obse	e (A12) ral (S1)) rix (S4)		Depleted I Redox Dep ron-Manga /ILRA 136 Jmbric Su Piedmont	Dark Surf pression: anese Ma) Irface (F ⁻ Floodpla	face (F7) s (F8) isses (F1 13) (MLF in Soils (2) (LRR N, RA 136, 122 (F19) (MLR (MLRA 127)	Other *Ii >) ve A 148) hy	(Explain in Remarks) ndicators of hydrophytic egetation and weltand /drology must be present, nless disturbed or problematic
Thi Sau N, Sau Sau Stri Stri	ndy Mucky Mine MLRA 147, 148 ndy Gleyed Matrindy Redox (S5) ipped Matrix (S6	e (A12) ral (S1)) rix (S4)		Depleted I Redox Dep ron-Manga /ILRA 136 Jmbric Su Piedmont	Dark Surf pression: anese Ma) Irface (F ⁻ Floodpla	face (F7) s (F8) isses (F1 13) (MLF in Soils (2) (LRR N, RA 136, 122 (F19) (MLR (MLRA 127)	Other *II • ve •	(Explain in Remarks) ndicators of hydrophytic egetation and weltand /drology must be present, nless disturbed or problematic
Thi Sau Sau Sau Sau Stri Stri Stri Stri Stri	ndy Mucky Mine MLRA 147, 148 ndy Gleyed Matrindy Redox (S5) ipped Matrix (S6	e (A12) ral (S1)) rix (S4)		Depleted I Redox Dep ron-Manga /ILRA 136 Jmbric Su Piedmont	Dark Surf pression: anese Ma) Irface (F ⁻ Floodpla	face (F7) s (F8) isses (F1 13) (MLF in Soils (2) (LRR N, RA 136, 122 (F19) (MLR (MLRA 127)	Other *II • ve •	(Explain in Remarks) ndicators of hydrophytic egetation and weltand /drology must be present, nless disturbed or problematic
Thi Sau Sau Sau Sau Stri Stri Stri Stri Stri Stri Stri Stri	ndy Mucky Mine MLRA 147, 148 Mdy Gleyed Matri ndy Redox (S5) ipped Matrix (S6 A Layer (if obse	e (A12) ral (S1)) rix (S4)		Depleted I Redox Dep ron-Manga /ILRA 136 Jmbric Su Piedmont	Dark Surf pression: anese Ma) Irface (F ⁻ Floodpla	face (F7) s (F8) isses (F1 13) (MLF in Soils (2) (LRR N, RA 136, 122 (F19) (MLR (MLRA 127)	Other *II • ve •	(Explain in Remarks) ndicators of hydrophytic egetation and weltand /drology must be present, nless disturbed or problematic
Thi Sai N, Sai Sai Sai Stri	ndy Mucky Mine MLRA 147, 148 ndy Gleyed Matrindy Redox (S5) ipped Matrix (S6	e (A12) ral (S1)) rix (S4)		Depleted I Redox Dep ron-Manga /ILRA 136 Jmbric Su Piedmont	Dark Surf pression: anese Ma) Irface (F ⁻ Floodpla	face (F7) s (F8) isses (F1 13) (MLF in Soils (2) (LRR N, RA 136, 122 (F19) (MLR (MLRA 127)	Other *II • ve •	(Explain in Remarks) ndicators of hydrophytic egetation and weltand /drology must be present, nless disturbed or problematic
Thi Sau Sau Sau Sau Stri Stri Stri cestrictive ype: stri cestrictive ype: stri	ndy Mucky Mine MLRA 147, 148 Mdy Gleyed Matri ndy Redox (S5) ipped Matrix (S6 A Layer (if obse	e (A12) ral (S1)) rix (S4)		Depleted I Redox Dep ron-Manga /ILRA 136 Jmbric Su Piedmont	Dark Surf pression: anese Ma) Irface (F ⁻ Floodpla	face (F7) s (F8) isses (F1 13) (MLF in Soils (2) (LRR N, RA 136, 122 (F19) (MLR (MLRA 127)	Other *II • ve •	(Explain in Remarks) ndicators of hydrophytic egetation and weltand /drology must be present, nless disturbed or problematic
Thi Sai N, Sai Sai Sai Stri	ndy Mucky Mine MLRA 147, 148 Mdy Gleyed Matri ndy Redox (S5) ipped Matrix (S6 A Layer (if obse	e (A12) ral (S1)) rix (S4)		Depleted I Redox Dep ron-Manga /ILRA 136 Jmbric Su Piedmont	Dark Surf pression: anese Ma) Irface (F ⁻ Floodpla	face (F7) s (F8) isses (F1 13) (MLF in Soils (2) (LRR N, RA 136, 122 (F19) (MLR (MLRA 127)	Other *II • ve •	(Explain in Remarks) ndicators of hydrophytic egetation and weltand /drology must be present, nless disturbed or problematic
Thi Sai N, Sai Sai Sai Stri	ndy Mucky Mine MLRA 147, 148 Mdy Gleyed Matri ndy Redox (S5) ipped Matrix (S6 A Layer (if obse	e (A12) ral (S1)) rix (S4)		Depleted I Redox Dep ron-Manga /ILRA 136 Jmbric Su Piedmont	Dark Surf pression: anese Ma) Irface (F ⁻ Floodpla	face (F7) s (F8) isses (F1 13) (MLF in Soils (2) (LRR N, RA 136, 122 (F19) (MLR (MLRA 127)	Other *II • ve •	(Explain in Remarks) ndicators of hydrophytic egetation and weltand /drology must be present, nless disturbed or problematic
Thi Sau Sau Sau Sau Stri Stri Stri cestrictive ype: stri cestrictive ype: stri	ndy Mucky Mine MLRA 147, 148 Mdy Gleyed Matri ndy Redox (S5) ipped Matrix (S6 A Layer (if obse	e (A12) ral (S1)) rix (S4)		Depleted I Redox Dep ron-Manga /ILRA 136 Jmbric Su Piedmont	Dark Surf pression: anese Ma) Irface (F ⁻ Floodpla	face (F7) s (F8) isses (F1 13) (MLF in Soils (2) (LRR N, RA 136, 122 (F19) (MLR (MLRA 127)	Other *II • ve •	(Explain in Remarks) ndicators of hydrophytic egetation and weltand /drology must be present, nless disturbed or problematic
Thi Sau Sau Sau Sau Stri Stri Stri Stri Stri Stri Stri Stri	ndy Mucky Mine MLRA 147, 148 Mdy Gleyed Matri ndy Redox (S5) ipped Matrix (S6 A Layer (if obse	e (A12) ral (S1)) rix (S4)		Depleted I Redox Dep ron-Manga /ILRA 136 Jmbric Su Piedmont	Dark Surf pression: anese Ma) Irface (F ⁻ Floodpla	face (F7) s (F8) isses (F1 13) (MLF in Soils (2) (LRR N, RA 136, 122 (F19) (MLR (MLRA 127)	Other *II • ve •	(Explain in Remarks) ndicators of hydrophytic egetation and weltand /drology must be present, nless disturbed or problematic
Thi Sau Sau Sau Sau Stri Stri Restrictive Septh (inch Remarks:	ndy Mucky Mine MLRA 147, 148 Mdy Gleyed Matri ndy Redox (S5) ipped Matrix (S6 A Layer (if obse	e (A12) ral (S1)) rix (S4)		Depleted I Redox Dep ron-Manga /ILRA 136 Jmbric Su Piedmont	Dark Surf pression: anese Ma) Irface (F ⁻ Floodpla	face (F7) s (F8) isses (F1 13) (MLF in Soils (2) (LRR N, RA 136, 122 (F19) (MLR (MLRA 127)	Other *II • ve •	(Explain in Remarks) ndicators of hydrophytic egetation and weltand /drology must be present, nless disturbed or problematic
Thi Sau Sau Sau Sau Stri Stri Restrictive Type: Depth (inch Remarks:	ndy Mucky Mine MLRA 147, 148 Mdy Gleyed Matri ndy Redox (S5) ipped Matrix (S6 A Layer (if obse	e (A12) ral (S1)) rix (S4)		Depleted I Redox Dep ron-Manga /ILRA 136 Jmbric Su Piedmont	Dark Surf pression: anese Ma) Irface (F ⁻ Floodpla	face (F7) s (F8) isses (F1 13) (MLF in Soils (2) (LRR N, RA 136, 122 (F19) (MLR MLRA 127)	Other *II • ve •	(Explain in Remarks) ndicators of hydrophytic egetation and weltand /drology must be present, nless disturbed or problematic
Thi San San San San Stri Stri Restrictive Septh (inch Remarks:	ndy Mucky Mine MLRA 147, 148 Mdy Gleyed Matri ndy Redox (S5) ipped Matrix (S6 A Layer (if obse	e (A12) ral (S1)) rix (S4)		Depleted I Redox Dep ron-Manga /ILRA 136 Jmbric Su Piedmont	Dark Surf pression: anese Ma) Irface (F ⁻ Floodpla	face (F7) s (F8) isses (F1 13) (MLF in Soils (2) (LRR N, RA 136, 122 (F19) (MLR MLRA 127)	Other *II • ve •	(Explain in Remarks) ndicators of hydrophytic egetation and weltand /drology must be present, nless disturbed or problematic
Thi Sau Sau Sau Sau Stri Stri Restrictive Type: Depth (inch Remarks:	ndy Mucky Mine MLRA 147, 148 Mdy Gleyed Matri ndy Redox (S5) ipped Matrix (S6 A Layer (if obse	e (A12) ral (S1)) rix (S4)		Depleted I Redox Dep ron-Manga /ILRA 136 Jmbric Su Piedmont	Dark Surf pression: anese Ma) Irface (F ⁻ Floodpla	face (F7) s (F8) isses (F1 13) (MLF in Soils (2) (LRR N, RA 136, 122 (F19) (MLR MLRA 127)	Other *II • ve •	(Explain in Remarks) ndicators of hydrophytic egetation and weltand /drology must be present, nless disturbed or problematic
Thi San San San San Stri Stri Restrictive Septh (inch Remarks:	ndy Mucky Mine MLRA 147, 148 Mdy Gleyed Matri ndy Redox (S5) ipped Matrix (S6 A Layer (if obse	e (A12) ral (S1)) rix (S4)		Depleted I Redox Dep ron-Manga /ILRA 136 Jmbric Su Piedmont	Dark Surf pression: anese Ma) Irface (F ⁻ Floodpla	face (F7) s (F8) isses (F1 13) (MLF in Soils (2) (LRR N, RA 136, 122 (F19) (MLR MLRA 127)	Other *II • ve •	(Explain in Remarks) ndicators of hydrophytic egetation and weltand /drology must be present, nless disturbed or problematic
Thi Sau Sau Sau Sau Stri Stri Stri cestrictive ype: stri cestrictive ype: stri	ndy Mucky Mine MLRA 147, 148 Mdy Gleyed Matri ndy Redox (S5) ipped Matrix (S6 A Layer (if obse	e (A12) ral (S1)) rix (S4)		Depleted I Redox Dep ron-Manga /ILRA 136 Jmbric Su Piedmont	Dark Surf pression: anese Ma) Irface (F ⁻ Floodpla	face (F7) s (F8) isses (F1 13) (MLF in Soils (2) (LRR N, RA 136, 122 (F19) (MLR MLRA 127)	Other *II • ve •	(Explain in Remarks) ndicators of hydrophytic egetation and weltand /drology must be present, nless disturbed or problematic

SOIL

Name of Site: Ca	arothers Crossing	
Date of Site Visit:	6/17/2021 6/2	22/2021
Previous 7 Day Rainfal	Il Total: 0.2	0.26 inches
Previous 48-hr Rainfall	Total: 0	0.07 inches
Weather Station Norms	s from <u>https://w2.weathe</u>	er.gov/climate/xmacis.php?wfo=ohx
Actual Rainfall from	https://w2.weathe	er.gov/climate/xmacis.php?wfo=ohx
Monthly Standard Devi	ation obtained online at	https://w2.weather.gov/climate/xmacis.php?wfo=ohx

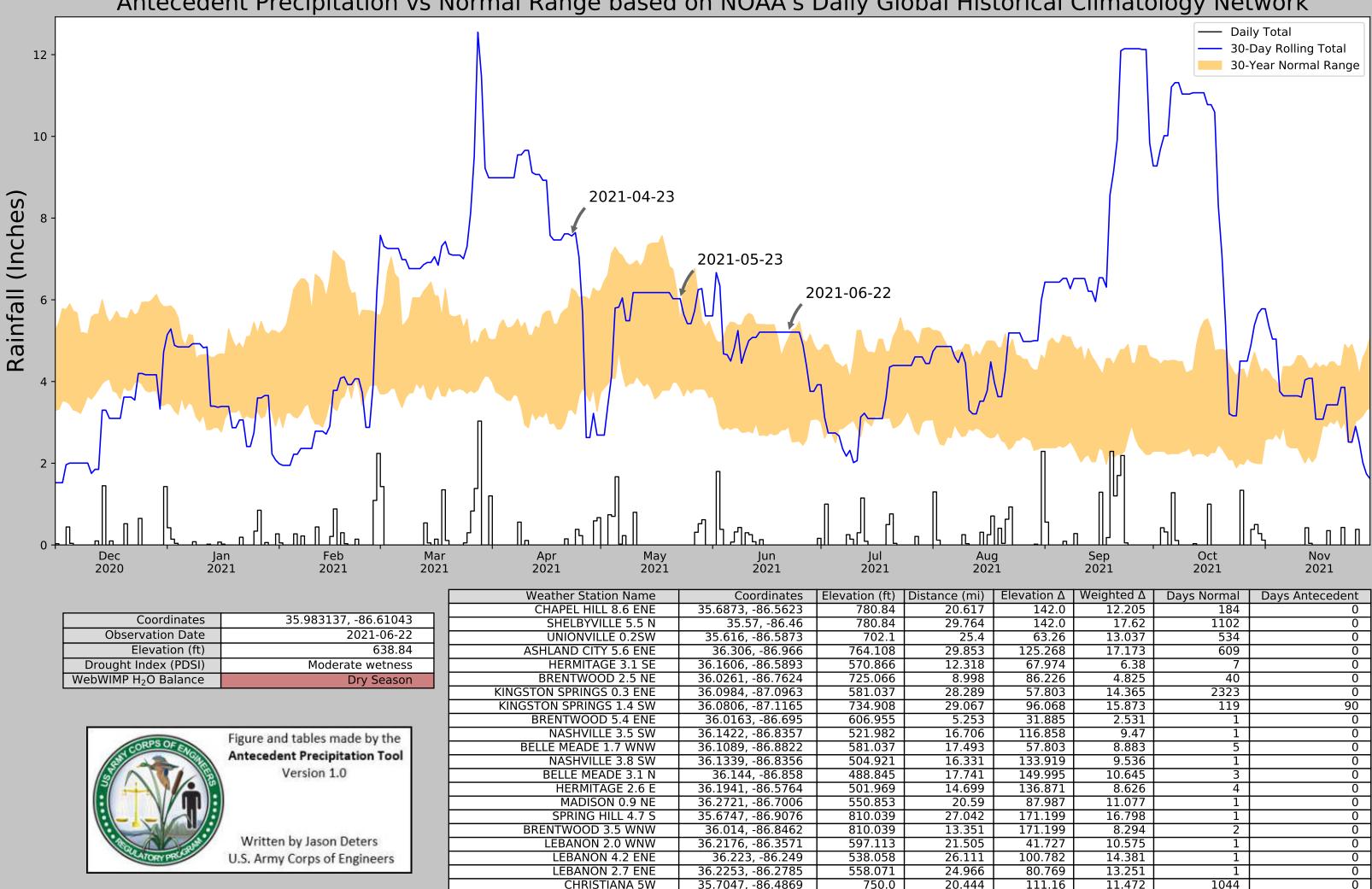

Calculation Based on Nashville Int'l Airport Rainfall Amounts with Nashville Int'l Airport Normals and Std. Deviations


Calculation of Normal Weather Conditions

		Long-Ter	m Rainfall R	ecords]
						Condition				
		Minus one	Normal	Plus One		(Low,		Month	Condition	
		Std. Dev.	(mean	Std. Dev.	Actual	Average,	Condition	Weight	Value	Std.
	Month	(dry)	inches)	(wet)	Rainfall	Elevated)	Value*	Value	Calculation	Deviation
1st Month Prior	May	2.92	5.02	7.12	5.05	Average	2	x 3	6	2.10
2nd Month Prior	April	2.81	4.72	6.63	2.35	Low	1	x2	2	1.91
3rd Month Prior	March	2.15	4.52	6.89	12.28	Elevated	3	x1	3	2.37
								Sum=	11	

If sum is:	
6 to 9	then prior period has been abnormally dry
10 to 14	then prior period has been normal (average)
15 to 18	then prior period has been abnormally wet

Condition Value:*	
Low=	1
Average=	2
Elevated=	3



ondition Value	Month Weight	Product
2	3	6
2	2	4
3	1	3
		Normal Conditions - 13

evation Δ	Weighted Δ	Days Normal	Days Antecedent
38.774	5.064	11353	90

Antecedent Precipitation vs Normal Range based on NOAA's Daily Global Historical Climatology Network

WFO Monthly/Daily Climate Data

000 CXUSS5 KOHX 011210 CF6BMA PRELIMINARY LOCAL CLIMATOLOGICAL DATA (WS FORM: F-6) STATION: STATION

•

STATION:	NASHVILLE
MONTH:	FEBRUARY
YEAR:	2021
LATITUDE:	36 7 N
LONGITUDE:	86 41 W

																		===
1	2	3	4	5	6A	6B	7	8	9 127	10 AVG	11 MX	12 2MTN	13	14	15	16	17	18
ŊΥ	MAX	MIN	AVG	DEP	HDD	CDD	WTR	SNW	DPTH	SPD	SPD	DIR	MIN	PSBL	s-s	WX	SPD	DR
								====:				====	====:					===
1	41	32	37	-2	28	0	0.02	0.1	0	14.1	1 22	320	м	м	9		35	35
2	42	29	36	- 3	29	0	0.00	Т	0	12.4	1 20	360	м	М	7		32	36
3	46	27	37	-2	28	0	0.00	0.0	0	4.3	3 12	360	м	м	2		18	32
4	55	27	41	2	24	0	0.16	0.0	0	12.3	3 29	190	м	м	8	1	42	19
5	50	30	40	1	25	0	0.00	0.0	0	6.2	2 16	280	м	м	4			29
6	50	33	42	2	23	0	0.02	0.0	0			170	м	м	8			17
7	41	26	34	-6	31		0.15	Т	0		9 18		м	м	6	1	23	36
8	49	26	38	-2	27	0	0.00	0.0	0	4.6	3 12	160	м	м	7	18		15
9	57	34	46	6		0	т	0.0	0		3 15		м	М		18		36
.0	63	37	50	10			0.05	0.0	0			360	м	М		1		31
.1	37	30	34	-7			0.31	0.0		10.5			м	м		18		35
2	31	28		-11			0.00	0.0	0			360	м	м		18		32
3	30	23		-14		0	т	0.0	0			360	м	м		168		32
.4	26	23		-16	40		0.17	0.1		10.4			м	м		146		35
5	26	16		-21	44		0.76	1.7		10.8			м	М		145		4 2
6	18	11		- 27		0	т	Т	2			280	м	М		18		15
.7	28	15		-20			0.28	2.8	4		2 13		м	М		145		
8	31	23		-15	38		0.03	0.5	4			340	м	М		168		
9	36	15		-17			0.00	0.0	4			340	м	М		18		16
0	42	13		-15	37		0.00	0.0	4	2.6		160	М	M		128		18
1	56	24	40	- 3		0	Т	0.0	2			190	М	M		18		18
2	57	37	47	3			0.14	0.0	0			200	М	M		1		19
3	70	38	54	10			0.00	0.0	0			270	М	M	-			27
4	75	43	59	15		0	Т	0.0	0			190	M	M				19
5	62	41	52	8	13		0.00	0.0	0		1 15		M	M	5		21	
6	60	46	53	8	12		0.44	0.0	0			170	M	M		13		14
27	61 75	55 56	58 66	13 21	7 0		1.37	0.0	0			300	M	M		13		36
					-		0.91	0.0		13.5			м	м		123	39 ======	31
м	1315	5 83	38		736	1	4.81	5.3	2 :	224.1	L		м		199			
) 29.			====			====:				STST	==== M	м			===== MAX(MP	
								MIS	:			190					42 190	

COLUMN 17 PEAK WIND IN M.P.H.

PRELIMINARY LOCAL CLIMATOLOGICAL DATA (WS FORM: F-6) , PAGE 2

	MONTH: YEAR: LATITUDE	NASHVILLE FEBRUARY 2021 : 36 7 N E: 86 41 W
[TEMPERATURE DATA]	[PRECIPITATION DATA]	SYMBOLS USED IN COLUMN 16
DPTR FM NORMAL: -3.3	GRTST 24HR 1.67 ON 26-27 SNOW, ICE PELLETS, HAIL TOTAL MONTH: 5.2 INCHES GRTST 24HR 2.8 ON 17-17	2 = FOG REDUCING VISIBILITY TO 1/4 MILE OR LESS 3 = THUNDER 4 = ICE PELLETS 5 = HAIL 6 = FREEZING RAIN OR DRIZZLE 7 = DUSTSTORM OR SANDSTORM: VSBY 1/2 MILE OR LESS
[NO. OF DAYS WITH]	[WEATHER - DAYS WITH]	8 = SMOKE OR HAZE 9 = BLOWING SNOW X = TORNADO
MAX 32 OR BELOW: 7 MAX 90 OR ABOVE: 0 MIN 32 OR BELOW: 18 MIN 0 OR BELOW: 0	0.01 INCH OR MORE: 14 0.10 INCH OR MORE: 10 0.50 INCH OR MORE: 3 1.00 INCH OR MORE: 1	
[HDD (BASE 65)] TOTAL THIS MO. 736 DPTR FM NORMAL 83 TOTAL FM JUL 1 2637 DPTR FM NORMAL -301	CLEAR (SCALE 0-3) 4 PTCLDY (SCALE 4-7) 8 CLOUDY (SCALE 8-10) 16	
[CDD (BASE 65)] TOTAL THIS MO. 1 DPTR FM NORMAL 1 TOTAL FM JAN 1 1 DPTR FM NORMAL 1	[PRESSURE DATA] HIGHEST SLP 30.50 ON 20 LOWEST SLP 29.63 ON 4	

[REMARKS] #FINAL-02-21#

WFO Monthly/Daily Climate Data

~

450 CXUSS5 KOHX 030156 CF6BNA PRELIMINARY LOCAL CLIMATOLOGICAL DATA (WS FORM: F-6)

STATION: MONTH:	NASHVILLE MARCH
YEAR:	2021
LATITUDE:	36 7 N
LONGITUDE:	86 41 W

	FEMPE						PCPN:		SNOW:	WIN				SHINE			:PK	
1	2	3	4	5	6A	6B	7	8	9 127	10	11	12 2MIN	13	14	15	16	17	18
							WTR		DPTH	SPD	SPD	DIR					SPD	
1	58 55	38 35	48 45	2 -1	17 20		0.26	0.0	0 0		322 313	350 30	M	M	10	1		350 300
3	64	32	48	2	17		0.00	0.0	0			330	M	M	é			330
4	69	35	52	6	13		0.00	0.0	0		9 14	20	M	M	0		20	
5	50	37	44	-3	21	0	0.00	0.0	0	11.4		50	м	м	6		24	40
6	56	34	45	-2	20		0.00	0.0	0		9 21	30	м	М	3		28	
7	63	28	46	-1			0.00	0.0	0			360	M	M	1		19	
8	70 73	31 36	51 55	3	14 10	-	0.00	0.0	0 0			200 180	M	M	-	8 8		190 170
9 10	74	36 48	55 61	13	10	-	0.00	0.0	-	11.9			M	M	4	8		190
11	76	60	68	20	0		0.00	0.0		14.5			M	M	8			180
12	71	57	64	15	1		0.19	0.0	0			360	M	M	-	18		200
13	57	53	55	6	10	ø	0.24	0.0	0			170	M	M	10		20	180
14	67	53	60	11	5	0	0.01	0.0	0	7.1	L 15	50	м	М	9		20	90
15	68	54	61	11	4	0	0.20	0.0	0	8.3	3 20	160	м	м	8	1	26	180
16	79	56	68	18	0		0.00	0.0	0			310	м	м		1		280
17	66	57	62	12	3		1.20	0.0	0			140	M	M		13		160
18	65	45	55	4		-	0.04	0.0	0			260	M	M		18		260
19 20	54 67	41 40	48 54	-3 3	17 11	0	т 0.00	0.0	0 0	12.8	s 22 3 15	40 10	M	M	3	18	28 20	
20	69	33	51	-1			0.00	0.0	0		3 12	90	M	M	2			100
22	71	47	59	7	6	-	0.00	0.0	0			130	M	M	6			160
23	67	57	62	10	3	ø	т	0.0	0	14.6			M	M	8		38	160
24	77	55	66	14	0	1	0.00	0.0	0	9.6	3 17	210	м	М	4		26	190
25	73	54	64	11	1	-	1.76	0.0	0			170	м	М		13		180
26	74	51	63	10	2		0.00	0.0	0			280	м	м	2			270
27	66	53	60	7	5		5.75	0.0	0			200	M	M	-	135		190
28 29	64 65	41 36	53 51	-1 -3	12 14		1.26	0.0	0 0	11.7		330 170	M	M	6 0	13		320 170
29 30	77	36 45	61	-3	4	-	0.00	0.0	-	3.3			M	M	-	13		180
31	64	45	54	0	11		0.66	0.0		10.8		100	M	M		13		340
				-														
	2069				288		12.28	0.		247.7			м		177			
	66.7			-===	_===:	=		_===				STST	==== M	 M			MAX(MP	
								MIS	c			200					43 190	<i>,</i>
					====:							====			====:	====		
NO.	TES:																	

LAST OF SEVERAL OCCURRENCES

COLUMN 17 PEAK WIND IN M.P.H.

PRELIMINARY LOCAL CLIMATOLOGICAL DATA (WS FORM: F-6) , PAGE 2

	MONTH: YEAR: LATITUD	: NASHVILLE MARCH 2021 E: 36 7 N DE: 86 41 W
[TEMPERATURE DATA]	[PRECIPITATION DATA]	SYMBOLS USED IN COLUMN 16
	DPTR FM NORMAL: 8.17 GRTST 24HR 6.90 ON 27-28 SNOW, ICE PELLETS, HAIL TOTAL MONTH: 0.0 INCH GRTST 24HR 0.0 GRTST DEPTH: 0	2 = FOG REDUCING VISIBILITY TO 1/4 MILE OR LESS 3 = THUNDER 4 = ICE PELLETS 5 = HAIL 6 = FREEZING RAIN OR DRIZZLE 7 = DUSTSTORM OR SANDSTORM: VSBY 1/2 MILE OR LESS
[NO. OF DAYS WITH]	[WEATHER - DAYS WITH]	8 = SMOKE OR HAZE 9 = BLOWING SNOW X = TORNADO
MAX 32 OR BELOW: 0 MAX 90 OR ABOVE: 0 MIN 32 OR BELOW: 3 MIN 0 OR BELOW: 0	0.01 INCH OR MORE: 12 0.10 INCH OR MORE: 10 0.50 INCH OR MORE: 6	X = TURNADU
[HDD (BASE 65)] TOTAL THIS MO. 288 DPTR FM NORMAL -185 TOTAL FM JUL 1 2925 DPTR FM NORMAL -486	PTCLDY (SCALE 4-7) 14	
	[PRESSURE DATA] HIGHEST SLP 30.57 ON 8 LOWEST SLP 29.54 ON 18	

[REMARKS] #FINAL-03-21#

WFO Monthly/Daily Climate Data

979 CXUS55 KOHX 011110 CF6BNA PRELIMINARY LOCAL CLIMATOLOGICAL DATA (WS FORM: F-6)

•

STATION:	NASHVILLE					
MONTH:	APRIL					
YEAR:	2021					
LATITUDE:	36 7 N					
LONGITUDE:	86 41 W					

-	FEMPE	RATI	JRE 3	EN F			PCPN:	1	SNOW:	WIN	ND		: SUN	SHINE			:PK W	ND
1	2	3	4	5	6A	6B	7	8	9 12Z	10	11 MY	12 2MIN	13	14	15	16		18
DY	MAX	MIN	AVG	DEP	HDD	CDD	WTR	SNW	DPTH				MIN	PSBL	s-s	WX	SPD	DR
==:					====:			====		====:		====						
1	49	35	42	-13	23	0	0.00	0.0	Ø	11.9	9 17	330	м	м	1		31	350
2	53	30		-13	23			0.0	0			70	M	M	0			330
3	66	31	49	-6	16	0	0.00	0.0	0			180	м	м	1			200
4	75	39	57	1	8		0.00	0.0	0			280	м	м	1			290
5	79	47	63	7			0.00	0.0	0			180	м	м	1			180
6	82	55	69	13				0.0	0			200	м	M	4	8		200
7	82	58	70	14	0		0.03	0.0				260	M	M	7			270
8	77 84	58 52	68 68	11 11	0	-	0.42	0.0				200 180	M	M	6 5	1		210 170
10	84 72	52	64	7	0 1		0.00	0.0		10.0			M	M	7	18		210
11	73	50	62	4			0.00	0.0		10.3			M	M	2	10		280
12	79	50	65	7			0.00	0.0	0			340	M	M	1			330
13	74	53	64	6	1	ø	т	0.0	õ		3 14		M	M	6		18	50
14	61	53	57	-2		ē	Ť	0.0	ø			360	M	M	8		22	30
15	64	49	57	-2	8	0	0.00	0.0	0	9.5	5 17	20	м	м	5		22	20
16	66	40	53	-6	12	0	0.00	0.0	0	2.6	3 12	90	м	м	6		17	70
17	65	48	57	- 3	8	0	т	0.0	0			310	м	м	8		22	310
18	66	42	54	-6	11	0	0.01	0.0	0	2.7	7 10	320	м	м	6	1	20	330
19	72	44	58	-2	7		0.00	0.0	0			320	м	м		18		320
20	75	40	58	-2	7		0.02	0.0	0			330	м	M	4			320
21	54	35	45		20		0.06	T	0			320	M	M		1		280
22 23	63	35		-12	16		0.00	0.0	0			290	M	M	4			280
23	63 67	44 51	54 59	- /			0.07 0.34	0.0	0 0			120 100	M	M	9	13		140 100
24	72	48	60	-2	5		0.00	0.0	0			360	M	M		18		360
26	80	40	63	-2	2		0.00	0.0	0			160	M	M	4	10		170
27	84	61	73	11				0.0	0			190	M	M	5			200
28	74	64	69	6	õ		0.72	0.0	õ			170	M	M		13		200
29	71	59	65	2	ē		0.48	0.0	ø			210	M	M		1		200
30	78	51	65	2	0		0.00	0.0	0			360	М	м	-	1		340
SM	2120	142	23		198	27	2.35		г	201.4	1		М		144			
	70.7											STST		 M			MAX(MPH	
AV	/0./	47.	.4					MIS	c			200	P1	P	5		45 270	·/
==:					====:			====				====	====:					

NOTES: # LAST OF SEVERAL OCCURRENCES

COLUMN 17 PEAK WIND IN M.P.H.

PRELIMINARY LOCAL CLIMATOLOGICAL DATA (WS FORM: F-6) , PAGE 2

	MONTH: YEAR: LATITUDE	NASHVILLE APRIL 2021 :: 36 7 N)E: 86 41 W
[TEMPERATURE DATA]	[PRECIPITATION DATA]	SYMBOLS USED IN COLUMN 16
DPTR FM NORMAL: 0.0	GRTST 24HR 0.84 ON 28-29 SNOW, ICE PELLETS, HAIL TOTAL MONTH: T GRTST 24HR T ON 21-21 GRTST DEPTH: 0	2 = FOG REDUCING VISIBILITY TO 1/4 MILE OR LESS 3 = THUNDER 4 = ICE PELLETS
[NO. OF DAYS WITH]	[WEATHER - DAYS WITH]	
MAX 90 OR ABOVE: 0 MIN 32 OR BELOW: 2	0.01 INCH OR MORE: 10 0.10 INCH OR MORE: 5 0.50 INCH OR MORE: 1 1.00 INCH OR MORE: 0	
[HDD (BASE 65)] TOTAL THIS MO. 198 DPTR FM NORMAL -19 TOTAL FM JUL 1 3123 DPTR FM NORMAL -506	PTCLDY (SCALE 4-7) 18	
[CDD (BASE 65)] TOTAL THIS MO. 27 DPTR FM NORMAL -10 TOTAL FM JAN 1 35 DPTR FM NORMAL -10	[PRESSURE DATA] HIGHEST SLP 30.59 ON 2 LOWEST SLP 29.54 ON 10	

[REMARKS] #FINAL-04-21#

WFO Monthly/Daily Climate Data

~

315 CXUS55 KOHX 011110 CF6BNA PRELIMINARY LOCAL CLIMATOLOGICAL DATA (WS FORM: F-6)

STATION:	NASHVILLE
MONTH:	MAY
YEAR:	2021
LATITUDE:	36 7 N
LONGITUDE:	86 41 W

	FEMPE						PCPN:		SNOW:	WIN				SHINE			:PK 1	
1	2	3	4	5	6A	6B	7	8	9 12Z	10	11	12 2MIN		14	15	16	5 17	18
							WTR		DPTH	SPD	SPD	DIR					SPD	
==:																		
1	80	48	64	-1	1		0.00	0.0	0		5 13		м	M	3		16	10
2	74 82	56 65	65	-1	0		0.17	0.0	0			160 220	M	M		1		180 230
3	82	63	74 72	8 6	0 0		1.86 0.84	0.0	0	10.5			M	M		13 13		230
5	68	48	58	-8	7		0.20	0.0	0			360	M	M		18		350
6	72	45	59	-8	6		0.28	0.0	0			310	M	M		13		310
7	71	47	59	-8	6		0.00	0.0	õ			300	M	M	2	10		300
8	68	55	62	-5	3		0.00	0.0	ø			170	M	M	7			250
9	73	54	64	-4	1	0	0.43	0.0	0	10.8	3 25	180	м	м	9	13	38	180
10	60	48	54	-14	11	0	0.00	0.0	0	6.2	2 13	20	м	м	9	18	16	20
11	72	45	59	-9	6	0	т	0.0	0	8.4	1 17	30	м	М	6	1	23	60
12	69	51	60	-8	5	0	0.01	0.0	0	12.1		30	м	М	5		32	360
13	72	44		-11	7	-	0.00	0.0	0			360	м	М	2		21	10
14	75	42		-10	6		0.00	0.0	0		5 13		м	М	2			100
15	79	46	63	-6	2	-	0.00	0.0	0			250	M	м	5			250
16	80	59	70	1	0		0.02	0.0	0			200	M	M	8			210
17	80	57	69	-1	-		0.00	0.0	0			180	M	M	8			190
18 19	76 84	64 67	70 76	0	0	11	0.00 T	0.0	0	10.4		150	M	M	9			130 140
20	84 86	67	75	6 5	0 0		0.00	0.0	0 0			170	M	M	3			140
20	86	60	73	2	0		0.00	0.0	0			160	M	M	4			150
22	87	61	74	3			0.00	0.0	0	2.8		180	M	M	7			120
23	91	61	76	5			0.00	0.0	0	2.8		340	M	M		1		280
24	91	62	77	5			0.00	0.0	ñ	1.9			M	M		8	15	10
25	93	63	78	6	ē		0.00	0.0	ø	4.7	7 16	200	M	M		18		220
26	83	66	75	3	0	10	0.26	0.0	0	5.3	3 14	260	м	м	7	1	23	220
27	87	64	76	4	0	11	т	0.0	0	3.6	5 13	310	м	М	7	12	20	200
28	81	57	69	- 3	0	4	0.97	0.0	0			310	м	М	9	18		310
29	62	53		-15	7		0.01	0.0	0	10.0		10	м	м		18		360
30	74	52		-10	2		0.00	0.0	0		L 16	10	м	м	4		22	40
31	81	50	66	-7	0		0.00	0.0	0			230	М	м	4		29	200
SM	2417	171	L6		70	130	5.05	0.	9 :	196.0	9		м		186			
	78.0											STST		M	6		MAX(MPI	
								MIS	c	->	31	310					48 310	
	res.				====:							====				===:		

NOTES: # LAST OF SEVERAL OCCURRENCES

COLUMN 17 PEAK WIND IN M.P.H.

PRELIMINARY LOCAL CLIMATOLOGICAL DATA (WS FORM: F-6) , PAGE 2

	Mi Yi Li	ONTH: EAR: ATITUDE:	NASHVILLE MAY 2021 36 7 N 86 41 W				
[TEMPERATURE DATA]	[PRECIPITATION DATA] 5	SYMBOLS USED IN COLUMN 16				
AVERAGE MONTHLY: 66.7 DPTR FM NORMAL: -2.6 HIGHEST: 93 ON 25 LOWEST: 42 ON 14	DPTR FM NORMAL: GRTST 24HR 2.03 ON SNOW, ICE PELLETS, TOTAL MONTH: 0.0	0.03 2 2-3 HAIL 4 INCH 5 7	 FOG REDUCING VISIBILITY TO 1/4 MILE OR LESS THUNDER TCE PELLETS HAIL FREEZING RAIN OR DRIZZLE DUSTSTORM OR SANDSTORM: VSBV 1/2 MILE OR LESS 				
[NO. OF DAYS WITH]	[WEATHER - DAYS WIT	н] 9	I = SMOKE OR HAZE = BLOWING SNOW I = TORNADO				
MAX 32 OR BELOW: 0 MAX 90 OR ABOVE: 3 MIN 32 OR BELOW: 0 MIN 0 OR BELOW: 0	0.10 INCH OR MORE: 0.50 INCH OR MORE:	11 8 3	- TURINADU				
[HDD (BASE 65)] TOTAL THIS MO. 70 DPTR FM NORMAL 28 TOTAL FM JUL 1 3193 DPTR FM NORMAL -170	PTCLDY (SCALE 4-7)	19					
[CDD (BASE 65)] TOTAL THIS MO. 130 DPTR FM NORMAL -47 TOTAL FM JAN 1 165 DPTR FM NORMAL -76	HIGHEST SLP 30.43 0						

[REMARKS] #FINAL-05-21#

WFO Monthly/Daily Climate Data

000 CXUSS5 KOHX 261110 CF6BMA PRELIMINARY LOCAL CLIMATOLOGICAL DATA (WS FORM: F-6) STATION: STATION:

•

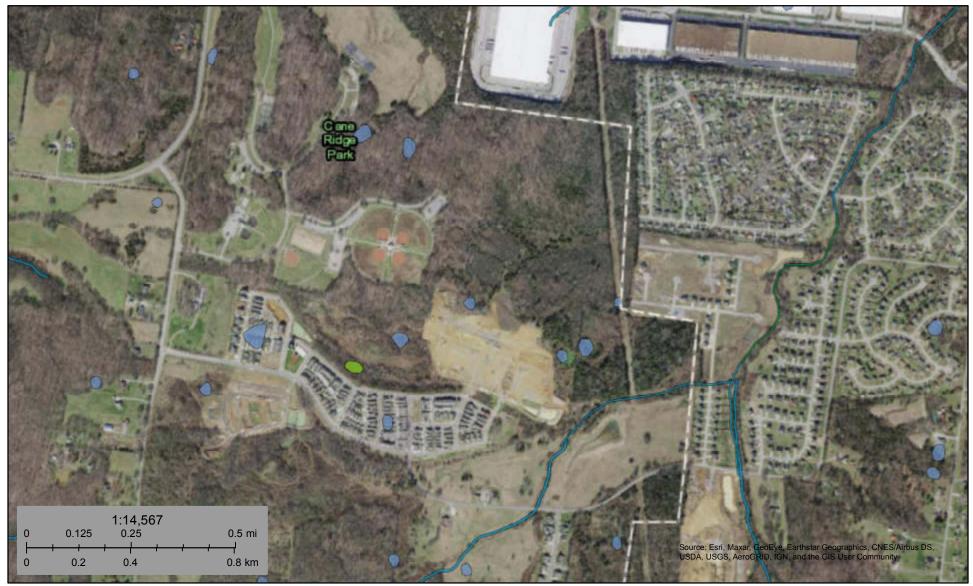
STATION:	NASH	ASHVILLE					
MONTH:	JUNE						
YEAR:	2021						
LATITUDE:	36	7	Ν				
LONGITUDE:	86	41	W				

	FEMPE	RATI	JRE :		•		PCPN:		SNOW:	WIN				SHINE			:PK W	ND
1	2	3	4	5	6A	6B	7	8	9 127	10 AVG	11	12	13	14	15	16		18
					HDD		WTR		DPTH	SPD	SPD	DIR		PSBL			SPD	
1	79	62	71	- 3	0		0.03	0.0	0			170	м	м	9			280
2	74	65	70	-4			1.16	0.0	0			180	м	м	9	13		170
3	83	64	74	0	0		0.07	0.0	0			320	м	м				290
4	85	60	73	-1	0		0.00	0.0	0			110	м	М		12		110
5	90	64	77	2	0		0.02	0.0	0			180	м	м	5			200
6	81	71	76	1	0	11	т	0.0	0			180	м	м	9			180
7	85	70	78	3	0	13	т	0.0	0			180	м	М	8			170
8	85	71	78	3			0.02	0.0	0			190	м	М		3		180
9	81	71	76	0	0		0.33	0.0	0			190	м	М	9			180
10	86	71	79	3			0.22	0.0	0			300	M	M	-			300
11	88	73	81	5	0		0.20	0.0	0			260	M	M				290
12	95	71	83	7		18	Т	0.0	0			320	м	М	4			340
13	96	72	84	7	-		0.00	0.0	0			340	м	М	5	1	17	20
14	95	76	86	9	0		0.00	0.0	0		14	10	м	М	2			310
15	86	65	76	-1	0		0.00	0.0	0		3 24	10	м	М	2		34	20
16	89	61	75	-2	0		0.00	0.0	0	7.5		М	м	М	2		м	М
17	92	64	78	0	0		0.00	0.0	0		9 10	90	м	М	4		14	70
18	92	70	81	3			0.00	0.0	0			190	M	M	4			190
19	87	69	78	0			0.00	0.0	0			170	M	M	7			190
20	93 89	67	80 79	2			0.00	0.0	0			250	M	M	4	10		250
21 22		69 63	79	-7	0		0.07	0.0	0			310	M	M		18		300
22	81 84	56	70	- /	0 0		0.00	0.0	0 0		3 16	10 150	M	M	3		26 15	20 90
25	84 92	62	70	-2	0		0.00	0.0	0			160	M	M	4			180
24	92	74	81	-2	0		0.00	0.0		12.4			M	M	7			160
				-	-				-									
SM	217	5 16	81		0	308	2.12	0.0	9	162.0)		м		142			
					====													
AV	87.6	1 6/	. 2					мтс				STST 310	м	м	6		MAX(MPH 43 300	1)
-																		
					====								====:					

NOTES: # LAST OF SEVERAL OCCURRENCES

COLUMN 17 PEAK WIND IN M.P.H.

PRELIMINARY LOCAL CLIMATOLOGICAL DATA (WS FORM: F-6) , PAGE 2


	MONTH: YEAR: LATITUDI	: NASHVILLE JUNE 2021 E: 36 7 N DE: 86 41 W
[TEMPERATURE DATA]	[PRECIPITATION DATA]	SYMBOLS USED IN COLUMN 16
AVERAGE MONTHLY: 77.1 DPTR FM NORMAL: 0.6 HIGHEST: 96 ON 13 LOWEST: 56 ON 23	GRTST 24HR 1.19 ON 1- 2 SNOW, ICE PELLETS, HAIL TOTAL MONTH: 0.0 INCH GRTST 24HR 0.0 GRTST DEPTH: 0	2 = FOG REDUCING VISIBILITY TO 1/4 MILE OR LESS 3 = THUNDER 4 = ICE PELLETS
[NO. OF DAYS WITH]	[WEATHER - DAYS WITH]	
MAX 90 OR ABOVE: 8 MIN 32 OR BELOW: 0	0.01 INCH OR MORE: 9 0.10 INCH OR MORE: 4 0.50 INCH OR MORE: 1 1.00 INCH OR MORE: 1	X = TURINADU
[HDD (BASE 65)] TOTAL THIS MO. 0 DPTR FM NORMAL 0 TOTAL FM JUL 1 3193 DPTR FM NORMAL -171	CLEAR (SCALE 0-3) 4 PTCLDY (SCALE 4-7) 16 CLOUDY (SCALE 8-10) 5	
[CDD (BASE 65)] TOTAL THIS MO. 308 DPTR FM NORMAL 18 TOTAL FM JAN 1 473 DPTR FM NORMAL -58	[PRESSURE DATA] HIGHEST SLP M ON M LOWEST SLP 29.75 ON 21	

[REMARKS]

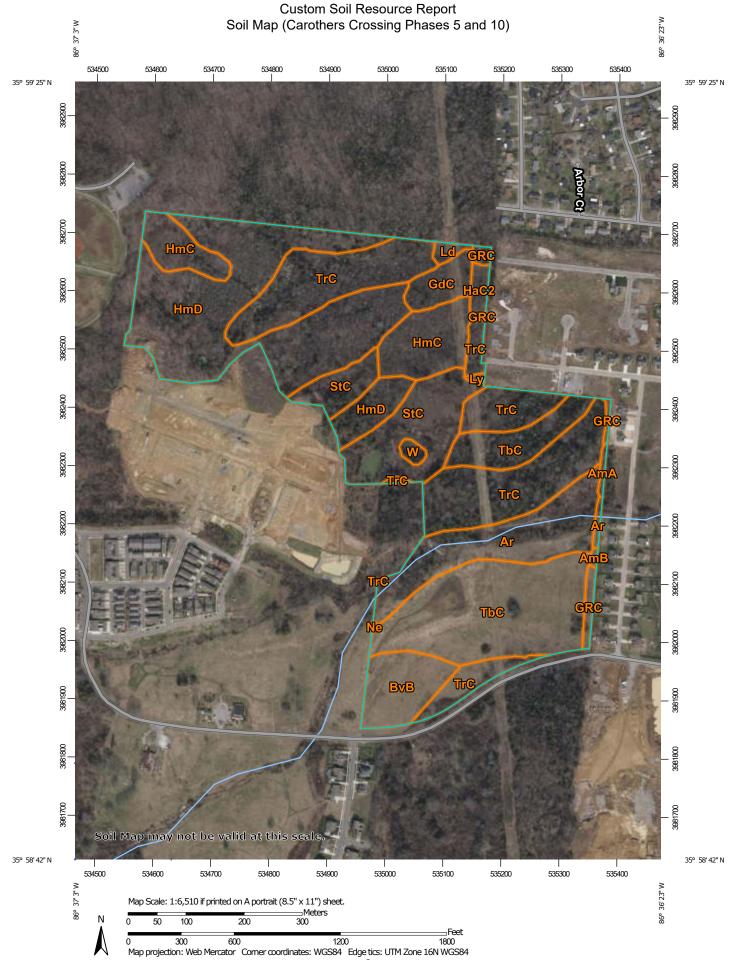
U.S. Fish and Wildlife Service National Wetlands Inventory

Carothers Crossing Area NWI Map

July 15, 2021

Wetlands

- Estuarine and Marine Wetland


Estuarine and Marine Deepwater

- e Wetland
- Freshwater Pond

Freshwater Emergent Wetland

Freshwater Forested/Shrub Wetland

Lake Other Riverine This map is for general reference only. The US Fish and Wildlife Service is not responsible for the accuracy or currentness of the base data shown on this map. All wetlands related data should be used in accordance with the layer metadata found on the Wetlands Mapper web site.

Custom Soil Resource Report Map—Hydric Rating by Map Unit (Carothers Crossing Phases 5 and 10)

Table—Hydric Rating by Map Unit (Carothers Crossing Phases 5
and 10)

Map unit symbol	Map unit name	Rating	Acres in AOI	Percent of AOI
Ar	Arrington silt loam, 0 to 2 percent slopes, occasionally flooded	0	7.8	8.8%
BvB	Bradyville silt loam, 2 to 5 percent slopes	0	3.8	4.3%
GdC	Gladeville-Rock outcrop complex, 2 to 15 percent slopes, extremely stony	0	1.9	2.1%
HmC	Hampshire silt loam, 5 to 12 percent slopes, eroded	0	6.5	7.3%
HmD	Hampshire silt loam, 12 to 20 percent slopes, eroded	0	21.5	24.3%
Ld	Lindell silt loam, 0 to 2 percent slopes, occasionally flooded	4	0.4	0.4%
Ne	Newark silt loam	8	0.0	0.0%
StC	Stiversville loam, 5 to 12 percent slopes, eroded	0	8.3	9.3%
TbC	Talbott silt loam, 2 to 10 percent slopes	0	16.3	18.4%
TrC	Talbott-Rock outcrop complex, 5 to 15 percent slopes	0	19.1	21.5%
W	Water	0	0.3	0.4%
Subtotals for Soil Surv	vey Area		85.8	96.9%
Totals for Area of Inter	est		88.6	100.0%

Map unit symbol	Map unit name	Rating	Acres in AOI	Percent of AOI
AmA	Armour silt loam, 0 to 2 percent slopes	0	0.2	0.2%
AmB	Armour silt loam, 2 to 5 percent slopes	0	0.1	0.1%
Ar	Arrington silt loam, 0 to 2 percent slopes, occasionally flooded	0	0.2	0.2%
GRC	Gladeville-Rock outcrop complex, 2 to 15 percent slopes, extremely stony	0	0.9	1.0%
HaC2	Hampshire silt loam, 5 to 12 percent slopes, eroded	0	0.7	0.7%

Map unit symbol	Map unit name	Rating	Acres in AOI	Percent of AOI
Ly	Lynnville silt loam	0	0.1	0.1%
TrC	Talbott-Barfield-Rock outcrop complex, 2 to 12 percent slopes	0	0.7	0.7%
Subtotals for Soil Survey Area			2.8	3.1%
Totals for Area of Interest			88.6	100.0%

Rating Options—Hydric Rating by Map Unit (Carothers Crossing Phases 5 and 10)

Aggregation Method: Percent Present Component Percent Cutoff: None Specified Tie-break Rule: Lower