EAST TENNESSEE NATURAL GAS, LLC 5400 Westheimer Court Houston, TX 77056-5310 713.627.5400 main

Mailing Address: P.O. Box 1642 Houston, TX 77251-1642

January 31, 2012

FEB 0 2 2012

Mr. Barry R. Stephens, Director Division of Air Pollution Control 9th Floor, L&C Annex 401 Church Street Nashville, TN 37243-1531 Tel: 615-532-0554

RE:

Operating Permit Application East Tennessee Natural Gas Station 3110 (Wartburg) Permit # 963779P Emission Source No. 65-0028-01

Dear Mr. Stephens:

East Tennessee Natural Gas (ETNG) is submitting the enclosed operating permit application for the above reference permit. A permit renewal application was submitted to the department on June 2, 2010. The department issued temporary operating permit #9663779P on February 17, 2011 based on updates of the turbine representation to reflect current information from the turbine manufacturer (Solar). This authorization expired February 9, 2012.

If you have any questions, please feel free to call Diana Phelps at 713-627-4484.

Sincerely,

Reagan Mayces EHS Manager-Air

US-Operations

Overnight delivery Enclosures

Station 3110 - Wartburg

Operating Permit Application

Forms and Supporting Documentation

9th Floor, L & C Annex 401 Church Street Nashville, TN 37243-1531 Telephone: (615) 532-0554 FAX: (615) 532-0614

NOT TO BE USED FOR TITLE V APPLICATIONS

PERMIT APPLICATION

FEB 0 2 2012

					APC 20
PLEASE TYPE DESCRIPTION	OR PRINT AND SUBMI	T IN DUPLICATE FO	R EACH EMISSI	ON SO	URCE. ATTACH APPROPRIATE SOURCE
1. ORGANIZ	ATION'S LEGAL NAME stural Gas Company	****		/ / / FOR	APC COMPANYPOINT NO.
2. MAILING P.O. Box 1642	ADDRESS (ST/RD/P.O. BOX	X)		/// APC	APC LOG/PERMIT NO.
CITY Houston		STATE TX	ZIP CODE 77251-1642		PHONE WITH AREA CODE (713) 627-5210
	L TECHNICAL CONTACT on – Monterey Office		1		PHONE WITH AREA CODE (931) 839-2268
4. SITE ADD 142 Clayton How	ŒSS (ST/RD/HWY) ard Road				COUNTY NAME Morgan
CITY OR D Wartburg	ISTANCE TO NEAREST TO)WN	ZIP CODE 37887		PHONE WITH AREA CODE (931) 346-3579
	SOURCE NO. (NUMBER VERTHIS SOURCE)	WHICH UNIQUELY	PERMIT RENEW YES () NO (X		
	CRIPTION OF EMISSION fired Solar Saturn T-1300 turb		SO standard conditio	ns).	
	ERMIT REQUESTED		W. W		
CONSTRUC	TION STARTING DATE	COMPLETION DATE	LAST PERMIT NUMBER		EMISSION SOURCE REFERENCE NUMBER
OPERATIN (X)	DATE CONSTRU- CTION STARTED 06/10/1996	DATE COMPLETED 09/01/1996	LAST PERMIT NUMBER O53993F		EMISSION SOURCE REFERENCE NUMBER
LOCATION TRANSFER	TRANSFER DATE	09/01/1990	LAST PERMIT NUMBER	*****	65-0028-01 EMISSION SOURCE REFERENCE NUMBER
	DF LAST LOCATION				
OPERATIN No physic a Conditio	G PERMIT APPLICATION al changes or changes in	N. In the method of oper on the nominal emis	ation have occur ssion rates for NO	red or	are proposed. Authorization is being requested as D provided by Solar so that emission
9. SIGNATUR	E (APPLICATION MUST B	SIGNED BEFORE IT	WILL BE PROCESS	SED)	DATE
16 CICNEDIO	Chul aling				1/31/2012
	NAME (TYPE OR PRINT)	TITLE			PHONE WITH AREA CODE
Thomas V. V	Vooden	V.PFig	eld Operations	·····	(713) 627-5400

TABLE OF POLLUTION REDUCTION DEVICE OR METHOD CODES (ALPHABETICAL LISTING)

NOTE: FOR CYCLONES, SETTLING CHAMBERS, WET SCRUBBERS, AND ELECTROSTATIC PRECIPITATORS. THE EFFICIENCY RANGES CORRESPOND TO THE FOLLOWING PERCENTAGES:

HIGH: 95-99+%. MEDIUM: 80-95%. AND LOW: LESS THAN 80%.

IF THE SYSTEM HAS SEVERAL PIECES OF CONNECTED CONTROL EQUIPMENT, INDICATE THE SEQUENCE, FOR EXAMPLE: 008'010.97%.

IF NONE OF THE BELOW CODES FIT, USE 999 AS A CODE FOR OTHER AND SPECIFY IN THE COMMENTS.

NO EQUIPMENT	000
ACTIVATED CARBON ADSORPTION	048
AFTERBURNERDIRECT FLAME	021
AFTERBURNERDIRECT FLAME WITH HEAT EXCHANGER	2 022
AFTERBURNERCATALYTIC	019
AFTERBURNERCATALYTIC WITH HEAT EXCHANGER	020
ALKALIZED ALUMINA	040
CATALYTIC OXIDATIONFLUE GAS DESULFURIZATION	039
CYCLONEHIGH EFFICIENCY	007
CYCLONEMEDIUM EFFICIENCY	800
CYCLONELOW EFFICIENCY	009
DUST SUPPRESSION BY CHEMICAL STABILIZERS	
OR WETTING AGENTS	062
ELECTROSTATIC PRECIPITATORHIGH EFFICIENCY	010
ELECTROSTATIC PRECIPITATOR MEDIUM EFFICIENCY	011
ELECTROSTATIC PRECIPITATORLOW EFFICIENCY	012
FABRIC FILTERHIGH TEMPERATURE	016
FABRIC FILTERMEDIUM TEMPERATURE	017
FABRIC FILTERLOW TEMPERATURE	018
FABRIC FILTERMETAL SCREENS (COTTON GINS)	059
FLARING	023
GAS ADSORPTION COLUMNPACKED	050
GAS ADSORPTION COLUMNTRAY TYPE	051
GAS SCRUBBER (GENERAL: NOT CLASSIFIED)	013

LIMESTONE INJECTIONDRY	
LIMESTONE INJECTIONWET	042
LIQUID FILTRATION SYSTEM	049
MIST ELIMINATORHIGH VELOCITY	014
MIST ELIMINATORLOW VELOCITY	015
PROCESS CHANGE	04€
PROCESS ENCLOSED	054
PROCESS GAS RECOVERY	060
SETTLING CHAMBERHIGH EFFICIENCY	004
SETTLING CHAMBERMEDIUM EFFICIENCY	005
SETTLING CHAMBERLOW EFFICIENCY	006
SPRAY TOWER (GASEOUS CONTROL ONLY)	052
SULFURIC ACID PLANTCONTACT PROCESS	043
SULFURIC ACID PLANTDOUBLE CONTACT PROCESS	044
SULFUR PLANT	045
VAPOR RECOVERY SYSTEM (INCLUDING CONDENSERS,	
HOODING AND OTHER ENCLOSURES)	047
VENTURI SCRUBBER (GASEOUS CONTROL ONLY)	053
WET SCRUBBERHIGH EFFICIENCY	001
WET SCRUBBERMEDIUM EFFICIENCY	002
WET SCRUBBERLOW EFFICIENCY	003
WET SUPPRESSION BY WATER SPRAYS	061

TABLE OF EMISSION ESTIMATION METHOD CODES

NOT APPLICABLE EMISSIONS ARE KNOWN TO BE ZERO	0
EMISSIONS BASED ON SOURCE TESTING	
EMISSIONS BASED ON MATERIAL BALANCE USING ENGINEERING EXPERTISE AND KNOWLEDGE OF PROCESS	2
EMISSIONS CALCULATED USING EMISSION FACTORS FROM EPA PUBLICATION NO. AP-42 COMPILATION OF	
AIR POLLUTANT EMISSIONS FACTORS	3
JUDGEMENT	4
EMISSIONS CALCULATED USING A SPECIAL EMISSION FACTOR DIFFERING FROM THAT IN AP-42	5
OTHER (SPECIFY IN COMMENTS)	

STATE OF TENNESSEE DEPARTMENT OF ENVIRONMENT AND CONSERVATION DIVISION OF AIR POLLUTION CONTROL

9th Floor, L & C Annex 401 Church Street Nashville, TN 37243-1531 Telephone: (615) 532-0554 FAX: (615) 532-0614

NOT TO BE USED FOR TITLE V APPLICATIONS

REFUEL BURNING FEB 0 2 2012

APC21(& 24)

PROCESS OR FUEL BURNING SOURCE DESCRIPTION

PLEASE TYPE OR PRINT, SUBMI	T IN DUPLIC	ATE AND	ATTACH TO THI	E PERMIT A	PPLICA	TIC	DN.
1. ORGANIZATION NAME East Tennessee Natural Gas Company					/// FOR	AP	C COMPANY-POINT NO.
2. EMISSION SOURCE NO. (AS O 65-0028-01			N)	SIC CODE 4922	/// APC	AP	C PERMIT/LOG NO.
3. DESCRIPTION OF PROCESS OR Three natural gas-fired Solar Saturn T-136	00 turbines (1,36	60 bhp each a		•	,		
4. NORMAL OPERATION: →	HOURS/DAY 24	DAYS/	WEEK	WEEKS/YE.	AR	DA 365	YS/YEAR 5
5. PERCENT ANNUAL THROUGHPUT: →	DECFEB. 25	MARC 25	Н-МАҮ	JUNE-AUG. 25		SE 25	PTNOV.
6. TYPE OF PERMIT APPLICATIO	N			l		(C	HECK BELOW ONE ONLY)
	HT, AND COM	PLETE LINI	ES 7, 8, 13, AND 14				()
	PPLY FOR A SE HT, AND COM	EPARATE P PLETE LINI	ES 7, 8, AND 10 THE	SOURCE. ROUGH 14)			()
NON-PROCESS FUEL BURNIN MATERIALS HEATED. COMPLETE T COMPLETE AN EMISSION POINT DE (CHECK AT RIGH	HIS FORM FO SCRIPTION FO	R EACH BO RM (APC :	OILER OR FUEL B 22) FOR EACH STA	URNER AND	NTACT 1		(X)
7. TYPE OF OPERATION: CONTI)	BA	ATCH)	NORMAL B TIME	ATCH	NC	RMAL BATCHES/DAY
8. PROCESS MATERIAL INPUTS A		AGRAM*	INPUT RATES	·		7	(FOR APC USE ONLY)
IN-PROCESS SOLID FUELS A.	RE	FERENCE	DESIGN	ACTUA	XL.	/	SCC CODE
<i>A</i> .						7	
В.						/ /	
C.						//	
D.						1	
E.						1	

TOTALS

(OVER)

1

1

CN-0741 (Rev. 9/92)

F.

G.

RDA 1298

^{*} A SIMPLE PROCESS FLOW DIAGRAM MUST BE ATTACHED.

9.	BOILER O	R BURNER DA	ATA: (COMPLETE LI	NES 9 TO 14	USING A SEPA	RATEFO	ORM F	OR EAC	H BOILER)			
	BOILER	STACK	TYPE OF FIRING**		RATED BC	ILER	RATE	D INPU	T OTHER BOIL			
	NUMBER	NUMBER**			HORSEPO		CAPA (10 ⁶ B)	CITY TU/HR)	(SPECIFY CA	APACITY AND UNITS)		
	TIA	TIA	Single Pipe, High Pre	ssure	1466 at (O°F		1 at 0°F HHV)				
	BOILER SE	RIAL NO.	DATE CONSTRUCT	ED	DATE OF I	_AST MC			EXPLAIN IN COM	MENTS BELOW).		
	21139		06/10/1996									
	** BOILEI	RS WITH A CO	MMON STACK WILL	HAVE THE S	AME STACK N	IUMBER	•					
	REINJE	INE, SPREADE ICTION), OTHI IMENTS).	R (WITH OR WITHOU ER STOKER (SPECIF	JT REINJECT Y TYPE), HA	TION), PULVER ND FIRED, AU	RIZED (V TOMATI	VET OI C, OR (R DRY I OTHER	BOTTOM, WITH O TYPE (DESCRIBE	R WITHOUT EBELOW		
10.			TE FOR A PROCESS S	OURCE WITI	H IN-PROCESS	FUEL OI	R A NO	N-PRO	CESS FUEL BURN	ING SOURCE)		
Nati	PRIMARY I iral Gas	FUEL TYPE (S	PECIFY)			STANI None	OBY F	JEL TY	PE(S)(SPECIFY))		
	FUELS USE	ED .	ANNUAL USAGE	HOURI	Y USAGE	%	Ι	%	BTU VALUE	(FOR APC ONLY)		
		~~~		DESIGN	AVERAGE	SULF	UR	ASH	OF FUEL	SCC CODE		
	NATURAL	GAS:	10 ⁶ CUFT 140.995	CUFT 16,095	CUFT 16,095	/ / /	,	   	1,020 BTU/scf (HHV)			
	#2 FUEL OI	L;	10 ³ GAL	GAL	GAL			/ / /				
	#5 FUEL OI	L:	10 ³ GAL	GAL	GAL			/ /				
								1				
	#6 FUEL OI	L:	10 ³ GAL	GAL	GAL			11				
								1				
	COAL:		TONS	LBS	LBS			/ /				
	WOOD:	***	TONS	LBS	LBS	///	/	11				
						///	/	1				
	LIQUID PRO	OPANE:	10 ³ GAL	GAL	GAL	/ / /	/	11				
						///		/	85,000			
	OTHER (.SP							<u> </u>				
	TYPE & UN	ITS.):				<u> </u>						
11.	IF WOOD I	S USED AS A I	FUEL, SPECIFY TYI	PES AND EST	I IMATE PERC	ENT BY	WEIG	HT OF	BARK			
12.	IF WOOD I	S USED WITH	OTHER FUELS, SPI	ECIFY PERC	ENT BY WEIG	HT OF V	wood	CHAR	GED TO THE BU	RNER.		
13.	COMMENT	rs	···········				····					
		-~										
	-	Thul	1 hhung	•					,	1/2/ bom		
14.	SIGNATUR	E								//31/2012   DATE		
										1		

Thomas V, Wooden, Vice President

PC 21 (& 24)	)									
		ATA: (COMPLETE L		4 USING A SEPA	RATE FOR	M FOR EAC	CH BOILER )			
BOILER NUMBER	STACK NUMBER**	TYPE OF FIRING**	HORSEPO		WER CAPACITY (10 ⁶ BTU/HR)		(SPECIFY CAP	OTHER BOILER RATING (SPECIFY CAPACITY AND UNITS)		
T-2A	T-2A	Single Pipe, High Pre		1,466 at		18.11 at 0°F (HHV)	at different ambi	Please see Table A-1 for site-rated capacities at different ambient temperatures.		
BOILER SI 1376S	ERIAL NO.	DATE CONSTRUCT 06/10/1996	ΓED	DATE OF I	AST MOD	IFICATION	(EXPLAIN IN COMM	MENTS BELOW).		
*** CYCLO REINJI	ONE, SPREADE	MMON STACK WILL R ( WITH OR WITHO ER STOKER ( SPECIF	UT REINJEC	TION), PULVER	RIZED ( WE	T OR DRY OR OTHER	BOTTOM, WITH OR TYPE ( DESCRIBE I	WITHOUT BELOW		
		TE FOR A PROCESS S	OURCE WIT	TH IN-PROCESS	FUEL OR A	NON-PRO	CESS FUEL BURNIN	(G SOURCE )		
	FUEL TYPE (S		····	,			PE(S)(SPECIFY)	······································		
FUELS US	ED	ANNUAL USAGE	HOUR	LY USAGE	%	%	BTU VALUE	(FOR APC ONLY)		
			DESIGN	AVERAGE	SULFUR	R ASH	OF FUEL	SCC CODE		
NATURAL.	GAS:	10 ⁶ CUFT 140.995	CUFT 16,095	CUFT 16,095	1111	l i	1,020 BTU/scf (HHV)			
#2 FUEL O	IL:	10 ³ GAL	GAL	GAL		1 1				
#5 FUEL O	IL:	10 ³ GAL	GAL	GAL		11				
#6 FUEL O	IL:	10 ³ GAL	GAL	GAL		11				
COAL:		TONS	LBS	LBS		1 1				
WOOD:		TONS	LBS	LBS	1111	l l				
					1///	11				
LIQUID PR	OPANE:	10 ³ GAL	GAL	GAL	1111	7.7	85,000			
OTHER (.S. TYPE & UN										
. IF WOOD	IS USED AS A	 FUEL, SPECIFY TYI	PES AND ES	 TIMATE PERC	ENT BY W	EIGHT OF	BARK			
. IF WOOD	IS USED WITH	OTHER FUELS, SPI	ECIFY PERC	CENT BY WEIG	HT OF WO	OOD CHAR	GED TO THE BUR	NER.		
	~~~		****			·····				
. COMMEN	18									

14. SIGNATURE

Thomas V. Wooden, Vice President

DATE

1/31/2012

λPC	21 (& 24)											
9.	BOILER O	R BURNER DA	ATA: (COMPLETE L	INES 9 TO 14	USING A SEPA	RATEF	ORM	FOR EAC	CH BOILER)			
	BOILER NUMBER	STACK NUMBER**	TYPE OF FIRING**	TYPE OF FIRING*** RAT		RATED BOILER R HORSEPOWER C		ED INPU ACITY BTU/HR)	(SPECIFY CAPA	OTHER BOILER RATING (SPECIFY CAPACITY AND UNITS)		
	T-3A	T-3A	Single Pipe, High Pre	essure	1,466 at	0°F	18	.11 at 0°F (HHV)	i i	A-1 for site-rated capacities ent temperatures.		
	BOILER SE 10897	ERIAL NO.	DATE CONSTRUCT 06/10/1996	LED	DATE OF I	LAST M	ODIF	CATION	(EXPLAIN IN COMM	IENTS BELOW).		
	*** CYCLC REINJE	ONE, SPREADE	I MMON STACK WILL R (WITH OR WITHO ER STOKER (SPECIF	UT REINJECT	TION), PULVEI	RIZED (WET (
10.	FUEL DAT	A: (COMPLE	TE FOR A PROCESS S	OURCE WIT	H IN-PROCESS	FUEL C	RAN	ON-PRO	CESS FUEL BURNIN	G SOURCE)		
Nati	PRIMARY ural Gas	FUEL TYPE (S	PECIFY)			STAN None	DBY I	FUEL TY	PE(S)(SPECIFY)			
	FUELS USI	ED	ANNUAL USAGE	HOUR	LY USAGE	9/		%	BTU VALUE	(FOR APC ONLY)		
	<u> </u>			DESIGN	AVERAGE	SUL		ASH	OF FUEL	SCC CODE		
	NATURAL	GAS:	10 ⁶ CUFT 140.995	CUFT 16,095	CUFT 16,095	/ /		/ / / / /	1,020 BTU/scf (HHV)			
	#2 FUEL O	IL:	10 ³ GAL	GAL	GAL			1 1				
	#5 FUEL OI	IL:	10 ³ GAL	GAL	GAL			1 1 1 1 1 1				
	#6 FUEL O	fL:	10³ GAL	GAL	GAL			/ /	=======================================			
	COAL:		TONS	LBS	LBS			/ /				
	WOOD:		TONS	LBS	LBS	1 / /						
	LIQUID PR	OPANE:	10 ³ GAL	GAL	GAL	11		1 1	85,000			
	OTHER (.SI TYPE & UN											
ī 1.	IF WOOD	IS USED AS A	I FUEL, SPECIFY TY	PES AND ES	I TIMATE PERC	ENT B	Y WE	GHT OF	BARK			
12	TE WOOD)	ie liebu waar	OTHER FUELS, SP	ecrev bed	TANKIN YORV KINANY	מא יייזוי	WOO	D CITAD	CIPIN DVN DIEEZ DEUNA	urap		
L & .	ir wood)	is used with	OTHER FUELS, SP	ecify peku	ENI DI WER	sni Or	WOO	D CHAR	GED TO THE BURI	NER.		
13.	COMMEN'	TS				····						

14. SIGNATURE) / / / /	DATE
	- Charles hall	1/2/2011
Thomas V. Wooden, Vice President	· · · · · · · · · · · · · · · · · · ·	1/3//2012

STATE OF TENNESSEE
DEPARTMENT OF ENVIRONMENT AND CONSERVATION
DIVISION OF AIR POLLUTION CONTROL

NOT TO BE USED FOR TITLE V APPLICATIONS

EMISSION POINT DESCRIPTION

9th Floor, L & C Annex 401 Church Street Nashville, TN 37243-1531 Telephone: (615) 532-0554 FAX: (615) 532-0614

FEB 0 2 2012

APC 22

PLEASE TYPE OR PRINT AND SUBMIT IN DUPLICATE FOR EACH STACK OR EMISSION POINT. ATTACH TO THE PERMIT APPLICATION 1. ORGANIZATION NAME APC COMPANY POINT NO. 777 East Tennessee Natural Gas Company FOR 2. EMISSION SOURCE NO. (FROM APPLICATION) FLOW DIAGRAM POINT NUMBER APC SEQUENCE NO. 111 65-0028-01 Not Applicable APC 3. LOCATION: LATITUDE LONGITUDE UTM HORIZONTAL UTM VERTICAL 36° 04' 15" 84° 32' 29' 4. BRIEF EMISSION POINT DESCRIPTION (ATTACH A SKETCH IF APPROPRIATE): DISTANCE TO NEAREST T-1A: Natural gas-fired Solar Saturn T-1300 turbine (1,360 bhp at ISO standard conditions) exhaust stack. PROPERTY LINE (FT) 212 COMPLETE LINES 5 AND 6 IF DIFFERENT FROM THAT ON THE PROCESS OR FUEL BURNING SOURCE DESCRIPTION (APC 21) 5. NORMAL HOURS/DAY WEEK/YEAR DAYS/YEAR DAYS/WEEK OPERATION: 24 52 365 6. PERCENT ANNUAL DEC.-FEB. MARCH-MAY JUNE-AUG. SEPT.-NOV. THROUGHPUT: 25 7. STACK OR EMISSION HEIGHT ABOVE DIAMETER TEMPERATURE % OF TIME DIRECTION OF EXIT POINT DATA: GRADE (FT) OVER 125°F (UP, DOWN OR (FT) (°F) HORIZONTAL) 22.33 2,00 HP 100 FLOW (ACTUAL MOISTURE DATA AT EXIT VELOCITY MOISTURE CONDITIONS: FT3/MIN.) (FT/SEC) (GRAINS/FT3) (PERCENT) 30,493 5.93 vol% 161.77 187 DATA AT STANDARD FLOW (DRY STD. MOISTURE VELOCITY MOISTURE CONDITIONS: (GRAINS/FT3) FT3/MIN) (FT/SEC) (PERCENT) 10,183 54.02 (dry) 0 (dry) 0.00 vol% (dry) ACTUAL EMISSIONS 8. AIR CONTAMINANTS EMISSIONS (LBS/HR) EMISSIONS* CONCENTRATION AVG. CONTROL CONTROL (TONS/YR) AVG. MAXIMUM DEVICES* EFFICIENCY% EST. PARTICULATES 0.11 0.47 3 000 0.12 0 SULFUR DIOXIDE 0.06 0.06 0.24 3 000 0 CARBON PPMVD at 15% O2 MONOXIDE 3.55 11.67 15.53 5 000 0 **ORGANIC** PPMVD at 15% O2 **COMPOUNDS** 0.03 000 0.47 0.14 5 0 NITROGEN PPMVD at 15% O2 **OXIDES** 4.69 4.84 20.54 5 000 0 **FLUORIDES** OTHER(SPECIFY) 000 n OTHER(SPECIFY) Formaldehyde 0.01 0.16 0.05 3 000 0

(OVER)

9,	CHECK TYPES OF MONITORING AND RECORDING INSTRUMENTS THAT ARE ATTACHED:
	OPACITY MONITOR (), SO2 MONITOR (), NOX MONITOR (), OTHER (SPECIFY IN COMMENTS) (X

10. COMMENTS

Section 7: Stack exhaust data is based on manufacturer's data at an average annual ambient temperature of 59.10°F (see Table A-1).

Section 8: Emissions data is based on calculations that are documented in Tables A-2.

Section 9: Monitoring or recordkeeping should be necessary to document compliance with the terms and condition of the permit. Monthly fuel consumption records and 12-month running total fuel consumption records should be sufficient.

The turbine is subject to NSPS, Subpart GG. Performance testing was conducted on November 20, 1996 in accordance with the applicable requirements of NSPS, Subparts A and GG. The turbine complies with the NSPS, Subpart GG nitrogen and sulfur monitoring requirements in accordance with §§60.334(h)(2) and 60.334(h)(3), respectively.

11. SIGNATURE

Thomas V. Wooden, Vice President

DATE

1/3/2012

- * REFER TO THE BACK OF THE PERMIT APPLICATION FORM FOR ESTIMATION METHOD AND CONTROL DEVICE CODES.
- ** EXIT GAS PARTICULATE CONCENTRATION UNITS: PROCESS GRAINS/DRY STANDARD FT3 (70°F); WOOD FIRED BOILERS GRAINS/DRY STANDARD FT3 (70°F); ALL OTHER BOILERS LBS/MILLION BTU HEAT INPUT.
- *** EXIT GAS SULFUR DIOXIDE CONCENTRATIONS UNITS: PROCESS PPM BY VOLUME, DRY BASES; BOILERS LBS/MILLION BTU HEAT INPUT.

STATE OF TENNESSEE
DEPARTMENT OF ENVIRONMENT AND CONSERVATION
DIVISION OF AIR POLLUTION CONTROL

NOT TO BE USED FOR TITLE V APPLICATIONS

EMISSION POINT DESCRIPTION

9th Floor, L & C Annex 401 Church Street Nashville, TN 37243-1531 Telephone: (615) 532-0554 FAX: (615) 532-0614

APC 22

FEB 0 2 2012

PLEASE TYPE OR PRINT AND SUBMIT IN DUPLICATE FOR EACH STACK OR EMISSION POINT. ATTACH TO THE PERMIT APPLICATION. 1. ORGANIZATION NAME 111 APC COMPANY POINT NO. East Tennessee Natural Gas Company FOR 2. EMISSION SOURCE NO. (FROM APPLICATION) FLOW DIAGRAM POINT NUMBER /// APC SEQUENCE NO. 65-0028-01 Not Applicable APC 3. LOCATION: LATITUDE LONGITUDE UTM VERTICAL UTM HORIZONTAL 36° 04' 15" 84° 32' 29" 4. BRIEF EMISSION POINT DESCRIPTION (ATTACH A SKETCH IF APPROPRIATE): DISTANCE TO NEAREST T-2A: Natural gas-fired Solar Saturn T-1300 turbine (1,360 bhp at ISO standard conditions) exhaust stack. PROPERTY LINE (FT) 205 COMPLETE LINES 5 AND 6 IF DIFFERENT FROM THAT ON THE PROCESS OR FUEL BURNING SOURCE DESCRIPTION (APC 21) 5. NORMAL HOURS/DAY DAYS/WEEK WEEK/YEAR DAYS/YEAR OPERATION: 24 6. PERCENT ANNUAL DEC.-FEB. MARCH-MAY JUNE-AUG. SEPT.-NOV. THROUGHPUT: 7. STACK OR EMISSION HEIGHT ABOVE DIAMETER TEMPERATURE % OF TIME DIRECTION OF EXIT POINT DATA: GRADE (FT) (FT) (°F) OVER 125°F (UP, DOWN OR HORIZONTAL) 2.00 100 UP DATA AT EXIT FLOW (ACTUAL VELOCITY MOISTURE MOISTURE CONDITIONS: FT³/MIN.) (FT/SEC) (GRAINS/FT3) (PERCENT) 30,493 161.77 5.93 vol% DATA AT STANDARD FLOW (DRY STD. VELOCITY MOISTURE MOISTURE CONDITIONS: FT3/MIN) (FT/SEC) (GRAINS/FT3) (PERCENT) 10,183 54.02 (dry) 0 (dry) 0.00 vol% (dry) 8. AIR CONTAMINANTS ACTUAL EMISSIONS EMISSIONS (LBS/HR) CONCENTRATION AVG. EMISSIONS* CONTROL CONTROL AVG. MAXIMUM (TONS/YR) EST. DEVICES* EFFICIENCY% PARTICULATES 0.11 0.12 3 0.47 000 0 SULFUR DIOXIDE 0.06 0.06 0.24 3 000 0 CARBON PPMVD at 15% O2 MONOXIDE 3.55 11.67 5 15.53 000 0 ORGANIC PPMVD at 15% O2 COMPOUNDS 0.03 0.47 0.14 5 000 Λ NITROGEN PPMVD at 15% O2 **OXIDES** 4.69 4.84 20.54 5 000 0 **FLUORIDES** OTHER(SPECIFY) 000 n OTHER(SPECIFY) Formaldehyde 0.01 0.16 0.05 3 000 0

9. CHECK TYPES OF MONITORING AND RECORDING INSTRUMENTS THAT ARE ATTACHED: OPACITY MONITOR (), SO2 MONITOR (), NOX MONITOR (), OTHER (SPECIFY IN COMMENTS) (X)

10. COMMENTS

Section 7: Stack exhaust data is based on manufacturer's data at an average annual ambient temperature of 59.10°F (see Table A-1).

Section 8: Emissions data is based on calculations that are documented in Tables A-2.

Section 9: Monitoring or recordkeeping should be necessary to document compliance with the terms and condition of the permit. Monthly fuel consumption records and 12-month running total fuel consumption records should be sufficient.

The turbine is subject to NSPS, Subpart GG. Performance testing was conducted on November 20, 1996 in accordance with the applicable requirements of NSPS, Subparts A and GG. The turbine complies with the NSPS, Subpart GG nitrogen and sulfur monitoring requirements in accordance with §§60.334(h)(2) and 60.334(h)(3), respectively.

11. SIGNATURE

Thomas V. Wooden, Vice President

DATE

1/31/20/2

- * REFER TO THE BACK OF THE PERMIT APPLICATION FORM FOR ESTIMATION METHOD AND CONTROL DEVICE CODES.
- ** EXIT GAS PARTICULATE CONCENTRATION UNITS: PROCESS GRAINS/DRY STANDARD FT3 (70°F); WOOD FIRED BOILERS GRAINS/DRY STANDARD FT3 (70°F); ALL OTHER BOILERS LBS/MILLION BTU HEAT INPUT.
- *** EXIT GAS SULFUR DIOXIDE CONCENTRATIONS UNITS: PROCESS PPM BY VOLUME, DRY BASES; BOILERS LBS/MILLION BTU HEAT INPUT.

APC 22

STATE OF TENNESSEE DEPARTMENT OF ENVIRONMENT AND CONSERVATION DIVISION OF AIR POLLUTION CONTROL

NOT TO BE USED FOR TITLE V APPLICATIONS

EMISSION POINT DESCRIPTION

9th Floor, L & C Annex 401 Church Street Nashville, TN 37243-1531 Telephone: (615) 532-0554

FAX: (615)532-0614

							AI C 22	
PLEASE TYPE OR PRINT	AND SUBM	IT IN DUPLIC	CATE FOR EACH ST	ACK OR EMISSION	POINT.			
ATTACH TO THE PERMI 1. ORGANIZATION NAMI		ION.				T in a case		
East Tennessee Natural Gas Co					///	APC COMPA	NY POINT NO.	
					FOR			
2. EMISSION SOURCE NO	. (FROM APPI	JCATION)	FLOW DIAGRAM PO	INT NUMBER	111	APC SEQUEN	ICE NO.	
65-0028-01			Not Applicable					
2 FOOLOWS	1 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7			····	APC		·····	
3. LOCATION:	LATITUDE 36° 04' 15"		LONGITUDE 84° 32' 29"	UTM VERTICAL		UTM HORIZO	ONTAL	
.	30 01 13		04 32 29					
4. BRIEF EMISSION POIN	T DESCRIPT	ION (ATTACH	A SKETCH IF APPROP	RIATE):		DISTANCE T	O NEAREST	
T-3A: Natural gas-fired Solar S	laturn T-1300 ti	ırbine (1,360 bhr	o at ISO standard condition	ns) exhaust stack.		PROPERTY L	INE (FT)	
						202		
0						202		
COMPLETE LINES 5 AND 6	IF DIFFEREN	FROM THAT	ON THE PROCESS OR	FUEL BURNING SOL	RCE DESCRIPTION	1 ON (APC 21)		
5. NORMAL	HOURS/DA		DAYS/WEEK	WEEK/YEAR	· · · · · · · · · · · · · · · · · · ·	DAYS/YEAR		
OPERATION:	24		7	52		365		
6. PERCENT ANNUAL	DECFEB.		MARCH-MAY	TINNEY AND		ORDER NAME		
THROUGHPUT:	25		25	JUNE-AUG. 25	•	SEPTNOV. 25		
·>				25				
7. STACK OR EMISSION	HEIGHT AB		DIAMETER	TEMPERATURE	% OF TIME	DIRECTION (OF EXIT	
POINT DATA:	GRADE (F	Γ)	(FT)	(°F)	OVER 125°F	(UP, DOWN OR		
>	22.33		2.00	974	100	HORIZONTAL) UP		
DATA AT EXIT	FLOW (ACT	UAL	VELOCITY	MOISTURE	100	MOISTURE		
CONDITIONS:	FT ³ /MIN.)		(FT/SEC)	(GRAINS/FT ³)		(PERCENT)		
	30,493		161.77	187		5.93 vol%		
DATA AT STANDARD	ET OW/ODX	r nanko	LUCY COUTY	1 to long the ra		1.010.000.00		
CONDITIONS:	FLOW (DRY FT³/MIN)	810.	VELOCITY (FT/SEC)	MOISTURE (GRAINS/FT³)		MOISTURE (PERCENT)		
	10,183		54.02 (dry)	0 (dry)		0.00 vol% (dr)	/)	
\rightarrow								
8. AIR CONTAMINANTS			TUAL EMISSIONS					
	AVG.	S (LBS/HR) MAXIMUM	CONCENTRATION	AVG, (TONS/YR)	EMISSIONS*	CONTROL	CONTROL	
PARTICULATES	AVG.	MAXIMUM	**	(TONS/TK)	EST.	DEVICES*	EFFICIENCY%	
THE TEODETTEO	0.11	0.12		0.47	3	000	0	
SULFUR			***					
DIOXIDE	0.06	0.06		0.24	3	000	0	
CARBON MONOXIDE	3,55	11.67	PPMVD at 15% O2	15.52	r.	000		
ORGANIC	5,55	11.07	PPMVD at 15% O2	15.53	5	000	0	
COMPOUNDS	0.03	0.47	111111011111111111111111111111111111111	0.14	5	000	0	
NITROGEN			PPMVD at 15% O2		·····			
OXIDES	4.69	4.84		20.54	5	000	0	
FLUORIDES		-					}	
OTHER(SPECIFY)								
·						000	0	
OTHER(SPECIFY)		_						
Formaldehyde	0.01	0.16		0.05	3	000	0	

9. CHECK TYPES OF MONITORING AND RECORDING INSTRUMENTS THAT ARE ATTACHED: OPACITY MONITOR (), SO2 MONITOR (), NOX MONITOR (), OTHER (SPECIFY IN COMMENTS) (X)

10. COMMENTS

Section 7: Stack exhaust data is based on manufacturer's data at an average annual ambient temperature of 59.10°F (see Table A-1).

Section 8: Emissions data is based on calculations that are documented in Tables A-2.

Section 9: Monitoring or recordkeeping should be necessary to document compliance with the terms and condition of the permit. Monthly fuel consumption records and 12-month running total fuel consumption records should be sufficient.

The turbine is subject to NSPS, Subpart GG. Performance testing was conducted on November 20, 1996 in accordance with the applicable requirements of NSPS, Subparts A and GG. The turbine complies with the NSPS, Subpart GG nitrogen and sulfur monitoring requirements in accordance with §§60.334(h)(2) and 60.334(h)(3), respectively.

11. SIGNATURE

Thomas V. Wooden, Vice President

Thomas V. Wooden, Vice President

Thomas V. Wooden, Vice President

- * REFER TO THE BACK OF THE PERMIT APPLICATION FORM FOR ESTIMATION METHOD AND CONTROL DEVICE CODES.
- ** EXIT GAS PARTICULATE CONCENTRATION UNITS: PROCESS GRAINS/DRY STANDARD FT3 (70°F); WOOD FIRED BOILERS GRAINS/DRY STANDARD FT3 (70°F); ALL OTHER BOILERS LBS/MILLION BTU HEAT INPUT.
- *** EXIT GAS SULFUR DIOXIDE CONCENTRATIONS UNITS: PROCESS PPM BY VOLUME, DRY BASES; BOILERS LBS/MILLION BTU HEAT INPUT.

EMISSION CALCULATIONS

East Tennessee Natural Gas Company Station 3110 (Wartburg Compressor Station) Turbine Manufacturer's Operating and Nominal Emissions Data for Saturn T-1360

	Parameters		***************************************			Va	ues		*******	
Ambient ²	Temperature	ok .	0.00	20.00	26.50	40.00	59.10	60.00	80.00	100.00
ĺ	Elevation	ft	1,310	1,310	1,310	1,310	1,310	1,310	1,310	1,310
	Pressure	psia	14.02	14.02	14.02	14.02	14.02	14.02	14.02	14.02
	Relative Humidity	%	60	60	60	60	60	60	60	60
	Specific Humidity	lb _{H2O} /lb _{Dry Air}	0.0006	0.0015	0.0021	0.0033	0.0068	0.0070	0.0139	0.0266
Fuel ³	Lower Heating Value (LHV)	BTU/scf	939.2	939.2	939.2	939.2	939.2	939.2	939.2	939.2
	Higher Heating Value (HHV)	BTU/scf	1,043.6	1,043.6	1,043.6	1,043.6	1,043.6	1,043.6	1,043.6	1,043.6
Turbine	Elevation Loss	hp	87	. 77	76	73.	69	69	64	58
	Inlet Loss	in _{H2O}	3	3	3	3	3	3.	3	3
		hp	23	22	22	21	20	20	- 19	18
!	Exhaust loss	in _{H2O}	4	4	4	4	4	4	4	4
į		hp	13	13	13	13	13	13	13	12
	Off-Optimum NPT Loss	hp	53	50	48	45	39	39	31	22
	Net Output Power	hp	1,466	1,420	1,403	1,369	1,313	1,310	1,234	1,130
	Heat Input at LHV	MMBTU/hr	16.30	15.82	15.65	15.30	14.78	14.75	14.13	13.36
	Heat Rate at LHV	BTU/hp-hr	11,119	11,135	11,152	11,177	11,256	11,260	11,452	11,822
	Heat Input at HHV	MMBTU/hr	18.11	17.58	17.39	17.00	16.42	16.39	15.70	14.84
	Heat Rate at HHV Fuel Consumption	BTU/hp-hr MMscf/hr	12,354 0.017	12,379 0.017	12,391	12,419	12,507	12,511	12,724	13,137
Exhaust		oE MHARSCIAIL			0.017	0.016	0.016	0.016	0.015	0.014
Exnaust	Temperature Water Fraction	vol%	890 5.03%	907	912	922	938	939	954	968
	Non-Water Fraction	vol%		5.15%	5.24%	5.42%	5.93%	5,95%	6.95%	8.71%
	O ₂ Content		94.97%	94.85%	94.76%	94.58%	94.07%	94.05%	93.05%	91.29%
		vol% (dry)	16.20%	16.20%	16.20%	16.21%	16.21%	16.21%	16.22%	16.24%
	Molecular Weight Flow Rate	lb/lb-mol	28.65	28.63	28.62	28.60	28.54	28.54	28.43	28.23
	riow Rate	lb/hr scfm	53,701	52,119	51,586	50,479	48,791	48,711	46,733	44,379
		acfm	11,859 32,302	11,515 31,751	11,401 31,551	11,165 31,136	10,813 30,493	10,796 30,463	10,399 29,654	9,944 28,639
NO _x Emiss	sions	lb/lb-mol	46.01	46.01	46.01	46.01	30,493 46.01	46.01	46.01	46.01
TOX Elines	AOAO	ppmvd, 15% O ₂	74.16	77.92	78.67	80.22	79.72	79.70	74.45	62.58
		ppmvw	56.11	58.88	59.34	60.31	59.62	59.59	54.95	45.12
		lb/hr	4.84	4.93	4.92	4.90	4.69	4.68	4.16	3.26
		lb/MMBTU at LHV	0.297	0.312	0.314	0.320	0.317	0.317	0.294	0.244
		lb/MMBTU at HHV	0.267	0.281	0.283	0.288	0.286	0.285	0.265	0.220
CO Emissio	ons	lb/lb-mol	28.01	28.01	28.01	28.01	28.01	28.01	28.01	28.0
		ppmvd, 15% O ₂	293.88	226.84	205.08	159.89	99.05	96.17	96.86	98.10
		ppmvw	222.33	171.40	154.71	120.21	74.07	71.90	71.49	70.73
		lb/hr	11.67	8.74	7.81	5.94	3.55	3,44	3.29	3.11
		lb/MMBTU at LHV	0.716	0.552	0.499	0.388	0.240	0.233	0.233	0.233
		Jb/MMBTU at HHV	0.644	0.497	0.449	0.350	0.216	0.210	0.210	0.210
THC Emiss	sions	lb/lb-mol	16.80	16.80	16.80	16.80	16.80	16.80	16.80	16.80
		ppmvd, 15% O ₂	7.86	7.88	7.91	7.96	7.96	8.03	8.15	8.42
		ppmvw	5.95	5.96	5.97	5.98	5.95	6.00	6.01	6.0
		lb/hr	0.19	0.18	0.18	0.18	0.17	0.17	0.17	0.16
		lb/MMBTU at LHV	0.011	0.012	0.012	0.012	0.012	0.012	0,012	0.012
		lb/MMBTU at HHV	0.011	0.012	0.012		0.012	0.012	0.012	0.012

^{1.} Operating and emissions data was provided by the turbine manufacturer (Solar Turbines, Inc.) for the following ambient temperatures: 0°F, 20°F, 40°F, 60°F and 80°F. Data for 26.5°F and 59.1°F are interpolated from the manufacturer's data. An ambient temperature of 26.5°F corresponds to the lowest monthly daily minimum ambient temperature and 59.1°F corresponds to average annual ambient temperature as obtained from USEPA's TANKS 4.0 program for Nashville, TN.

^{2.} Ambient pressure and humidity are values assumed by the turbine manufacturer to be representative. Emissions are affected by the values used; however, it is believed that the affect is minimal.

^{3.} The heating value of the natural gas used to fuel the turbine will vary. However, it is believed that any variation would have a minimal affect.

	-	TABLE A-2 as-Fired Turbine Annual Emission	•		
Source			Wartburg		
Unit			3110-01:3111-03		
Туре			turbine		
Make			Solar		
Model			T-1360		
Fuel			Natural Gas		
Fuel Higher Heating Value (HHV)	1,020 BTU/scf			1,020 BTU/scf	
Ambient Temperature	59 °F			0 °F	
Power Output	1,313 bhp (mech.)			1,466 bhp (mech.)	the state of the same
Heat Rate at HHV	979 kW (elec.)			1,093 kW (elec.)	
Operating Hours	12,507 BTU/hp-hr			12,354 BTU/hp-hr	
Operating mours	8,760 hrs/yr			17757 0-	
Fuel Consumption	16,095 scfh			17,756 scfh	
	140.995 MMscf/yr			10 11 1414777177	
Heat Input at HHV	16.42 MMBTU/hr 143,815 MMBTU/yı		Max. Annual	18.11 MMBTU/hr	
NO _X	291.32 lb/MMscf	4,6889 lb/hr		272.49 lb/MMscf	Max. Hourly
CO			20.5375 tpy		4.8385 lb/hr
	220.35 lb/MMscf	3.5465 lb/hr	15.5338 tpy	657.38 lb/MMscf	11.6727 lb/hr
SO ₂	3.47 lb/MMscf	0.0558 lb/hr	0.2445 tpy	3.47 lb/MMscf	0.0616 lb/hr
PM_{10}	6.73 lb/MMscf	0.1084 lb/hr	0.4746 tpy	6.73 lb/MMscf	0.1195 lb/hr
TOC (Total)	10.62 lb/MMscf	0.1709 lb/hr	0.7487 tpy	10.55 lb/MMscf	0.1873 lb/hr
Methane	8.30 lb/MMscf	0.1336 lb/hr	0.5854 tpy	8.25 lb/MMscf	0.1464 lb/hr
Ethane	0.29 lb/MMscf	0.0047 lb/hr	0.0204 tpy	0.29 lb/MMscf	0.0051 lb/hr
VOC (Total)	2.03 lb/MMscf	0.0326 lb/hr	0.1429 tpy	2.01 lb/MMscf	0.0358 lb/hr
HAP (Total)	0.99 lb/MMscf	0.0160 lb/hr	0.0699 tpy	0.99 lb/MMscf	0.0175 lb/hr
Acetaldehyde	3.86E-02 lb/MMscf	0.0006 lb/hr	0.0027 tpy	3.84E-02 lb/MMscf	0.0007 lb/hr
Acrolein	6.18E-03 lb/MMscf	0.0001 lb/hr	0.0004 tpy	6.14E-03 lb/MMscf	0.0001 lb/hr
Benzene	1.16E-02 lb/MMscf	0.0002 lb/hr	0.0008 tpy	1.15E-02 lb/MMscf	0.0002 lb/hr
Butadiene (1,3-)	4.15E-04 lb/MMscf	0.0000 lb/hr	0.0000 tpy	4.12E-04 lb/MMscf	0.0000 lb/hr
Ethylbenzene	3.09E-02 lb/MMscf	0.0005 lb/hr	0.0022 tpy	3.07E-02 lb/MMscf	0.0005 lb/hr
Formaldehyde	6.86E-01 lb/MMscf	0.0110 lb/hr	0.0483 tpy	6.81E-01 lb/MMscf	0.0121 lb/hr
Naphthalene	1.26E-03 lb/MMscf	0.0000 lb/hr	0.0001 tpy	1.25E-03 lb/MMscf	0.0000 lb/hr
РАН	2.12E-03 lb/MMscf	0.0000 lb/hr	0.0001 tpy	2.11E-03 lb/MMscf	0.0000 lb/hr
Propylene Oxide	2.80E-02 lb/MMscf	0.0005 lb/hr	0.0020 tpy	2.78E-02 lb/MMscf	0.0005 lb/hr
Toluene	1.26E-01 lb/MMscf	0.0020 lb/hr	0.0088 tpy	1.25E-01 lb/MMscf	0.0022 lb/hr
Xylenes	6.18E-02 lb/MMscf	0.0010 lb/hr	0.0044 tpy	6.14E-02 lb/MMscf	0.0011 lb/hr

- 1. Fuel higher heating value selected to correspond to AP-42 emissions factors, but representative of gas in Tennessee.
- 2. Manufacturer provided data on: power output, heat rate, along with NOx, CO, and UHC (or TOC) emissions.
- 3. The average annual temperature for Nashville, TN (59°F) was extracted from USEPA's TANKS program and 55°F is used as the temperature appropriate for estimating annual emissions. A temperature of 0°F is used to estimate maximum hourly emissions.

NOTES

- 4. With the exception of NOx, CO, TOC, and TAPs, emissions based data provided in Table 3.1-1 of AP-42 (dated 4/00).
- 5. Speciated TAP emissions based on data provided in Table 3.1-3 of AP-42 (dated 4/00).
- 6. Methane, Ethane, VOC, HAP, and Speciate TAP AP-42 emission factors were scaled based on manufacturer's data for TOC:

 $EF_{Scaled} = (EF_{AP42})(EF_{TOC}/EF_{TOC-AP42})$

TEST DATA REFERENCES

14Y - 1

4

STATE OF TENNESSEE

DEPARTMENT OF ENVIRONMENT AND CONSERVATION 9th Floor, L & C Annex 401 Church Street Nashville, Tennessee 37243-1531

April 28, 1997

Mr. Ted Wurfel Environmental Scientist Tenneco Energy P. O. 2511 1010 Milam Street Houston, Texas 77252-2511

Reference Number: 65-0028-01-S4 (Station 3110)

Dear Mr. Wurfel:

The Tennessee Division of Air Pollution Control has received the gaseous source test report submitted by Tenneco Energy for a Solar Saturn T-1360 gas-fired compressor turbine (Unit operated by East Tennessee Natural Gas and located in Morgan County (Station 3110). This source testing was conducted November 20, 1996 by personnel of the Tenneco Environmental, Health, Safety, and Technology Services. Tenneco to the United States Environmental Protection Agency (EPA) letter dated September 19, 1996, compliance testing could be waived for of the three gas turbines that make up this fuel burning one of the turbines was determined to installation if nitrogen oxides emissions of less than fifty percent of applicable federal emission standard.

The source test report has been reviewed by the Compliance Validation Program. Based on this review it has been determined that the report is technically correct and thus, is acceptable to the agency. From the review of the source test report it was noted that the sampling methodology utilized followed the procedures outlined in EPA Source Test Method 20 (40 CFR 60, Appendix A) and the Tenneco testing protocol dated October 15, 1996.

In the review of the operational parameters presented in the report it was noted that the turbine operated very close to its designed power rating. Specifics of this are listed on Attachment 1 to this letter. Thus, the operation of this turbine was at an acceptable level for an official compliance demonstration.

Mr. Ted Wurfel Tenneco Energy Station 3110 Unit 3A April 28, 1996 page 2 of 3

During the testing period the measured nitrogen oxides emissions from Unit 3A were 55.6 ppm corrected to 15 percent oxygen and ISO standard conditions and 2.8 pounds per hour. The 55.6 ppm of nitrogen oxides corrected to 15 percent oxygen and ISO standard demonstrates compliance with the regulatory nitrogen conditions oxides emission standard of 150 ppm by volume at 15 oxygen and on a dry basis. This standard is set forth Subparagraph 1200-3-16-.31 (3) (a) 2. of the Tennessee Air Pollution Control Regulations (40 CFR 60.332 (a) (2)). This also compliance with the current permit demonstrates stipulated nitrogen oxides emission limit of 84 ppm of nitrogen oxides corrected to 15 percent oxygen (Permit #741853F, Condition In addition the 3.76 pounds per hour of nitrogen demonstrates compliance with the current permit st stipulated nitrogen oxides emission limit of 27.7 pounds per hour the three gas turbines that constitute this fuel burning installation (Permit #741853F, Condition 5).

The measured sulfur concentration value of the fuel being combusted in this turbine, less than one ppm sulfur, demonstrates that this turbine was demonstrating compliance with either the sulfur dioxide emission standard of 150 ppm by volume at 15 percent oxygen and on a dry basis or the maximum fuel sulfur content of 0.8 percent by weight. These standards are set forth in Paragraph 1200-3-16-.31 (4) of the Regulations (40 CFR 60.333). This also demonstrates compliance with the current permit stipulated sulfur dioxide emission limits of four ppm of sulfur dioxide corrected to 15 percent oxygen and on a dry basis and 1.47 pounds per hour (Permit #741853F, Condition 4).

The Division considers that this source test report is acceptable as a demonstration of compliance and from the data presented considers that this turbine has met the stipulated testing requirements and is in compliance with the applicable nitrogen oxides and sulfur dioxide emission standards. In addition, as the nitrogen oxides emission rate was less than fifty percent of the applicable federal emission standard, the testing requirement for the other two turbines located at this fuel burning installation is waived pursuant to the EPA letter dated September 19, 1996.

Mr. Ted Wurfel Tenneco Energy Station 3110 Unit 3A April 28, 1996 page 3 of 3

If you have any questions concerning the matters addressed by this letter, please contact Mr. Jeryl W. Stewart at (615) 532-0605.

Sincerely,

John W. Walton, P.E. Technical Secretary
Tennessee Air Pollution Control Board

attachment - 1

cc: Knoxville Field Office

ATTACHMENT 1

Summary of Turbine Operation

Station 3110 Unit 3A

Test Date November 20, 1996

Turbine 3A heat input during test 13.9 MMBtu/hr

Rated heat input capacity for this turbine 14.45 MMBtu/hr (from April 4, 1994 permit application)

Turbine 3A turbine horsepower during test 1,209 BHP

Rated turbine horsepower for this turbine 1,300 BHP (from April 4, 1994 permit application)

1

TENNEGO Energy

COMPLIANCE TEST REPORT
for
THE SOLAR SATURN TURBINES
at
TENNESSEE GAS PIPELINE STATION 3110
Wartburg, TN

November 25, 1996

Prepared for the

STATE OF TENNESSEE
DEPARTMENT OF HEALTH AND ENVIRONMENT

By

Richard C. Schoonover Research Engineer

TENNECO ENERGY ENVIRONMENTAL, HEALTH, SAFETY AND TECHNICAL SERVICES

> 5510 South Rice Avenue Houston, TX 77081 (713) €62-5335

Emissions Test Report for Compliance Testing at Station 3110 Wartburg, Tennessee

INTRODUCTION

The three Solar Saturn turbines at Station 3110 have been uprated from T-1100 units to T-1360 units. The Environmental, Health, Safety and Technology Services Department of Tenneco Energy conducted testing to determined the exhaust emission rates for oxides of nitrogen (NOx). The corrected NOx emissions level fell below the 75 ppm threshold set by the EPA, thereby allowing the data collected during the compliance test will to be used as representative data for the other two Solar Saturn turbines at the station. The test was conducted in basic accordance with approved Environmental Protection Agency (EPA) test methods as described in the Code of Federal Regulations, Title 40, Part 60, Appendix A and Tenneco Energy's test protocol.

TEST SUMMARY

The results of the emissions compliance test performed on November 20, 1996 at East Tennessee Natural Gas compressor station 3110, in Wartburg, Tennessee are summarized below. The two-minute averages, collected during the test, analyzer calibrations, and certification sheets, are included in the appendices of this report.

Table I:

Run #	Completion Time	Ambient Rated Horsepower	Exhaust Oxygen Content	Corrected NOx ppm Level
1	10:30 am	1,215	16.65%	54.9
2	11:58 am	1,209	16.65%	55,5
3	1:25 pm	1,202	16.65%	56.4
Average		1,208.6	16.65%	55.6

Additionally, a fuel gas sample was collected and analyzed for the overall sulfur content of the gas. The sulfur content of the fuel gas was below 0.0001% by weight. The results of the analysis are listed in the appropriate section of the Appendices.

SECTION I

Summary of Test Results

25

1

EMISSIONS DATA SHEET - TURBANE ROTATING ENGINES	URBINE ROTA	THE ENGINE	60					R. SCHOOMOVER	ŒR		
Shaded rows indicate raw data.	ند							. NOWAK			
	m	e Natural Gas						0.875 h.	e c		
S DEBAT	3110							1033	of the contract of the contrac		
THE TANK TANK	Solar	ften		ARITO IN	AWBIENT	BHP	SALTHU.	E58	ohu/dscf		
DATES	Ç										
	V/20 -	CAA C	2/4/								
786	W 05:01		01.25 PM								
SUCITIONS SANDAGED SANDER	TENNS										
LOKER OF THE COMP	Arc)	1200									
norser and a second		•	ì								
Mary States and	UD THE										
P. SPEED A. H.	417										
10 Jewisers One C	3.03										
A SA	19 16		88.92								ACCOUNT BOX
ARS HIM Grammer B.	39									100	
% i O40	91.5	31,5									
HEAT RATE(BTUMP HR)	10596		2966								
THE STANDARD PARTICINAL AND CALCULATED MASS EMISS	NE AND CALC	IL ATED MASS	EMISSIONS								
The state of the s	38.58	36.66									
NOx a/BHP-HR **	1.075	1.085								1	
NOx LEVHR **	2.881									100000000000000000000000000000000000000	A STANCE OF STANCES CONTROL
Mdd CO	38.57	33,28	32.18								
CO o/BHP-HR **	0.600	0550	0								
COLEMB **	1,607	1.465	1,328							MANAGE WAS A STORY OF THE STORY	000000000000000000000000000000000000000
2074	16.65	9991	:9 9)								
TOTI OU ATED EMISSIONS CONCENTRATIONS	NCENTRATIO	SIN									
*CO2/WETI	2.28										
*coziben *	2.42		2.42						1		
* UCH#	5.81										

214.40 35801 9532 9056

228.80 38206 10172 9664

230.40 38473 10243 9731

CALCUATED FLOWS
FUEL FLOW (SCFM)
EX FLOW (LBAR)
EX FLOW (WSCFM)
AIR FLOW (WSCFM)

13824

^{**} BASED ON FUEL SPECIFIC DRY F-FACTOR CALCULATION ** BASED ON CARBON BALANCE (STOICH. + 02) . A/F IS TOTAL MASS RATIO