From:	Joshua Rhoads
То:	APC Permitting
Cc:	Julie Verissimo
Subject:	Smoglog Help - AESC US LLC (75-0851)
Date:	Monday, October 23, 2023 3:03:57 PM
Attachments:	image001.png Public Version of Application with Engine Data.pdf

Good afternoon,

When you have the opportunity, please update the following in Smoglog:

- 1. Add the emission points from the table below to facility 75-0851
- 2. Create an exempt/insig. activity log for 75-0851, attach points 14 through 24, and upload the attached application to that new permit page.
- 3. Attach point 02 and points 08 through 13 to 75-0851/981359

Point #	Point Description
08	Four (4) Electric Baking Ovens (Stanford)
09	Electrolyte Injection (Stanford)
10	Degassing/Formation (Smyrna LFP)
11	Degassing/Formation (Stanford)
12	Sealers and Adhesives (Smyrna LFP)
13	Sealers and Adhesives (Stanford)
14	Electrode Preparation (Smyrna LFP)
15	Electrode Preparation (Stanford)
16	Stacking/Winding (Smyrna LFP)
17	Stacking/Winding (Stanford)
18	Cell Assembly (Smyrna LFP)
19	Cell Assembly (Stanford)
20	Module and Pack Assembly (Smyrna LFP)
21	Module and Pack Assembly (Stanford)
22	Eleven (11) Natural Gas-fired Dehumidifier Units
23	Twenty-two (22) Natural Gas-fired Air Handling
	Units
24	750 kW Diesel-fired Emergency Generator Set

Let me know if you have any questions.

Thank you, Joshua Rhoads

Joshua Rhoads | Environmental Protection Specialist 2 Air Pollution Control Tennessee Tower, 15th Floor 312 Rosa L Parks Ave., Nashville, TN 37243 p. 615-532-0547 Joshua.Rhoads@tn.gov https://www.tn.gov/environment/program-areas/apc-air-pollution-control-home.html

From:	Air.Pollution Control
То:	APC Permitting
Subject:	FW: Submittal Air Application for Envision AESC US, Emission Source 75-0851
Date:	Tuesday, May 2, 2023 3:44:55 PM
Attachments:	image001.png
	Public Version of Envision Application.pdf

From: John Shipp <JShipp@Ensafe.com>

Sent: Tuesday, May 2, 2023 2:38 PM

To: Air.Pollution Control <Air.Pollution.Control@tn.gov>

Cc: Cross, John <John.Cross@envision-aesc.com>; McIndoo, Logan <Logan.McIndoo@envision-

aesc.com>; Gurel, Jim <Jim.Gurel@envision-aesc.com>; Bry Roberson <broberson@Ensafe.com>;

John Fuss <John.Fuss@tn.gov>; Julie Verissimo <Julie.Verissimo@tn.gov>

Subject: [EXTERNAL] Submittal Air Application for Envision AESC US, Emission Source 75-0851

*** This is an EXTERNAL email. Please exercise caution. DO NOT open attachments or click links from unknown senders or unexpected email - STS-Security. ***

On behalf of Envision AESC US, Emission Source 75-0851 and current permit number 077494, I am submitting the attached public version of an application for the construction of new equipment at the existing facility located at 500 Battery Plant Road, Smyrna Tennessee. A confidential version of the application, along with a Request for Protection Order for Confidential Information form, will be submitted separately in hardcopy.

If you have questions or need additional information, please do not hesitate to contact John Cross at <u>john.cross@envision-aesc.com</u> or (615) 751- 3548 or me at <u>jshipp@ensafe.com</u> or (865) 414-8489.

John Shipp, PE Senior Project Engineer 865-414-8489 cell

creative thinking | custom solutions

April 25, 2023

Michelle Owenby, Director Division of Air Pollution Control Tennessee Department of Environment and Conservation William R. Snodgrass Tennessee Tower, 15th Floor 312 Rosa L. Parks Avenue Nashville, TN 37243

RE: Application for Modification of Air Permit No. 077494, Emission Source Reference No. 75-0851

Ms. Owenby:

Envision AESC US LLC (Envision) is submitting the attached application to the Division of Air Pollution Control (Division) to modify its existing electric vehicle battery manufacturing plant located at 500 Battery Plant Road, Smyrna, Tennessee (existing Permit No. 077494). Envision proposes to add twenty-five additional processes, some of which are similar to the existing processes at the plant. The new processes will allow Envision to produce different type batteries than those currently being produced at the Smyrna plant.

Envision is requesting some of the information in the application be protected as business confidential information. Accordingly, a public (redacted) version of the application is being submitted electronically to <u>Air.Pollution.Control@tn.gov</u>, while a confidential version of the application, along with a Request for Protection Order for Confidential Information (Form CN-1060), is being submitted in hardcopy to the Division.

If you have any questions concerning our application or if you need additional information, please contact John Cross at John.Cross@envision-aesc.com or (615) 751-3548.

Jeff Deaton

Managing Director

Attachment

AIR PERMIT MODIFICATION APPLICATION

Envision AESC US Smyrna, Tennessee

EnSafe Project Number 0888834830

Envision AESC US Smyrna, Tennessee

April 2023

220 Athens Way, Suite 410 Nashville, Tennessee 37228 615-255-9300 | 800-588-7962 www.ensafe.com

creative thinking. custom solutions. ®

ENSAFE

PROJECT DESCRIPTION

Envision AESC US LLC (Envision) proposes a modification to its existing electric vehicle battery manufacturing plant located at 500 Battery Plant Road, Smyrna, Tennessee. Envision is a world-leading battery technology company headquartered in Japan which is committed to research, development, design, manufacture, and sales of high-power batteries and energy-storage batteries. Envision proposes to add twenty-five additional processes, some of which are similar to existing processes at the plant. The new processes will allow Envision to produce different type batteries than those currently being produced at the Smyrna plant. Eventually, most of the existing process equipment will be removed and replaced by the new process equipment.

The new process equipment will be installed in two phases. The first phase is designated Smyrna LFP and the second phase is designated Stanford. During a period of transition, some of the existing process equipment and some new process equipment will be operated at the same time. Figures 1, 2, and 3 show the current process layout, the Phase 1 process layout, and the Phase 2 (which will be the final) process layout, respectively.

Following is a brief description of the new processes proposed for the facility:

Electrode Preparation

Preparation of the electrode material involves compressing the electrode rolls using a series of rollers and dryers. Emissions from this process are controlled using air filters.

Stacking

Sheets of electrode material are fully cut and stacked during this process. Cutting the electrode sheets causes trace amounts of material to become airborne. Emissions are controlled using dust collection systems.

Stack Inspection

Electrode stacks are inspected in an X-ray chamber for proper alignment. For proper inspection, dust is collected from within the chamber and the discharge air is filtered.

Assembly Line

Tab material is prepared for welding by cutting. Tabs are welded. Cutting and welding of the tab materials leads to trace amounts of the tab materials being released (PM). Emissions will be controlled by dust collectors. Top caps are welded. This welding leads to trace amounts of cap materials (PM) being released. Emissions will be controlled by dust collectors.

ENS/IFE

Baking

Cell units are baked to remove any remaining humidity within the cells. Emissions from baking are captured via vacuum pump and treated by activated carbon adsorption.

1st Injection and 2nd Injection

Electrolyte is injected into cells during these processes. During injection, emissions from the electrolyte can become airborne. Emissions are controlled using activated carbon adsorption.

Case Seal Welding

Sealing pin welding results in trace amounts of pin material being emitted. Emissions are controlled using dust collection systems.

Formation

Electrolyte vapors are off-gassed from the cells during this process. These vapors are captured using vacuum pumps and controlled using activated carbon adsorption.

Side Plate Gluing and Welding

Thermal glue is applied to the modules for strengthening the overall structure and for inclusion of thermistors for temperature regulation. Side Plates are welded to the cells. This gluing and welding leads to trace amounts of plate material being emitted. Emissions are controlled using dust collection systems.

Busbar Welding and Gluing

Busbar welding results in trace amounts of busbar material being emitted. Emissions are controlled using dust collection systems. Adhesive is also applied during busbar welding to improve adhesion and strength. Excess adhesive is collected and properly disposed of.

Electrode Notching

Anode and Cathode sheets are perforated using a laser to improve cutting conditions in later processes. Notching causes trace amounts of Anode and cathode material to become airborne. Emissions are controlled using dust collection systems.

ENS/IFE

EMISSIONS SUMMARY

Tables 1 summarizes the existing emissions from both permitted and insignificant emission sources and the proposed potential emissions from the new process equipment.

			Table 1 ions Summ	ary					
Emission Courses	PM	SO ₂	NO _x	со	VOC	НАР	GHG as CO2e		
Emission Source Number/Name	(TPY)	(TPY)	(TPY)	(TPY)	(TPY)	(TPY)	(TPY)		
Emissions from Existing Sources (Permitted and Insignificant)									
75-0851-01 — Electrolyte Filling and Degassing					32.0				
75-0851-02 — Sealers and Adhesives					40.7				
75-0851-03 — Natural Gas Fuel Burning Sources	1.0	8.0E-02	12.5	10.5	0.7	0.2	16,007		
75-0851-04 — Emergency Generators	4.8E-02	3.0E-03	1.5	0.8	0.1	8.5E-03	320		
Slitting (Insignificant)	1.0E-03								
Roll Drying (Insignificant)					0.7				
Stacking (Insignificant)					2.3				
Cooling Towers (Insignificant)	3.5								
Battery Case Weld (Insignificant)	0.1								
Existing Totals	4.5	8.3E-02	14.0	11.3	76.5	0.2	16,327		
	Potenti	al Emissions	from Propo	sed New So	urces				
75-0851-03 — Natural Gas Fuel Burning Sources	0.1	7.4E-03	1.2	1.0	0.1	2.3E-02	1,481		
75-0851-04 — Emergency Generators	1.1E-02	2.8E-03	2.9	0.1	1.7E-02	8.0E-03	303		
75-0851-05 — Stacking — LFP	0.8					0.1			
Smyrna 75-0851-06 — Electrolyte					1.4	0.8	24		
Injection – LFP Smyrna Electrode Preparation, Anode					1.4	0.0	24		
Calendering — LFP Smyrna (Insignificant)	1.9								
Transfer from Stacking to Inspection — LFP Smyrna (Insignificant)	0.4					0.1			
Stack Inspection — LFP Smyrna (Insignificant)	0.6					0.1			
Assembly — LFP Smyrna (Insignificant)	0.2								
Baking — LFP Smyrna (Insignificant)					0.4	4.7E-02	1.5		
Case Seal Welding — LFP Smyrna (Insignificant)	3.1E-02								
Formation – LFP Smyrna (Insignificant)					0.5	0.3	8.5		
Side Plate Gluing — LFP Smyrna (Insignificant)					2.1E-02	1.2E-02	0.4		
Side Plate Welding — LFP Smyrna (Insignificant)	6.4E-03								

			Table 1 ions Summ	ary					
Emission Source	РМ	SO ₂	NO _x	со	VOC	HAP	GHG as CO2e		
Number/Name	(TPY)	(TPY)	(TPY)	(TPY)	(TPY)	(TPY)	(TPY)		
Emissions from Existing Sources (Permitted and Insignificant)									
Busbar Welding — LFP Smyrna (Insignificant)	1.9E-02					6.4E-03			
Busbar Gluing — LFP Smyrna (Insignificant)					1.4E-02	8.3E-03	0.2		
Electrode Preparation, Cathode Slitter — Stanford (Insignificant)	0.4					9.0E-02			
Electrode Preparation, Anode Slitter — Stanford (Insignificant)	0.2								
Electrode Notching, Cathode — Stanford (Insignificant)	0.4					9.0E-02			
Electrode Notching, Anode — Stanford (Insignificant)	0.2								
Stacking — Stanford (Insignificant)	1.8					0.3			
Transfer from Stacking to Inspection — Stanford (Insignificant)	0.4					0.1			
Stack Inspection — Stanford (Insignificant)	0.6					0.1			
Assembly — Stanford (Insignificant)	0.2								
Baking — Stanford (Insignificant)					1.1E-02	1.3E-03	4.1E-02		
Electrolyte Injection — Stanford (Insignificant)					0.8	0.5	12.9		
Electrolyte Injection, Degas — Stanford (Insignificant)					4.6E-02	2.7E-02	0.8		
Side Plate Gluing — Stanford (Insignificant)					0.3	0.2	4.9		
Busbar Welding — Stanford (Insignificant)	1.9E-02					6.4E-03			
Diesel Storage Tank (Insignificant)					7.0E-04				
Totals from New Sources	8.3	1.0E-02	4.1	1.1	3.6	2.9	1,837		
Facility-Wide Totals After Modification	12.8	9.3E-02	18.1	12.4	80.1	3.1	18,164		

Notes:

1. Potential emissions from proposed new sources are controlled emissions for permitted sources and uncontrolled emissions for insignificant emissions units. Actual emissions from most uncontrolled emissions units will be lower.

PM	=	particulate matter
SO2	=	sulfur dioxide
NOV	_	nitrogon ovidos

- nitrogen oxides carbon dioxide NOx =
- CO =
- volatile organic compound Hazardous Air Pollutant VOC =
- HAP = GHG greenhouse gas =
- carbon dioxide equivalent CO2e =

Appendix A includes the required air permit application forms, and Appendix B includes the supporting emission calculations. Appendix C provides the safety data sheets for the materials used in the production process. Individual process flow diagrams are provided in Appendix D.

Appendix A Application Forms

NON-TITLE V PERMIT APPLICATION FACILITY IDENTIFICATION

Type or print and submit. Attach appropriate source description forms.							
		SITE	INFO	ORMATION			
1. Organization's legal n	ame and SOS c	ontrol n	umb	er [as registe	ered with the TN	Secretary of State (SOS)]	
Envision AESC US LLC, 0009	93842						
2. Site name (if different t	from legal name	e)					
3. Is a construction perm (see instructions for ap			g su	bmitted?	Yes 🖌 No		
4. Site address (St./Rd./H	wy.)					County name	
500 Battery Plant Road						Rutherford	
City			Zip	code		5. NAICS or SIC code	
Smyrna			3716	67		NAICS 335912	
6. Site location	atitude				Longitude		
(in lat. /long.) 3	5°57′38.3″N				86°28′58.1″W		
	CONTACT INFORMATION (RESPONSIBLE PERSON)						
7. Responsible person/A	uthorized cont	act			Phone number with area code		
Jeff Deaton					(615) 751-3539		
Mailing address (St./Ro	d./Hwy.)				Fax number with area code		
500 Battery Plant Road				NA			
City		State Zip code		Email address			
Smyrna		TN		37167	jeff.deaton@envision-aesc.com		
	CONT	ACT INF	ORM	ATION (TEC	HNICAL)		
8. Principal technical con Kimberly Cloyd	ntact				Phone numbe (615) 751-333	er with area code 8	
Mailing address (St./Ro	d./Hwy.)				Fax number with area code		
500 Battery Plant Road					NA		
City		State		Zip code	Email address	Email address	
Smyrna		TN		37167	kimberly.cloyo	d@envision-aesc.com	
	CON	ITACT IN	IFOR	MATION (BI	-		
9. Billing contact						er with area code	
Kimberly Cloyd					(615) 751-333	8	
Mailing address (St./Ro	d./Hwy.)				Fax number v	vith area code	
500 Battery Plant Road					NA		
City		State		Zip code	Email address	5	
Smyrna		TN		37167	kimberly.cloyo	d@envision-aesc.com	

AIR CONTAMINANT SOURCE(S) INFORMATION

10.	Description of air contaminant source(s) and Unique Source ID(s). List, identify, and briefly describe
	process emission sources, fuel burning installations, and incinerators that are contained in this application
	and include a Unique Source ID for each source. The Unique Source ID is a name/number/letter, which
	uniquely identifies the air contaminant source(s), like Boiler #1, Paint Line #1, Engine #1, etc. (see
	instructions for more details)

75-0851-03 - Natural Gas Fuel Burning Sources (Existing Source) -- Requst the addition of two new dehumidification units.

75-0851-04 - Reciprocating Internal Combustion Engines with Generators (Existing Source) -- Request the addition of one 750 kW emergency generator.

75-0851-05 - Stacking LFP Smyrna (New Source) -- Sheets of electrode material are fully cut and stacked during this process. Cutting the electrode sheets causes trace amounts of material to become airborne. Emissions will be controlled using dust collection systems.

75-0851-06 - Electrolyte Injection Areas 1 and 2 (New Source) -- Electrolyte is injected into cells during these processes. During injection, emissions from the electrolyte can become airborne. Emissions will be controlled using activated carbon adsorption. The electrolyte used in the process is different from the electrolyte used in existing Source 01.

In addition, twenty one (21) Insignificant Emissions Units/Activites listed in the Comments section are proposed for installation and are exempt from permitting in accordance with TAPCR 1200-03-09-.04(4). Emission calculations for all proposed permitted and insignificant sources are included with this application.

11. Is the air cont	11. Is the air contaminant source(s) in a nonattainment area? If "Yes", then minor source BACT must be						
addressed. Y	es No						
Γ							
12. Normal	Hours/Day	Days/Weel	(Weeks/Year	Days/Year		
operation:	24	7	x	52	365		
13. Percent annua	l Dec. – Feb.	March – M	ау	June – August	Sept. – Nov.		
throughput	25	25		25	25		
	TYPE OF PERMI	T REQUESTE	D (check a	ppropriate box)			
14. Operating permit	Date construction sta				o change (if applicable)		
	Last permit number(s	Last permit number(s)			Number(s)		
Construction	Last permit number(s	5)	Emissi	Emission Source Reference Number(s)			
permit L	077494		75-085	75-0851-01, 75-0851-02, 75-0851-03, and 75-0851-04			
If you chose Const	ruction permit above, ther	n choose eith	er New Cor	nstruction, Modificatio	on, or Location Transfer		
New Construction	Starting date		Completi	on date			
\checkmark	August 1, 2023		March 20)26			
Modification	Date modification started	or will start	Date com	pleted or will comple	te		
Location Transfer	Transfer date		Address o	of last location			

15.	Describe changes that have been made to this equipment or operation(s) since the last construction
	or operating permit application:

None

16. Comments

The following emission units/activities have been identified as being insignificant and/or otherwise eligible for exemption to permitting: Electrode Preparation - LFP Smyrna Transfer from Stacking to Inspection - LFP Smyrna Stack Inspection - LFP Smyrna Assembly Line - LFP Smyrna Baking - LFP Smyrna Case Seal Welding - LFP Smyrna Formation - LFP Smyrna Side Plate Gluing and Welding - LFP Smyrna Busbar Gluing and Welding - LFP Smyrna Electrode Preparation - Stanford Notching Cathode - Stanford Notching Anode - Stanford Stacking - Stanford Transfer from Stacking to Inspection - Stanford Stack Inspection - Stanford Assembly - Stanford Baking - Stanford Electrolyte Injection and Degas - Stanford Side Plate Gluing - Stanford **Busbar Welding - Stanford Diesel Storage Tank** SIGNATURE Based upon information and belief formed after a reasonable inquiry, I, as the responsible person of the above mentioned facility, certify that the information contained in this application is accurate and true to the best of my knowledge. As specified in TCA Section 39-16-702(a)(4), this declaration is made under penalty of perjury. **17. Signature** (application must be signed before it will be processed) Date Jular

The		4/26/2023
Signer's name (type or print)	Title	Phone number with area code
Jeff Deaton	Managing Director	(615) 751-3539

64

NON-TITLE V PERMIT APPLICATION EMISSION POINT DESCRIPTION

Type or print and submit for each stack or air contaminant source. Submit with the APC 100.

GENERAL IDENTIFICATION AND DESCRIPTION

1. Organization's legal name and SOS control number [as registered with the TN Secretary of State (SOS)] Envision AESC US LLC, 000993842

2. Unique Source ID (name/number/letter which uniquely identifies this air contaminant source, like Boiler #1) 75-0851-03 - Natural Gas Fuel Burning Sources

3. Unique Emission Point ID (name/number/letter which uniquely identifies this emission point, like Stack #1) DH10 - DH11

4. Brief description of air contaminant source (Attach a diagram if appropriate):

Two additional dehumidifiers similar to DH3-DH4, and DH7-DH9.

5. Emission poi location	nt	Latitude 35°57'38.3	"N	Longitude 86°28′58.1″W		6. Dis	est property line (Ft.)	
				STACK AND EMIS	SION DA	TA	ŝ.	1
7. Stack or emission point data: →		eight above it.) 3D	grade	Diameter (Ft.) TBD	Tempe (°F) TBD	rature	% of time over 125°F TBD	Direction of exit (Up down or horizontal) TBD
Data at exit conditions: →	FI TE	ow (actual I 3D	⁻ t. ³ /Min.)	Velocity (Ft. /Sec. TBD	.)	Moistu	ire (Grains/Ft. ³)	Moisture (Percent TBD
Data at standard conditions: →	FI TE	ow (Dry std 3D	. Ft. ³ /Min.)	Velocity (Ft. /Sec. TBD)	Moistu	ıre (Grains/Ft. ³)	Moisture (Percent TBD
-			-	ument (check all	-		Other (creati	if No monitor
Opacity monitor		50 ₂ nonitor	NO _x monitor	Strip chart	Electro dat <u>a lo</u>		Other (speci in comment	5
	ts.	Include ope	rating parar	neters of control of	•	•		sure compliance with ressure drop, etc.).

10. Air contaminants. Emission estimates for each air contaminant emitted from this point should be based on stack sampling results or engineering calculations. Calculations should be attached on a separate sheet. (see instructions for more details)

instructions for	more details	5)						
Air contaminants	Average Emissions (Lbs./Hr.)	Maximum Emissions (Lbs./Hr.)	Concen- tration	Average Emissions (Ton/Yr.)	Potential Emissions (Ton/Yr.)	Emissions Estimation Method Code *	Control Devices *	Control Effi- ciency %
Particulate matter (PM)	0.02	0.02	**	0.1	0.1	3	000	NA
Sulfur dioxide (SO ₂)	0.002	0.002	***	0.007	0.007	3	000	NA
Carbon monoxide (CO)	0.24	0.24	PPM	1.0	1.0	3	000	NA
Volatile organic compounds (VOC)	0.02	0.02	PPM	0.1	0.1	3	000	NA
Nitrogen oxides (NO _X)	0.28	0.28	PPM	1.2	1.2	3	000	NA
Hydrogen fluoride (HF)								
Hydrogen chloride (HCl)								
Lead (Pb)								
Greenhouse gases (CO ₂ equivalents)	338	338		1,481	1,481	3	000	NA
Hazardous air pollutant (specify) Total	0.01	0.01		0.02	0.02	3	000	NA
Hazardous air pollutant (specify) Hexane	0.01	0.01		0.02	0.02	3	000	NA
Hazardous air pollutant (specify)								
Hazardous air pollutant (specify)								
Hazardous air pollutant (specify)								
Other (specify)								
Other (specify)								
Other (specify)								
Other (specify)								

	SIGNATURE	
If this form is being submitted at the same t		n a signature is not required on this form.
Date this form regardless of whether a signa	ature is provided. If this form	n is NOT being submitted at the same time
as an APC 100 form, then a signature is requ	iired.	
Based upon information and belief formed a		
mentioned facility, certify that the information		
knowledge. As specified in TCA Section 39-10	6-702(a)(4), this declaration is	s made under penalty of perjury.
12. Signature		Date
Signer's name (type or print)	Title	Phone number with area code
Jeff Deaton	Managing Director	(615) 751-3539
* Refer to the tables in the instructions for	r estimation method and co	ntrol device codes.

** Exit gas particulate matter concentration units: Process – Grains/Dry Standard Ft³ (70°F), Wood fired boilers – Grains/Dry Standard Ft³ (70°F), all other boilers – Lbs. /Million BTU heat input.

*** Exit gas sulfur dioxide concentrations units: Process – PPM by volume, dry bases, and boilers – Lbs. /Million BTU heat input

APC 101

NON-TITLE V PERMIT APPLICATION EMISSION POINT DESCRIPTION

Type or print and submit for each stack or air contaminant source. Submit with the APC 100.

GENERAL IDENTIFICATION AND DESCRIPTION

1. Organization's legal name and SOS control number [as registered with the TN Secretary of State (SOS)] Envision AESC US LLC, 000993842

2. Unique Source ID (name/number/letter which uniquely identifies this air contaminant source, like Boiler #1) 75-0851-04 - Reciprocating Internal Combustion Engines with Generators

3. Unique Emission Point ID (name/number/letter which uniquely identifies this emission point, like Stack #1) Generator 3

4. Brief description of air contaminant source (Attach a diagram if appropriate):

750 kW Caterpillar C27 diesel-fired emergency generator

5. Emission poir location	1t Latitude 35°57′38.3	3″N	Longitude 86°28′58.1″W		6. Dis	st property line (Ft.) et	
		:	STACK AND EMIS	SION DA	TA		
7. Stack or emission point data: →	Height abov (Ft.) ~ 7.5		Diameter (Ft.) 0.5	Tempe (°F) 949	rature	% of time over 125°F 100	Direction of exit (Up, down or horizontal) Horizontal
Data at exit conditions: →	Flow (actual 5,610	-	Velocity (Ft. /Sec. 477)	Moistu	ıre (Grains/Ft. ³)	Moisture (Percent) 10.0
Data at standard conditions: →	Flow (Dry sto 4,884	d. Ft. ³ /Min.)	Velocity (Ft. /Sec. 415)	Moistu	ıre (Grains/Ft. ³)	Moisture (Percent) 0.0
Opacity monitor	SO ₂ monitor	NO _x monitor	ument (check all Strip chart	Electro dat <u>a l</u>	onic ogger	Other (speci in comment	s) (none)
	ts. Include op						sure compliance with ressure drop, etc.).

10. Air contaminants. Emission estimates for each air contaminant emitted from this point should be based on stack sampling results or engineering calculations. Calculations should be attached on a separate sheet. (see instructions for more details)

instructions for	more details	5)						
Air contaminants	Average Emissions (Lbs./Hr.)	Maximum Emissions (Lbs./Hr.)	Concen- tration	Average Emissions (Ton/Yr.)	Potential Emissions (Ton/Yr.)	Emissions Estimation Method Code *	Control Devices *	Control Effi- ciency %
Particulate matter (PM)	0.04	0.04	**	0.01	0.01	3	000	NA
Sulfur dioxide (SO ₂)	0.01	0.01	***	0.003	0.003	3	000	NA
Carbon monoxide (CO)	0.55	0.55	PPM	0.1	0.1	3	000	NA
Volatile organic compounds (VOC)	0.07	0.07	PPM	0.02	0.02	3	000	NA
Nitrogen oxides (NO _X)	11.64	11.64	PPM	2.9	2.9	3	000	NA
Hydrogen fluoride (HF)								
Hydrogen chloride (HCl)								
Lead (Pb)								
Greenhouse gases (CO ₂ equivalents)	1,213	1,213		303	303	3	000	NA
Hazardous air pollutant (specify) Total	0.03	0.03		0.008	0.008	3	000	NA
Hazardous air pollutant (specify) Benzene	0.01	0.01		0.001	0.001	3	000	NA
Hazardous air pollutant (specify)								
Hazardous air pollutant (specify)								
Hazardous air pollutant (specify)								
Other (specify)								
Other (specify)								
Other (specify)								
Other (specify)								

	SIGNATURE	
If this form is being submitted at the same t		n a signature is not required on this form.
Date this form regardless of whether a signa	ature is provided. If this form	n is NOT being submitted at the same time
as an APC 100 form, then a signature is requ	iired.	
Based upon information and belief formed a		
mentioned facility, certify that the information		
knowledge. As specified in TCA Section 39-10	6-702(a)(4), this declaration is	s made under penalty of perjury.
12. Signature		Date
Signer's name (type or print)	Title	Phone number with area code
Jeff Deaton	Managing Director	(615) 751-3539
* Refer to the tables in the instructions for	r estimation method and co	ntrol device codes.

** Exit gas particulate matter concentration units: Process – Grains/Dry Standard Ft³ (70°F), Wood fired boilers – Grains/Dry Standard Ft³ (70°F), all other boilers – Lbs. /Million BTU heat input.

*** Exit gas sulfur dioxide concentrations units: Process – PPM by volume, dry bases, and boilers – Lbs. /Million BTU heat input

APC 101

NON-TITLE V PERMIT APPLICATION EMISSION POINT DESCRIPTION

Type or print and submit for each stack or air contaminant source. Submit with the APC 100.

GENERAL IDENTIFICATION AND DESCRIPTION

1. Organization's legal name and SOS control number [as registered with the TN Secretary of State (SOS)] Envision AESC US LLC, 000993842

2. Unique Source ID (name/number/letter which uniquely identifies this air contaminant source, like Boiler #1) 75-0851-05 - **Stacking --** LFP Smyrna

3. Unique Emission Point ID (name/number/letter which uniquely identifies this emission point, like Stack #1) ST1-ST24

4. Brief description of air contaminant source (Attach a diagram if appropriate):

Twenty-four identical Stacking units for cutting and stacking sheets of electrode

material

5. Emission poin location	t	Latitu 35°57	ude 7'38.3"N			Longit 86°28′5			6. Distance to nearest property line (Ft 50 feet			property line (Ft.)
					S	TACK AN	D EMISS	SION DA	TA			
7. Stack or emission point data: →	(F	t.)	above gra uilding	de		Diameter 0.72	(Ft.)	Tempe (°F) 86	rature	% of time over 125°F 0	0	Direction of exit (Up, down or horizontal) nside building
Data at exit conditions: →	18	69 ea		-		Velocity (l 72	Ft. /Sec.))	Moistu	ire (Grains/Ft. ³)		Moisture (Percent) 1.6
Data at standard conditions: →		ow (Di 79 ead	ry std. Ft. ^s ch	/Mir	I	Velocity (Ft. /Sec.) 69		Moisture (Grains/Ft. ³)			Moisture (Percent) 0	
8. Monitoring de					stru			-				
Opacity m <u>onit</u> or		iO ₂ nonito		NO _x noni	tor	Strij c <u>ha</u>		Electro dat <u>a l</u>		Other (speci in comment		No monitor (none)
emission limit	ts. I	nclude	e operatir	ng pa	aram	neters of c	ontrol d	evice (fl	ow rate,	, temperature, p	re	re compliance with ssure drop, etc.). tain a record of the

10. Air contaminants. Emission estimates for each air contaminant emitted from this point should be based on stack sampling results or engineering calculations. Calculations should be attached on a separate sheet. (see instructions for more details)

instructions for	more details	5)						
Air contaminants	Average Emissions (Lbs./Hr.)	Maximum Emissions (Lbs./Hr.)	Concen- tration	Average Emissions (Ton/Yr.)	Potential Emissions (Ton/Yr.)	Emissions Estimation Method Code *	Control Devices *	Control Effi- ciency %
Particulate matter (PM)	0.18	0.18	**	0.8	0.8	1,2	018	99
Sulfur dioxide (SO ₂)			***					
Carbon monoxide (CO)			PPM					
Volatile organic compounds (VOC)			PPM					
Nitrogen oxides (NO _X)			PPM					
Hydrogen fluoride (HF)								
Hydrogen chloride (HCl)								
Lead (Pb)								
Greenhouse gases (CO ₂ equivalents)								
Hazardous air pollutant (specify) Total	0.03	0.03		0.1	0.1	1,2	018	99
Hazardous air pollutant (specify) Phosphorus	<0.03	<0.03		<0.1	<0.1	1,2	018	99
Hazardous air pollutant (specify)								
Hazardous air pollutant (specify)								
Hazardous air pollutant (specify)								
Other (specify)								
Other (specify)								
Other (specify)								
Other (specify)								

11. Comments

Emissions calculated using emission factors based on emissions scaled from similar, previous-generation equipment at another facility.

SIGNATURE

If this form is being submitted at the same time as an APC 100 form, then a signature is not required on this form. Date this form regardless of whether a signature is provided. If this form is NOT being submitted at the same time as an APC 100 form, then a signature is required.

Based upon information and belief formed after a reasonable inquiry, I, as the responsible person of the above mentioned facility, certify that the information contained in this application is accurate and true to the best of my knowledge. As specified in TCA Section 39-16-702(a)(4), this declaration is made under penalty of perjury.

12. Signature	Date		
Signer's name (type or print)	Title	Phone number with area code	
Jeff Deaton	Managing Director	(615) 751-3539	

* Refer to the tables in the instructions for estimation method and control device codes.

** Exit gas particulate matter concentration units: Process – Grains/Dry Standard Ft³ (70^oF), Wood fired boilers – Grains/Dry Standard Ft³ (70^oF), all other boilers – Lbs. /Million BTU heat input.

*** Exit gas sulfur dioxide concentrations units: Process – PPM by volume, dry bases, and boilers – Lbs. /Million BTU heat input

NON-TITLE V PERMIT APPLICATION PROCESS OR FUEL BURNING SOURCE DESCRIPTION

Type or print. Submit with the APC 100.									
GEI	NERAL IDENTIFICAT	ION AND DESCRIPTION							
1. Organization's legal name and Secretary of State (SOS)] Envision AESC US LLC, 000993842	SOS control numbe	r [as registered with the TN	Refere	ion Source ence Number					
			75-0851-0	-3					
 Is this air contaminant source subject to an NSPS or NESHAP rule? Yes No If Yes, list rule citation, including Part, Subpart, and applicable Sections: 									
4. Unique Source ID (see instructio	ns)	5. Unique Emission Point	t ID (see ins	tructions)					
75-0851-03 New dehumidifier		DH10							
6. Description of air contaminant	source								
Two additional dehumidifiers similar	to DH3-DH4, and D	H7-DH9.							
7. Type of air contaminant source	(Check only one op	tion to the right)							
Process Emission Source: For each process emission source, submit a separate application.									
(Check at right and complete lines 8,	9, and 14)								
Process Emission Source with in process fuel: Products of combustion contact materials									
heated. For each process emission s	ource, submit a sep	arate application. (Check at	right and						
complete lines 8 through 14)									
Non-Process fuel burning source: Pr Complete this form for each boiler of									
Description Form (APC 101) for each		•							
		CE DESCRIPTION AND DATA							
8. Type of operation:	_	Normal batch time		nal batches/day					
Continuous	Batch								
9. Process material inputs and	Diagram		(pounds/ho						
In-process solid fuels	reference	Design		Actual					
A.									
В.									
С.	C								
D.									
E.									
F.									
G.									
Totals									

* A simple process flow diagram must be attached.

DESCRIPTION OF BOILER, BURNER, ENGINE, OR OTHER FUEL BURNING SOURCE										
10. Boiler or burner da	ata: (Comple	ete lir	nes 10 thre	ough 14	usir	ng a separa	ate for	m for each bo	oile	r, burner, etc.)
Serial Number				Тур	e o	f firing***				
Concepts & De	esigns Inc. C	DH-1	114		Natural gas burner					
Rated horsepower		Rat	ed input c	apacity (city (10 ⁶ BTU/Hr.) Other rating (specify capacity and units)					
565.5				1.437						
Date constructed	Dat	d	Da	ate of last	l modifi	cation (explai	n ir	n comments below)		
2023	TBD							NA		,
		•11 1	.1							
** Source with a com							nyhatt	om with or w	ith	out rainiaction)
*** Cyclone, spreader (other stoker (speci			-	•			-			
	2 21							BURNING SO		-
11. Fuel data: (Comple			-	-	-					
Primary fuel type (s	pecify)					Standby f	^f uel typ	oe(s) (specify)		
Fuels used	Annual us	age	Hourl	y usage		%	%	BTU value		(For APC use only)
			Design	Averag	ge	Sulfur	Ash	of fuel		SCC code
Natural gas:	10 ⁶ Cu. Ft.		Cu. Ft.	Cu. Ft.		////////				
	12.3		1409	1409		///////////////////////////////////////		1,020		
#2 Fuel oil:	10 ³ Gal.		Gal.	Gal.			/////			
							11111			
#5 Fuel oil:	10 ³ Gal.		Gal.	Gal.			/////			
							/////			
#6 Fuel oil:	10 ³ Gal.		Gal.	Gal.			/////			
							/////			
Coal:	Tons		Lbs.	Lbs.						
Wood:	Tons		Lbs.	Lbs.	_	////////	/////			
						///////////////////////////////////////	/////			
Liquid propane:	10 ³ Gal.		Gal.	Gal.		,,,,,,,,,	/////			
						 	11111	85,000		
Other (specify type &										
units):										
12. If Wood is used as	a fuel, spec	ify ty	ypes and	estimate	e pe	ercent by	weigh	t of bark	I	1
13. If Wood is used wit	th other fu	els. s	pecify per	rcent bv	we	eight of wo	ood ch	arged to the	bu	rner.
		, .		-		0		0		

	SIGNATURE	
If this form is being submitted at the same Date this form regardless of whether a sign		C
as an APC 100 form, then a signature is req	•	
Based upon information and belief formed mentioned facility, certify that the informat knowledge. As specified in TCA Section 39-1	ion contained in this application	on is accurate and true to the best of my
15. Signature		Date
Signer's name (type or print)	Title	Phone number with area code
		1

14. Comments

NON-TITLE V PERMIT APPLICATION PROCESS OR FUEL BURNING SOURCE DESCRIPTION

	Type or print. Submit with the APC 100.									
GEN	NERAL IDENTIFICAT	ION AND DESCRIPTION								
 Organization's legal name and secretary of State (SOS)] Envision AESC US LLC, 000993842 	SOS control numbe	r [as registered with the TN		ion Source ence Number ¹³						
3. Is this air contaminant source subject to an NSPS or NESHAP rule? Yes No										
4. Unique Source ID (see instruction 75-0851 -03 New dehumidifier	5. Unique Emission Point DH11	t ID (see ins	tructions)							
6. Description of air contaminant	source	I								
Two additional dehumidifiers similar	to DH3-DH4, and D	H7-DH9.								
7. Type of air contaminant source	(Check only one op	tion to the right)								
Process Emission Source: For each process emission source, submit a separate application. (Check at right and complete lines 8, 9, and 14)										
	Process Emission Source with in process fuel: Products of combustion contact materials heated. For each process emission source, submit a separate application. (Check at right and complete lines 8 through 14)									
Non-Process fuel burning source: Pr Complete this form for each boiler o Description Form (APC 101) for each	r fuel burner and co	mplete a Non-Title V Emissi	on Point	\checkmark						
	S EMISSION SOUR	E DESCRIPTION AND DATA								
8. Type of operation: Continuous	Batch	Normal batch time	Norr	nal batches/day						
9. Process material inputs and	Diagram	Input rates	(pounds/ho	our)						
In-process solid fuels	reference	Design		Actual						
Α.										
В.										
С.										
D.										
Ε.										
F.										
G.										
Totals										

* A simple process flow diagram must be attached.

DESCRIPTION OF BOILER, BURNER, ENGINE, OR OTHER FUEL BURNING SOURCE										
10. Boiler or burner data: (Complete lines 10 through 14 using a separate form for each boiler, burner, etc.)										
Serial Number Type of firing***										
Concepts & Designs Inc. CDH-1114					Natural gas burner					
Rated horsepower Rated input capacity (10 ⁶			0 ⁶ BTU/Hr.)	⁶ BTU/Hr.) Other rating (specify capacity and units)						
565.5			1.	437						
Date constructed	Date	e manufa	ctured		Date of last	Date of last modification (explain in comments below)				
2023		TBD				NA				
** Source with a comr	mon stack wi	ll have th	e same	stack r	number.					
*** Cyclone, spreader (
other stoker (speci					21					
		-	-		-		BURNING SO			
11. Fuel data: (Complet		ess emiss	ion sou	rce wit				s fi	uel burning source)	
Primary fuel type (s Fuels used		7 0	Lourberr	6.9.69	Standby 1	luer typ	be(s) (specify) BTU value		(For ADC use only)	
Fuels used	Annual usa	°	lourly u	-	- C 10	% Ash			(For APC use only)	
	406 5 5	Des	-	verage	Sala	7.511	of fuel		SCC code	
Natural gas:	10 ⁶ Cu. Ft. 12.3	Cu. 14		u. Ft. 1409	//////////////////////////////////////	///// /////	1,020			
#2 Fuel oil:	10 ³ Gal.	Gal.	G	al.		///// /////				
#5 Fuel oil:	10 ³ Gal.	Gal.	G	al.		///// /////				
#6 Fuel oil:	10 ³ Gal.	Gal.	G	al.		///// /////				
Coal:	Tons	Lbs.	Lt	DS.						
Wood:	Tons	Lbs.	Lt	DS.	////////	///// /////				
Liquid propane:	10 ³ Gal.	Gal.	G	al.	/////// ////////	///// /////	85,000			
Other (specify type & units):										
12. If Wood is used as a fuel, specify types and estimate percent by weight of bark										
13. If Wood is used wit	th other fue	ls, specif	y perce	nt by v	weight of wo	ood ch	arged to the	bu	rner.	

14. Comments

SIGNATURE

If this form is being submitted at the same time as an APC 100 form, then a signature is not required on this form. Date this form regardless of whether a signature is provided. If this form is NOT being submitted at the same time as an APC 100 form, then a signature is required.

Based upon information and belief formed after a reasonable inquiry, I, as the responsible person of the above mentioned facility, certify that the information contained in this application is accurate and true to the best of my knowledge. As specified in TCA Section 39-16-702(a)(4), this declaration is made under penalty of perjury.

15. Signature	Date		
Signer's name (type or print)	Title	Phone number with area code	

NON-TITLE V PERMIT APPLICATION PROCESS OR FUEL BURNING SOURCE DESCRIPTION

Type or print. Submit with the APC 100.								
GENERAL IDENTIFICATION AND DESCRIPTION								
1. Organization's legal name and SOS control number [as registered with the TN] 2. Emission Source								
Secretary of State (SOS)]		ence Number						
Envision AESC US LLC, 000993842 75-0851-04								
3. Is this air contaminant source subject to an NSPS or NESHAP rule? Yes If Yes, list rule citation, including Part, Subpart, and applicable Sections:								
40 CFR 60, Subpart IIII and 40 CFR 63, Subpart ZZZZ								
4. Unique Source ID (see instructio	ns)	5. Unique Emission Point	: ID (see ins	tructions)				
Reciprocating Internal Combustion E	Generator 3							
6. Description of air contaminant	source	I						
750 kW Caterpillar C27 Emergency G	enerator							
7. Type of air contaminant source (Check only one option to the right)								
Process Emission Source: For each process emission source, submit a separate application.								
(Check at right and complete lines 8, 9, and 14)								
Process Emission Source with in process fuel: Products of combustion contact materials								
heated. For each process emission source, submit a separate application. (Check at right and								
complete lines 8 through 14)								
Non-Process fuel burning source: Pr Complete this form for each boiler o								
Description Form (APC 101) for each		-		₩				
· ·	<u> </u>	E DESCRIPTION AND DATA	<u> </u>					
8. Type of operati <u>on:</u>		Normal batch time		nal batches/day				
Continuous	Batch							
9. Process material inputs and	Process material inputs and Diagram Input rates (pounds/hour)							
In-process solid fuels reference Design Actual								
Α.								
В.								
C								
D.								
E.								
F.								
G.								
Totals								

* A simple process flow diagram must be attached.

nplete lin Rate	nes 10 thro	ough 14 us Type	sing a separa of firing***	ate fori procati	BURNING SC m for each bo ing internal co r rating (speci	iler, ombu	burner, etc.) ustion	
Rate		Type apacity (10	of firing*** Reci	procati	ing internal co	ombu	ustion	
	ed input c	apacity (10	Reci	-				
	ed input c			-				
	ed input c		⁶ BTU/Hr.)	Othe	r rating (speci	fy ca	nacity and units)	
Date ma		2.56				-	pacity and arrest	
Date ma				750 kW				
	nufacture	d I	Date of last	modifi	cation (explair	n in d	comments below)	
	2010			NA				
ck will ha	ve the sar	ne stack ni	umber.					
without r	einjection	ı), pulverize	ed (wet or d	ry bott	om, with or w	ithou	ut reinjection),	
hand fire	d, automa	atic, or othe	er type (des	cribe b	elow in comm	ents	5).	
BOILER,	BURNER	, ENGINE,	OR OTHER	FUEL E	BURNING SOU	JRC	E	
process e	mission s	ource with				s fue	el burning source)	
				<u> </u>				
l usage	Hourl						(For APC use only	
	Design		Sulfur	Asn	of fuel		SCC code	
. Ft.	Cu. Ft.	Cu. Ft.	///////// ////////	///// /////	1,020			
ıl.	Gal.	Gal.		,,,,,	127.020			
6.8	53.6	53.6	0.0015	/////	BTU/gal			
il.	Gal.	Gal.		///// /////				
ıl.	Gal.	Gal.		///// /////				
	Lbs.	Lbs.						
	Lbs.	Lbs.		///// /////	r.			
ıl.	Gal.	Gal.		///// /////	85,000			
					×			
	without r hand fired I BOILER, process e I usage . Ft. I. 6.8 I. I. I.	without reinjection hand fired, automa BOILER, BURNER process emission s I usage Hourl Design . Ft. Cu. Ft. II. Gal. 6.8 53.6 II. Gal. II. Gal. II. Gal. II. Gal.	without reinjection), pulverize hand fired, automatic, or othe BOILER, BURNER, ENGINE, process emission source with I usage I usage Design Average Design Average . Ft. Cu. Ft. Cu. Ft. II. Gal. Gal. 6.8 53.6 53.6 II. Gal. II. Gal. Gal. II. Gal. II. Gal. II. Gal. II. Gal. II. Gal. II. Gal. II. Gal. II. Gal.	without reinjection), pulverized (wet or di hand fired, automatic, or other type (desc I BOILER, BURNER, ENGINE, OR OTHER process emission source with in process Standby f I usage Hourly usage % Design Average % Sulfur . Ft. Cu. Ft. Cu. Ft. //////////////////////////////////	without reinjection), pulverized (wet or dry both hand fired, automatic, or other type (describe b BOILER, BURNER, ENGINE, OR OTHER FUEL E process emission source with in process fuel or Standby fuel type I usage Hourly usage % % Sulfur Ash . Ft. Cu. Ft. Cu. Ft. //////////////////////////////////	without reinjection), pulverized (wet or dry bottom, with or with and fired, automatic, or other type (describe below in commendance) below in commendance with in process fuel or a non-process standby fuel type(s) (specify). BOILER, BURNER, ENGINE, OR OTHER FUEL BURNING SOL BOILER, BURNER, ENGINE, OR OTHER FUEL BURNING SOL process emission source with in process fuel or a non-process Standby fuel type(s) (specify). I usage Hourly usage % BTU value of fuel Design Average Sulfur Ash BTU value of fuel . Ft. Cu. Ft. Cu. Ft. ////////////////////////////////////	without reinjection), pulverized (wet or dry bottom, with or without hand fired, automatic, or other type (describe below in comments BOILER, BURNER, ENGINE, OR OTHER FUEL BURNING SOURCE process emission source with in process fuel or a non-process fuel or fuel of fuel I usage % % Hourly usage % % Design Average % . Ft. Cu. Ft. ////////////////////////////////////	

14. Comments

SIGNATURE

If this form is being submitted at the same time as an APC 100 form, then a signature is not required on this form. Date this form regardless of whether a signature is provided. If this form is NOT being submitted at the same time as an APC 100 form, then a signature is required.

Based upon information and belief formed after a reasonable inquiry, I, as the responsible person of the above mentioned facility, certify that the information contained in this application is accurate and true to the best of my knowledge. As specified in TCA Section 39-16-702(a)(4), this declaration is made under penalty of perjury.

15. Signature	Date		
Signer's name (type or print)	Title	Phone number with area code	

NON-TITLE V PERMIT APPLICATION PROCESS OR FUEL BURNING SOURCE DESCRIPTION

Type or print. Submit with the APC 100.							
GENERAL IDENTIFICATION AND DESCRIPTION							
1. Organization's legal name and SOS control number [as registered with the TN Secretary of State (SOS)]2. Emission Source Reference NumberEnvision AESC US LLC, 00099384275-0851-05							
3. Is this air contaminant source subject to an NSPS or NESHAP rule? Yes No							
If Yes, list rule citation, including F	Part, Subpart, and ap	oplicable Sections:					
4. Unique Source ID (see instruction	ns)	5. Unique Emission Point	t ID (see ins	tructions)			
Stacking LFP Smyrna	ST1 - ST24						
6. Description of air contaminant	source	•					
Twenty four identical stacking units for	cutting and stacking	sheets of					
electrode material							
7. Type of air contaminant source (Check only one option to the right)							
Process Emission Source: For each process emission source, submit a separate application. (Check at right and complete lines 8, 9, and 14)							
Process Emission Source with in process fuel: Products of combustion contact materials							
heated. For each process emission source, submit a separate application. (Check at right and							
complete lines 8 through 14)							
Non-Process fuel burning source: Products of combustion do not contact materials heated. Complete this form for each boiler or fuel burner and complete a Non-Title V Emission Point							
Description Form (APC 101) for each							
PROCESS EMISSION SOURCE DESCRIPTION AND DATA							
8. Type of operation: Continuous X	Batch	Normal batch time	Norr	nal batches/day			
9. Process material inputs and	Diagram	Input rates	pounds/ho	ur)			
In-process solid fuels	reference	Design		Actual			
A. Electrode material	Electrode material						
В.							
С.							
D.							
E.							
F.							
G.							
Totals							

* A simple process flow diagram must be attached.

DESCRIPTION OF BOILER, BURNER, ENGINE, OR OTHER FUEL BURNING SOURCE										
10. Boiler or burner data: (Complete lines 10 through 14 using a separate form for each boiler, burner, etc.)										
Serial Number Type o					e of firing***					
Rated horsepower Rated input capacity (10 ⁶			0 ⁶ BTU/Hr.)	⁶ BTU/Hr.) Other rating (specify capacity and unit						
Date constructed		Date m	anufacture	ed	Date of last	Date of last modification (explain in comments below)				
** Source with a comr	non sta	ack will ha	ave the sar	ne stack	number.					
*** Cyclone, spreader (with or	without	reinjection	ı), pulveri	zed (wet or d	ry bott	om, with or w	ith	out reinjection),	
other stoker (speci	fy type,	hand fire	ed, automa	atic, or ot	her type (des	cribe b	elow in comm	en	ts).	
			-	-	-		BURNING SO			
11. Fuel data: (Complet		process	emission s	ource wit				s fi	uel burning source)	
Primary fuel type (s							oe(s) (specify)			
Fuels used	Annua	al usage		y usage	% Sulfur	% Ash	BTU value		(For APC use only)	
	6		Design	Averag	e Sullui	ASII	of fuel		SCC code	
Natural gas:	10 ⁶ Ըւ	u. Ft.	Cu. Ft.	Cu. Ft.	///////// /////////	///// /////	1,020			
#2 Fuel oil:	10 ³ Ga	al.	Gal.	Gal.		///// /////				
#5 Fuel oil:	10 ³ Ga	al.	Gal.	Gal.		///// /////				
#6 Fuel oil:	10 ³ Ga	al.	Gal.	Gal.		///// /////				
Coal:	Tons		Lbs.	Lbs.						
Wood:	Tons		Lbs.	Lbs.	////////	///// /////				
Liquid propane:	10 ³ Ga	al.	Gal.	Gal.	/////// ///////	///// /////	85,000			
Other (specify type & units):										
12. If Wood is used as a fuel, specify types and estimate percent by weight of bark										
13. If Wood is used wit	th othe	r fuels, s	specify pe	rcent by	weight of w	ood ch	arged to the	bu	rner.	

14. Comments

SIGNATURE

If this form is being submitted at the same time as an APC 100 form, then a signature is not required on this form. Date this form regardless of whether a signature is provided. If this form is NOT being submitted at the same time as an APC 100 form, then a signature is required.

Based upon information and belief formed after a reasonable inquiry, I, as the responsible person of the above mentioned facility, certify that the information contained in this application is accurate and true to the best of my knowledge. As specified in TCA Section 39-16-702(a)(4), this declaration is made under penalty of perjury.

15. Signature	Date			
Signer's name (type or print)	Title	Phone number with area code		

Appendix B Emissions Calculations

Process Name - Electrode Preparation, Anode Calendering - LFP Smyrna (Insignificant)				
Source ID	NA			
Emission Point ID	NA			

Process Throughput	cells/yr
Process Throughput	lb/yr
Proposed Exhaust Flowrate	2,504.7 scfm
Proposed Exhaust Flowrate	67 Nm ³ /min
Number of Process Units	6
Hours of Operation	8760 hr/year
Emission Control	HEPA Filtration
Emission Control Efficiency	99 %
Exhausts To	Inside the building

Emission Factors¹

Cu Graphite

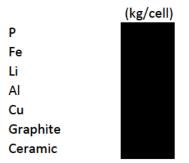
Allowable PM Emissions

E = 3.59 P^{0.62}

Where:

E = Emissions in pounds per hour

P = Process weight rate in tons per hour


E =

Emissions					
Dollutant	Controlled		Uncontrolled		
Pollutant	(lb/hr)	(TPY)	(lb/hr)	(TPY)	
PM	4.23E-03	1.85E-02	0.42	1.9	

Process Name - Stacking - LFP Smyrna Source ID 75-0851-05 Emission Point ID W-1 - W-24

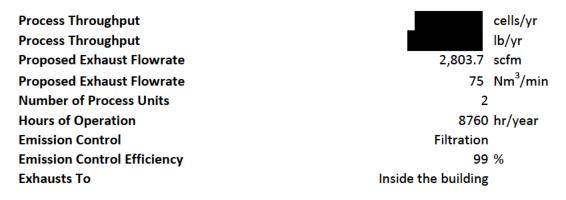
Process Throughput		cells/yr
Process Throughput		lb/yr
Proposed Exhaust Flowrate	2,803.7	scfm
Proposed Exhaust Flowrate	75	Nm ³ /min
Number of Process Units	24	
Hours of Operation	8760	hr/year
Emission Control	Filtration	
Emission Control Efficiency	99	%
Exhausts To	Inside the building	

Emission Factors¹

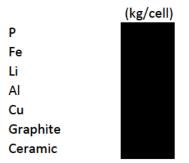
Allowable PM Emissions

E = 3.59 P^{0.62} Where: E = Emissions in pounds per hour

P = Process weight rate in tons per hour


E =

Emissions					
Dollutant	Cont	Uncon	trolled		
Pollutant	(lb/hr)	(TPY)	(lb/hr)	(TPY)	
PM	0.18	0.8	17.78	77.9	
HAP	0.03	0.1	2.54	11.1	


 Process Name - Stack Inspection, Transfer from Stacking to Inspection - LFP Smyrna (Insignificant)

 Source ID
 NA

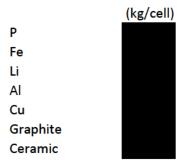
 Emission Point ID
 NA

Emission Factors¹

Allowable PM Emissions

E = 3.59 P^{0.62} Where: E = Emissions in pounds per hour

P = Process weight rate in tons per hour


E =

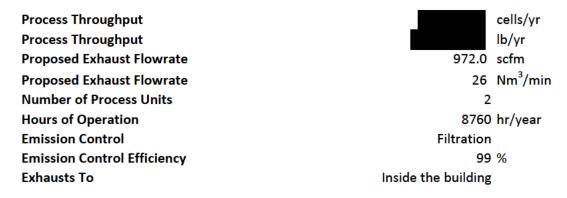
Emissions					
Dollutant	Controlled		Uncontrolled		
Pollutant	(lb/hr)	(TPY)	(lb/hr)	(TPY)	
PM	9.88E-04	4.33E-03	0.10	0.4	
НАР	1.41E-04	6.18E-04	0.01	0.1	

Process Name - Stack Inspection LFP Smyrna (Insignificant) Source ID NA Emission Point ID NA

Process Throughput Process Throughput	cells/yr lb/yr
Proposed Exhaust Flowrate	1,943.9 scfm
Proposed Exhaust Flowrate	52 Nm ³ /min
Number of Process Units	2
Hours of Operation	8760 hr/year
Emission Control	Filtration
Emission Control Efficiency	99 %
Exhausts To	Inside the building

Emission Factors¹

Allowable PM Emissions


E = 3.59 P^{0.62} Where: E = Emissions in pounds per hour

P = Process weight rate in tons per hour

E =

Emissions					
Controlled			Uncontrolled		
Pollutant	(lb/hr)	(TPY)	(lb/hr)	(TPY)	
PM	1.28E-03	5.59E-03	0.13	0.6	
HAP	1.82E-04	7.98E-04	0.02	0.1	

Process Name - Assembly Line, Tab Prep - LFP Smyrna (Insignificant) Source ID NA Emission Point ID NA

Emission Factors¹

Al Cu

(kg/cell)

Allowable PM Emissions

E = 3.59 P^{0.62}

Where:

E = Emissions in pounds per hour

P = Process weight rate in tons per hour

E =

Emissions					
Dollutant	Controlled		Uncontrolled		
Pollutant	(lb/hr)	(TPY)	(lb/hr)	(TPY)	
PM	1.18E-04	5.15E-04	1.18E-02	5.15E-02	

Process Name - Assembly Line, Tab Welding LFP Smyrna (Insignificant)Source IDNAEmission Point IDNA

Emission Factors¹

Al Cu

Allowable PM Emissions

E = 3.59 P^{0.62}

Where:

E = Emissions in pounds per hour

P = Process weight rate in tons per hour

E =

Emissions					
Dollutant	Controlled		Uncontrolled		
Pollutant	(lb/hr)	(TPY)	(lb/hr)	(TPY)	
PM	2.94E-04	1.29E-03	2.94E-02	0.1	

Process Name - Assembly Line, Insert and Pre-Weld LFP Smyrna (Insignificant)Source IDNAEmission Point IDNA

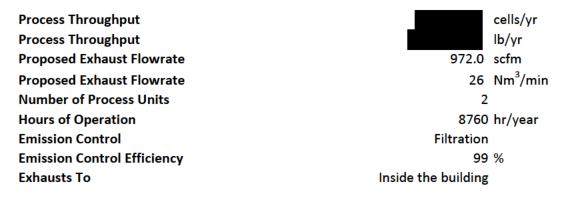
Emission Factors¹

AI

Allowable PM Emissions

E = 3.59 P^{0.62}

Where:


E = Emissions in pounds per hour

P = Process weight rate in tons per hour

E =

Emissions					
Pollutant	Controlled		Uncontrolled		
	(lb/hr)	(TPY)	(lb/hr)	(TPY)	
PM	5.88E-05	2.57E-04	5.88E-03	2.57E-02	

Process Name - Assembly Line, Top Cap Welding LFP Smyrna (Insignificant)Source IDNAEmission Point IDNA

Emission Factors¹

AI

Allowable PM Emissions

E = 3.59 P^{0.62}

Where:

E = Emissions in pounds per hour

P = Process weight rate in tons per hour

E =

Emissions					
Pollutant	Controlled		Uncontrolled		
	(lb/hr)	(TPY)	(lb/hr)	(TPY)	
PM	5.88E-05	2.57E-04	5.88E-03	2.57E-02	

Process Name - Case Seal Welding LFP Smyrna (Insignificant) Source ID NA Emission Point ID NA

Process Throughput	cells/yr
Process Throughput	lb/yr
Proposed Exhaust Flowrate	1,121.5 scfm
Proposed Exhaust Flowrate	30 Nm ³ /min
Number of Process Units	2
Hours of Operation	8760 hr/year
Emission Control	Filtration
Emission Control Efficiency	99 %
Exhausts To	Inside the building

Emission Factors¹

Al

Allowable PM Emissions

E = 3.59 P^{0.62}

Where:

E = Emissions in pounds per hour

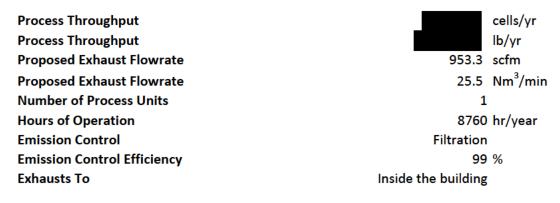
P = Process weight rate in tons per hour

E =

Emissions				
Pollutant	Controlled			trolled
Pollutant	(lb/hr)	(TPY)	(lb/hr)	(TPY)
PM 7.05E-05 3.09E-04 7.05E-03 3.09E-02				

Process Name - Side Plate Gluing LFP Smyrna (Insignificant) Source ID NA Emission Point ID NA

(kg/cell)


Process Throughput	cells/yr
Proposed Exhaust Flowrate	560.7 scfm
Proposed Exhaust Flowrate	15 Nm ³ /min
Number of Process Units	1
Hours of Operation	8760 hr/year
Emission Control	None
Emission Control Efficiency	0 %
Exhausts To Outs	ide the building

Emission Factors¹

Benzene Toluene Ethylbenzene Xylene Methane Ethane Ethylene Formaldehyde

Emissions				
Controlled			Uncontrolled	
Pollutant	(lb/hr)	(TPY)	(lb/hr)	(TPY)
VOC	4.89E-03	2.14E-02	4.89E-03	2.14E-02
HAP	2.83E-03	1.24E-02	2.83E-03	1.24E-02
GHG	0.08	0.4	0.08	0.4

Process Name - Side Plate Welding LFP Smyrna (Insignificant) Source ID NA Emission Point ID NA

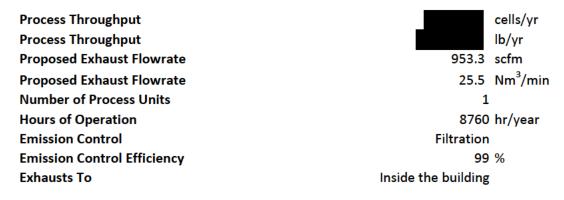
Emission Factors¹

AI

Allowable PM Emissions

E = 3.59 P^{0.62}

Where:


E = Emissions in pounds per hour

P = Process weight rate in tons per hour

E =

Emissions				
Pollutant	Cont	rolled	Uncontrolled	
	(lb/hr)	(TPY)	(lb/hr)	(TPY)
PM	1.47E-05	6.44E-05	1.47E-03	6.44E-03

Process Name - Busbar Welding LFP Smyrna (Insignificant) Source ID NA Emission Point ID NA

Emission Factors¹

	(kg/cell)
Al	
Cu	
Cr	

Allowable PM Emissions

E = 3.59 P^{0.62} Where:

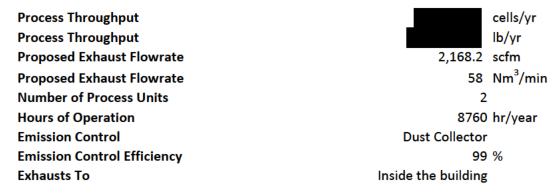
E = Emissions in pounds per hour

P = Process weight rate in tons per hour

Emissions				
Controlled			Uncon	trolled
Pollutant	(lb/hr)	(TPY)	(lb/hr)	(TPY)
PM	4.41E-05	1.93E-04	4.41E-03	1.93E-02
HAP	1.47E-05	6.44E-05	1.47E-03	6.44E-03

Process Name - Busbar Gluing LFP Smyrna (Insignificant) Source ID NA Emission Point ID NA

(kg/cell)


Process Throughput	cells/yr
Proposed Exhaust Flowrate	392.5 scfm
Proposed Exhaust Flowrate	10.5 Nm ³ /min
Number of Process Units	1
Hours of Operation	8760 hr/year
Emission Control	NA
Emission Control Efficiency	0 %
Exhausts To	Outside the building

Emission Factors¹

Benzene Toluene Ethylbenzene Xylene Methane Ethane Ethylene Formaldehyde

Emissions				
Pollutant	Controlled			trolled
Pollutant	(lb/hr)	(TPY)	(lb/hr)	(TPY)
VOC	3.26E-03	1.43E-02	3.26E-03	1.43E-02
HAP	1.89E-03	8.26E-03	1.89E-03	8.26E-03
GHG	0.06	0.2	0.06	0.2

Process Name - Electrode Preparation, Cathode Slitter Stanford (Insignificant)			
Source ID	NA		
Emission Point ID	NA		

Emission Factors¹

Allowable PM Emissions

E = 3.59 P^{0.62}

Where:

E = Emissions in pounds per hour

P = Process weight rate in tons per hour

Emissions				
Pollutant	Cont	Uncon	trolled	
Pollutant	(lb/hr)	(TPY)	(lb/hr)	(TPY)
PM	8.23E-04	3.60E-03	8.23E-02	0.4
НАР	2.06E-04	9.01E-04	2.06E-02	9.01E-02

 Process Name - Electrode Preparation, Anode Slitter Stanford (Insignificant)

 Source ID
 NA

 Emission Point ID
 NA

Emission Factors¹

Cu Graphite

Allowable PM Emissions

E = 3.59 P^{0.62}

Where:

E = Emissions in pounds per hour

P = Process weight rate in tons per hour

E =

Emissions				
Dollutant	Cont	Uncontrolled		
Pollutant	(lb/hr)	(TPY)	(lb/hr)	(TPY)
PM	4.12E-04	1.80E-03	0.04	0.2

Process Name - Electrode Notching, Cathode Stanford (Insignificant) Source ID NA Emission Point ID NA

Emission Factors¹

Allowable PM Emissions

E = 17.31 P^{0.16}

Where:

E = Emissions in pounds per hour

P = Process weight rate in tons per hour

Emissions				
Pollutant	Cont	rolled	Uncontrolled	
Pollutant	(lb/hr)	(TPY)	(lb/hr)	(TPY)
PM	8.23E-04	3.60E-03	8.23E-02	0.4
HAP	2.06E-04	9.01E-04	2.06E-02	9.01E-02

Process Name - Electrode Notching, Anode Stanford (Insignificant) Source ID NA Emission Point ID NA

Emission Factors¹

Cu Graphite

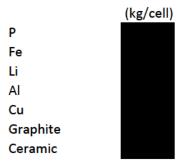
Allowable PM Emissions

E = 17.31 P^{0.16}

Where:

E = Emissions in pounds per hour

P = Process weight rate in tons per hour


E =

Emissions					
Pollutant	Controlled		Uncontrolled		
Pollutant	(lb/hr)	(TPY)	(lb/hr)	(TPY)	
PM	4.12E-04	1.80E-03	0.04	0.2	

Process Name - Stacking Stanford (Insignificant) Source ID NA Emission Point ID NA

Process Throughput	cells/yr
Process Throughput	lb/yr
Proposed Exhaust Flowrate	2,803.7 scfm
Proposed Exhaust Flowrate	75 Nm ³ /min
Number of Process Units	6
Hours of Operation	8760 hr/year
Emission Control	Dust Collector
Emission Control Efficiency	99 %
Exhausts To	Inside the building

Emission Factors¹

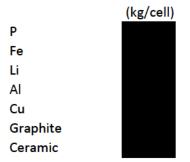
Allowable PM Emissions

E = 3.59 P^{0.62} Where: E = Emissions in pounds per hour

P = Process weight rate in tons per hour

E =

Emissions				
Pollutant	Controlled		Uncontrolled	
Pollutant	(lb/hr)	(TPY)	(lb/hr)	(TPY)
PM	4.18E-03	1.83E-02	0.42	1.8
HAP	5.97E-04	2.61E-03	0.06	0.3

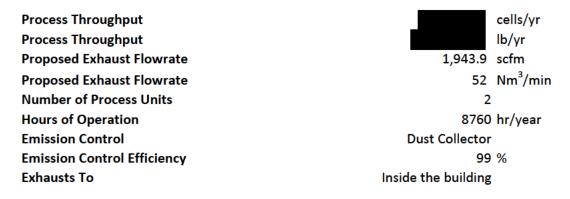

 Process Name - Stack Inspection, Transfer from Stacking to Inspection Stanford (Insignificant)

 Source ID
 NA

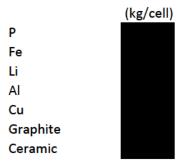
 Emission Point ID
 NA

Emission Factors¹

Allowable PM Emissions


E = 3.59 P^{0.62} Where: E = Emissions in pounds per hour

P = Process weight rate in tons per hour

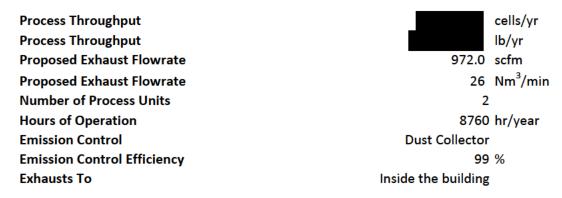

E =

Emissions				
Pollutant	Controlled		Uncontrolled	
Pollutant	(lb/hr)	(TPY)	(lb/hr)	(TPY)
PM	9.88E-04	4.33E-03	0.10	0.4
НАР	1.41E-04	6.18E-04	0.01	0.1

Process Name - Stack Inspection Stanford (Insignificant)Source IDNAEmission Point IDNA

Emission Factors¹

Allowable PM Emissions


E = 3.59 P^{0.62} Where: E = Emissions in pounds per hour

P = Process weight rate in tons per hour

E =

Emissions				
Pollutant	Controlled		Uncontrolled	
Pollutant	(lb/hr)	(TPY)	(lb/hr)	(TPY)
PM	1.28E-03	5.59E-03	0.13	0.6
HAP	1.82E-04	7.98E-04	0.02	0.1

Process Name - Assembly Pre-Welding and Cutting Stanford (Insignificant)			
Source ID	NA		
Emission Point ID	NA		

Emission Factors¹

Al Cu

Allowable PM Emissions

 $E = 3.59 P^{0.62}$

Where:

E = Emissions in pounds per hour

P = Process weight rate in tons per hour

E =

Emissions				
Pollutant	Controlled		Uncontrolled	
	(lb/hr)	(TPY)	(lb/hr)	(TPY)
PM	1.18E-04	5.15E-04	0.01	5.15E-02

Process Name - Assembly, Tab Welding Stanford (Insignificant) Source ID NA Emission Point ID NA

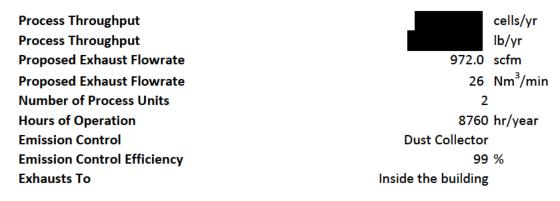
Emission Factors¹

Al Cu

Allowable PM Emissions

E = 3.59 P^{0.62}

Where:


E = Emissions in pounds per hour

P = Process weight rate in tons per hour

E =

Emissions				
Pollutant	Controlled		Uncontrolled	
Pollutant	(lb/hr)	(TPY)	(lb/hr)	(TPY)
PM	2.94E-04	1.29E-03	0.03	0.1

Process Name - Assembly, Insert and Pre-Welding Stanford (Insignificant)Source IDNAEmission Point IDNA

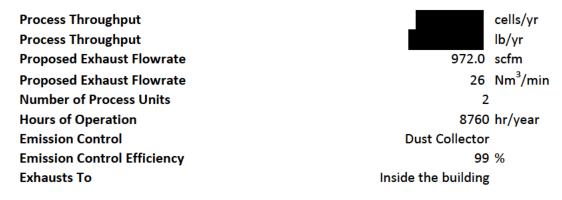
Emission Factors¹

AI

Allowable PM Emissions

E = 3.59 P^{0.62}

Where:


E = Emissions in pounds per hour

P = Process weight rate in tons per hour

E =

Emissions				
Pollutant	Controlled		Uncontrolled	
	(lb/hr)	(TPY)	(lb/hr)	(TPY)
PM	5.88E-05	2.57E-04	5.88E-03	2.57E-02

Process Name - Assembly, Top Cap Welding Stanford (Insignificant) Source ID NA Emission Point ID NA

Emission Factors¹

AI

Allowable PM Emissions

E = 3.59 P^{0.62}

Where:

E = Emissions in pounds per hour

P = Process weight rate in tons per hour

E =

Emissions				
Pollutant	Controlled		Uncontrolled	
Pollutant	(lb/hr)	(TPY)	(lb/hr)	(TPY)
PM	5.88E-05	2.57E-04	5.88E-03	2.57E-02

Process Name - Side Plate Gluing, RTV Gluing Stanford (Insignificant)Source IDNAEmission Point IDNA

Process Throughput	cells/yr
Proposed Exhaust Flowrate	560.7 scfm
Proposed Exhaust Flowrate	15 Nm ³ /min
Number of Process Units	1
Hours of Operation	8760 hr/year
Emission Control	Absorption & Release by Activated Carbon
Emission Control Efficiency	90 %
Exhausts To	Outside the building

Emission Factors¹

(kg/cell)

Benzene Toluene Ethylbenzene Xylene Methane Ethane Ethylene Formaldehyde

Emissions								
Pollutant	Cont	rolled	Uncontrolled					
(lb/hr) (TPY)		(lb/hr)	(TPY)					
VOC	4.87E-03	2.13E-02	0.05	0.2				
HAP	2.81E-03	1.23E-02	0.03	0.1				
GHG	0.08	0.4	0.84	3.7				

Process Name - Side Plate Gluing, TIM Gluing Stanford (Insignificant) Source ID NA Emission Point ID NA

Process Throughput	cells/yr
Proposed Exhaust Flowrate	560.7 scfm
Proposed Exhaust Flowrate	15 Nm ³ /min
Number of Process Units	1
Hours of Operation	8760 hr/year
Emission Control	Absorption & Release by Activated Carbon
Emission Control Efficiency	90 %
Exhausts To	Outside the building

Emission Factors¹

(kg/cell)

Benzene Toluene Ethylbenzene Xylene Methane Ethane Ethylene Formaldehyde

Emissions								
Pollutant	Cont	Uncontrolled						
(lb/hr) (TPY)		(lb/hr)	(TPY)					
VOC	1.63E-03	7.13E-03	0.02	7.13E-02				
HAP	9.43E-04	4.13E-03	9.43E-03	4.13E-02				
GHG	0.03	0.1	0.28	1.2				

Process Name - Busbar Welding Stanford (Insignificant) Source ID NA Emission Point ID NA

Process Throughput	cells/yr
Process Throughput	lb/yr
Proposed Exhaust Flowrate	953.3 scfm
Proposed Exhaust Flowrate	25.5 Nm ³ /min
Number of Process Units	1
Hours of Operation	8760 hr/year
Emission Control	Filtration
Emission Control Efficiency	99 %
Exhausts To	Inside the building

Emission Factors¹

	(kg/cell)
Al	
Cu	
Ni	

Allowable PM Emissions

E = 3.59 P^{0.62}

Where:

E = Emissions in pounds per hour

P = Process weight rate in tons per hour

Emissions									
Pollutant	Cont	rolled	Uncontrolled						
Pollutant	(lb/hr)	(TPY)	(lb/hr)	(TPY)					
PM	4.41E-05	1.93E-04	4.41E-03	1.93E-02					
HAP	1.47E-05	6.44E-05	1.47E-03	6.44E-03					

Process Name - Emergency Generators				
Source ID	75-0851-04			
Emission Point ID	EG-1 through EG-3			

Manufacturer	Cummins
Number of Generators	2 Diesel-fired
Rated Capacity	2179 kW each
Rated Capacity	2922 bhp each
Fuel Consumption @ 100% Load ¹	141.3 gal/hr @ 100% Load

Manufacturer	Caterpillar
Number of Generators	1 Diesel-fired
Rated Capacity	750 kW each
Rated Capacity	1006 bhp each
Fuel Consumption @ 100% Load ¹	53.6 gal/hr @ 100% Load
Hours of Operation	500 hr/year

High Heat Value of Diesel Fuel

137,030 BTU/gal

Potential Emissions from Both Cummins Engines

Pollutant	PM	SO ₂	NO _x	СО	VOC	CO ₂ e	HAP
Emission Factor (lb/MMBtu) ²						165.2	0.0044
Emission Factor (g/bhp-hr) ²	0.16	0.14	5.30	0.57	0.22		
Emissions (lb/hr)	2.06	1.80	68.29	7.34	2.83	6397	0.17
Emissions (TPY)	0.5	0.5	17.1	1.8	0.7	1599	4.26E-02

Potential Emissions from Caterpillar Engine

Pollutant	PM	SO ₂	NO _x	СО	VOC	CO ₂ e	HAP
Emission Factor (lb/MMBtu) ²		1.5E-03				165.2	0.0044
Emission Factor (g/bhp-hr) ²	0.02		5.25	0.25	0.03		
Emissions (lb/hr)	0.04	1.10E-02	11.64	0.55	0.07	1213	3.23E-02
Emissions (TPY)	1.11E-02	2.75E-03	2.9	0.1	1.66E-02	303	8.08E-03

Potential Emissions from All Three Engines

Pollutant	PM	SO ₂	NO _x	CO	VOC	CO ₂ e	HAP
Emissions (lb/hr)	2.11	1.81	79.93	7.90	2.90	7610.68	0.20
Emissions (TPY)	0.5	0.5	20.0	2.0	0.7	1903	5.07E-02

1. From vendor specifications.

2. Emission factors for NO_x, CO, VOC, and PM from manufacturer performance data and emission factors for CO₂e from AP-42, Chapter 3.4, Table 3.4-1. Emission factors for HAP from AP-42, Chapter 3.4, Tables 3.4-3 and 3.4-4. For the Cummins engines the SO₂ emission factor from manufacturer performance data and for the Caterpillar engine, the SO₂ emission factor from AP-42, Chapter 3.4, Table 3.4-1.

Process Name - Dehumidifiers

Source ID	75-0851-03
Emission Point ID	DH-1 - DH-11

Hours of Operation

High Heat Value of Natural Gas

8760 hr/yr 1020 BTU/scf

Dehumidifier Numb	ber	Maximum Rated Heat Input (MMBtu/hr)
DH-1		1.170
DH-2		1.170
DH-3		1.437
DH-4		1.437
DH-5		1.170
DH-6		1.170
DH-7		1.437
DH-8		1.437
DH-9		1.437
DH-10 (New)		1.437
DH-11 (New)		1.437
	Total	14.739

Potential to Emit for all Dehumidifiers

Pollutant	PM	SO ₂	NO _x	СО	VOC	CO ₂ e	HAP
Emission Factor (lb/MMScf) ¹	7.6	0.6	100	84	5.5	120000	1.88
Emissions (lb/hr)	0.11	8.67E-03	1.45	1.21	0.08	1734.00	0.03
Emissions (TPY)	0.5	3.80E-02	6.3	5.3	0.3	7595	0.1

Potential to Emit for Two New Dehumidifiers (DH-10 and DH-11)

Pollutant	PM	SO ₂	NO _x	СО	VOC	CO ₂ e	HAP
Emission Factor (lb/MMScf) ¹	7.6	0.6	100	84	5.5	120000	1.88
Emissions (lb/hr)	0.02	1.69E-03	0.28	0.24	0.02	338.12	0.01
Emissions (TPY)	0.1	7.40E-03	1.2	1.0	0.1	1481	0.02

1. from AP-42, Chapter 1.4 Natural Gas Combustion

Process Name - Air Handling Units	
-----------------------------------	--

Source ID	75-0851-03
Emission Point ID	See Below

		Maximum
AHU/ARU/Door Hea	ter	Rated Heat
Number		Input
		(MMBtu/hr)
UH1		0.150
UH2		0.150
UH3		0.150
UH4		0.150
UH5		0.150
DAC 1a		0.345
DAC 1b		0.345
DAC 2a		0.345
DAC 2b		0.345
AHU 1		0.630
AHU 2		0.270
AHU 27		0.235
AHU 27a		0.235
ARU 1		1.125
ARU 2		1.125
ARU 3		2.160
ARU 4		1.260
ARU 5		1.260
ARU 6		1.125
ARU 7		1.125
ARU 8		1.125
ARU 9		1.26
ARU 10		1.26
	Total	16.325

Hours of Operation	8760 hr/yr
High Heat Value of Natural Gas	1020 BTU/scf

Proposed Emissions

Pollutant	PM	SO ₂	NO _x	СО	VOC	CO ₂ e	HAP
Emission Factor (lb/MMScf) ¹	7.6	0.6	100	84	5.5	120000	1.88
Emissions (lb/hr)	0.12	9.60E-03	1.60	1.34	0.09	1920.59	0.03
Emissions (TPY)	0.5	4.21E-02	7.0	5.9	0.4	8412	0.1

1. from AP-42, Chapter 1.4 Natural Gas Combustion

 Process Name - Diesel Storage Tank Associated with Caterpillar Emergency Generator (Insignificant)

 Source ID
 NA

 Emission Point ID
 NA

HORIZONTAL TANK EMISSION CALCULATION FORM (Annual Calculation)

Tank No. N	A		Tank type	Horizonta	I	Date		04/21/23	
Material stored D	iesel		Company	Envision	AESC US	Performe	d by	Shipp	
City S	myrna		State Tennessee						
Description D	iesel Storage			•					
INPUT DATA						CALCULA	TIONS	-	
		Symbol		Units			Symbol		Units
					Breathing losses				
Molecular Weight					Tank va	or space v	Vv	183.75	ft3
Molecular we	eight	Μv	200	Lb/lb-mole	Vapor de	nsity	Wv	2.78E-04	lb/ft3
Tank design data	-				Vapor sp	ace expansion	KE	0.02559	
Shell length		L	7.50	ft	Vented v	apor saturati	Ks	0.9986	ft2
Diameter		D	7.00	ft					
Effective Dia	ameter	DE	8.18	ft					
Liquid height		н	6.50	ft	Breathing losses		LB	0.48	lb/yr
Avg. Liquid h	neight	HI	3.25	ft				0.0002	TPY
Vapor space	e outage	Hvo	3.50	ft	Working losses		Lw	0.99	lb/yr
Tank volume)		2,158	gallons				0.0005	TPY
Turnovers Pe	er Year	N	12		TOTAL LOSSES		LT	1.46	lb/yr
Net Annual th	hroughput	Q	26,800	gallons/yr	-			0.0007	TPY
Tunover fact	or	KN	1.000						
Working loss	s product factor	Кр	1.00						
Meteorological data (A	Annual Averages)					Table 1			
Daily ave. an	nbient temp.	TAA	59.00	°F		Tank Pair	nt Solar Ab	sorptance	
Daily max. ar	mbient temp.	TAX	64.00	°F					
Daily min. an	nbient temp.	TAN	54.00	°F		Tank			
Daily ambien	t temp. range	DTA	10.00	°F		Paint	Solar Absorptance		
Tank paint so	olar absorptance (see adjacent	α	0.17			white/white	e	0.17	
Daily total ins	solation factor	I	1,282	Btu/ft2-day	/	Aluminum/	/Specular	0.39	
						gray/light		0.54	
Liquid bulk te	emperature	тв	59.02			Aluminum	/Diffuse	0.6	
Daily vapor to	emp. range	DTv	13.30	°F		grey/mediu	um	0.68	
Daily ave. liq	uid surface temp.	TLA	59.00	°F		519.00	°R		
Daily max. lic	quid surface temp.	TLX	64.00	°F		524.00	°R		
Daily min. liq	uid surface temp.	TIN	54.00	°F		514.00	°R		
VP @ daily a	ave. liquid surf. temp.	PvA	0.40	mm Hg		0.008	psia		
VP @ daily n	nax. liquid surf. temp.	PvX	0.40	mm Hg		0.008	psia		
VP @ daily n	nin. liquid surf. temp.	PvN	0.40	mm Hg		0.008	psia		
Daily vapor p	pressure range	DPv	-	mm Hg		0.000	psia		
Breather ven	t pressure setting range	DPB	0.03	mm Hg		0.001	psia		
Atmospheric	Pressure	PA	760.00	mm Hg		14.700	psia		

Calculations performed on this spreadsheet are taken from the USEPA AP-42- Section 7.1 Organic Liquid Storage Tanks

Appendix C Safety Data Sheets (Redacted) Appendix D Process Flow Diagrams (Redacted)

Bore – mm (in)	137.2 (5.4)		
Stroke – mm (in)	152.4 (6.0)		
Displacement – L (in ³)	27.03 (1649.47)		
Compression Ratio	16.5:1		
Aspiration	ТА		
Fuel System	MEUI		
Governor Type	ADEM™ A4		

Image shown may not reflect actual configuration

Standby	Prime	Standby	Prime	Emissions Performance
60 Hz ekW (kVA)				
750 (937)	680 (850)	800 (1000)	725 (906)	U.S. EPA Emergency Stationary Use Only (Tier 2)

Standard Features

Cat® Diesel Engine

- Meets U.S. EPA Emergency Stationary Use Only (Tier 2) emission standards
- Reliable performance proven in thousands of applications worldwide

Generator Set Package

- Accepts 100% block load in one step and meets
 NFPA 110 loading requirements
- Conforms to ISO 8528-5 G3 load acceptance requirements
- Reliability verified through torsional vibration, fuel consumption, oil consumption, transient performance, and endurance testing

Alternators

- Superior motor starting capability minimizes need for oversizing generator
- Designed to match performance and output characteristics of Cat diesel engines

Cooling System

- Cooling systems available to operate in ambient temperatures up to 50°C (122°F)
- · Tested to ensure proper generator set cooling

EMCP 4 Control Panels

- · User-friendly interface and navigation
- Scalable system to meet a wide range of installation requirements
- Expansion modules and site specific programming for specific customer requirements

Warranty

- 24 months/1000-hour warranty for standby and mission critical ratings
- 12 months/unlimited hour warranty for prime and continuous ratings
- Extended service protection is available to provide extended coverage options

Worldwide Product Support

- Cat dealers have over 1,800 dealer branch stores operating in 200 countries
- Your local Cat dealer provides extensive post-sale support, including maintenance and repair agreements

Financing

- Caterpillar offers an array of financial products to help you succeed through financial service excellence
- Options include loans, finance lease, operating lease, working capital, and revolving line of credit
- Contact your local Cat dealer for availability in your region

Engine

Air Cleaner

Single element
Dual element
Heavy duty

Muffler

□ Residential grade (25 dB)

Starting

Standard batteries
 Oversized batteries
 Standard electric starter(s)
 Jacket water

Alternator

Output voltage

□ 208∨
□ 240∨
□ 480∨
□ 600∨

Temperature Rise

(over 40°C ambient)

□ 150°C
□ 125°C
□ 105°C
□ 80°C

Winding type

Random wound

Excitation

□ Internal excitation (IE)

Attachments

- Anti-condensation heater
- Stator and bearing temperature monitoring and protection

Power Termination

Туре

Bus bar
 Circuit breaker
 400A
 800A
 1200A
 1600A
 2000A
 2500A
 3000A
 UL
 IEC
 3-pole
 4-pole
 Manually operated
 Electrically operated

Trip Unit

LSI LSI-G LSIG-P

Factory Enclosure

Sound attenuated

Attachments

Cold weather bundle
 DC lighting package
 Motorized louvers

Fuel Tank

□ 1000 gal (3785 L) □ 2000 gal (7571 L) □ 3600 gal (13627 L)

Control System

Controller

EMCP 4.2B
 EMCP 4.3
 EMCP 4.4

Attachments

Local annunciator module

- Remote annunciator module
- □ Expansion I/O module

Remote monitoring software

Charging

Battery charger – 10A
 Battery charger – 20A
 Battery charger – 30A

Vibration Isolators

Rubber
Spring
Seismic rated

Cat Connect

Connectivity

EthernetCellularSatellite

Extended Service Options

Terms

2 year (prime)
 3 year
 5 year
 10 year

Coverage

Silver
Gold
Platinum
Platinum Plus

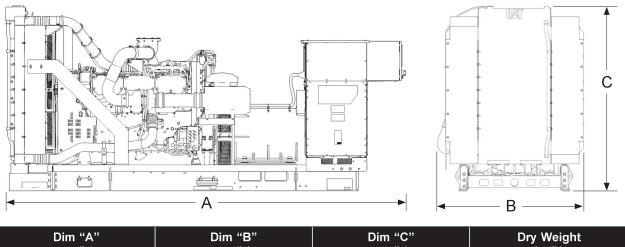
Ancillary Equipment

- Automatic transfer switch (ATS)
- Uninterruptible power supply (UPS)
- Paralleling switchgear
- Paralleling controls

Certifications

UL 2200 Listed
 CSA
 IBC seismic certification
 OSHPD pre-approval

Note: Some options may not be available on all models. Certifications may not be available with all model configurations. Consult factory for availability.


Package Performance

Performance	Sta	ndby	Pr	ime	Sta	ndby	Pr	ime
Frequency	60) Hz	60	Hz	60	Hz	60	Hz
Gen set power rating with fan	750	750 ekW		680 ekW		800 ekW		ekW
Gen set power rating with fan @ 0.8 power factor	937 kVA		850	kVA	1000) kVA	906 kVA	
Emissions	EPA ES	E (Tier 2)	EPA ES	E (Tier 2)	EPA ES	E (Tier 2)	EPA ES	E (Tier 2)
Performance number	DM9	071 - 03	DM90	073 - 02	DM76	696 - 02	DM90)69 - 02
Fuel Consumption	•		'				•	
100% load with fan – L/hr (gal/hr)	202.9	(53.6)	187.4	(49.5)	216.9	(57.3)	199.6	(52.7)
75% load with fan – L/hr (gal/hr)	162.4	(42.9)	149.6	(39.5)	171.7	(45.4)	157.8	(41.7)
50% load with fan – L/hr (gal/hr)	116.2	(30.7)	107.0	(28.3)	122.3	(32.3)	112.5	(29.7)
25% load with fan – L/hr (gal/hr)	70.6	(18.7)	66.0	(17.4)	73.9	(19.5)	69.0	(18.2)
Cooling System								
Radiator air flow restriction (system) – kPa (in. water)	0.12	(0.48)	0.12	(0.48)	0.12	(0.48)	0.12	(0.48)
Radiator air flow – m³/min (cfm)	1200	(42377)	1200	(42377)	1200	(42377)	1200	(42377)
Engine coolant capacity – L (gal)	55.0	(14.5)	55.0	(14.5)	55.0	(14.5)	55.0	(14.5)
Radiator coolant capacity – L (gal)	41.0	(10.0)	41.0	(10.0)	41.0	(10.0)	41.0	(10.0)
Total coolant capacity – L (gal)	96.0	(24.5)	96.0	(24.5)	96.0	(24.5)	96.0	(24.5)
Inlet Air	·		÷				·	
Combustion air inlet flow rate – m³/min (cfm)	58.7	(2073.6)	56.0	(1977.7)	62.8	(2216.4)	60.3	(2129.4)
Exhaust System			·					
Exhaust stack gas temperature – °C (°F)	509.3	(948.7)	502.5	(936.5)	511.4	(952.5)	500.6	(933.0)
Exhaust gas flow rate – m³/min (cfm)	158.9	(5610.2)	149.7	(5285.5)	170.3	(6011.7)	160.7	(5674.4)
Exhaust system backpressure (maximum allowable) – kPa (in. water)	6.7	(27.0)	6.7	(27.0)	6.7	(27.0)	6.7	(27.0)
Heat Rejection								
Heat rejection to jacket water – kW (Btu/min)	324	(18441)	307	(17433)	330	(18785)	320	(18191)
Heat rejection to exhaust (total) – kW (Btu/min)	738	(41994)	693	(39387)	796	(45257)	741	(42135)
Heat rejection to aftercooler – kW (Btu/min)	139	(7898)	123	(6970)	162	(9235)	146	(8320)
Heat rejection to atmosphere from engine – kW (Btu/min)	110	(6249)	92	(5238)	110	(6240)	89	(5074)
Heat rejection from alternator – kW (Btu/min)	53	(3014)	47	(2644)	40	(2292)	37	(2081)
Emissions* (Nominal)								
NOx mg/Nm ³ (g/hp-h)	2637.1	(5.25)	2330.9	(4.68)	2580.0	(5.18)	2283.7	(4.61)
CO mg/Nm ³ (g/hp-h)	123.9	(0.25)	147.4	(0.29)	115.1	(0.23)	135.6	(0.27)
HC mg/Nm ³ (g/hp-h)	11.2	(0.03)	10.9	(0.02)	12.5	(0.03)	12.2	(0.03)
PM mg/Nm ³ (g/hp-h)	8.8	(0.02)	8.8	(0.02)	9.7	(0.02)	9.0	(0.02)

 $^{*}mg/Nm^{3}$ levels are corrected to 5% O₂. Contact your local Cat dealer for further information.

Weights and Dimensions

mm (in)	mm (in)	mm (in)	kg (lb)
4674 (184.0)	1723 (67.8)	2162 (85.1)	6622 (14,600)

Note: For reference only. Do not use for installation design. Contact your local Cat dealer for precise weights and dimensions.

Ratings Definitions

Standby

Output available with varying load for the duration of the interruption of the normal source power. Average power output is 70% of the standby power rating. Typical operation is 200 hours per year, with maximum expected usage of 500 hours per year.

Prime

Output available with varying load for an unlimited time. Average power output is 70% of the prime power rating. Typical peak demand is 100% of prime rated ekW with 10% overload capability for emergency use for a maximum of 1 hour in 12. Overload operation cannot exceed 25 hours per year.

Applicable Codes and Standards

AS 1359, CSA C22.2 No. 100-04, UL 142, UL 489, UL 869, UL 2200, NFPA 37, NFPA 70, NFPA 99, NFPA 110, IBC, IEC 60034-1, ISO 3046, ISO 8528, NEMA MG1-22, NEMA MG1-33, 2014/35/EU, 2006/42/EC, 2014/30/EU.

Note: Codes may not be available in all model configurations. Please consult your local Cat dealer for availability.

Data Center Applications

- ISO 8528-1 Data Center Power (DCP) compliant per DCP application of Cat diesel generator set prime power rating.
- All ratings Tier III/Tier IV compliant per Uptime Institute requirements.
- All ratings ANSI/TIA-942 compliant for Rated-1 through Rated-4 data centers.

Fuel Rates

Fuel rates are based on fuel oil of 35° API [16°C (60°F)] gravity having an LHV of 42,780 kJ/kg (18,390 Btu/lb) when used at 29°C (85°F) and weighing 838.9 g/liter (7.001 lbs/U.S. gal.)

www.cat.com/electricpower ©2019 Caterpillar

All rights reserved.

Materials and specifications are subject to change without notice. The International System of Units (SI) is used in this publication.

CAT, CATERPILLAR, LET'S DO THE WORK, their respective logos, "Caterpillar Yellow", the "Power Edge" and Cat "Modern Hex" trade dress as well as corporate and product identity used herein, are trademarks of Caterpillar and may not be used without permission.

2012 EPA Tier 2 Exhaust Emission Compliance Statement 2000DQKAB Stationary Emergency 60 Hz Diesel Generator Set

Compliance Information:

 The engine used in this generator set complies with U.S. EPA New Source Performance Standards for Stationary

 Emergency emission under the provisions of 40 CFR Part 60 Subpart IIII when tested per ISO 8178 D2.

 Engine Manufacturer:
 Cummins Inc

 EPA Certificate Number:
 CCEXL060.AAD-021-R01

 Effective Date:
 12/21/2011

 Date Issued:
 12/21/2011

 CARB / AQMD Certificate:
 CCEXL060.AAD(D593)

Engine Information:

Model:QSK60 / QSK60-G / QSK60-G6 NR2Engine Nameplate HP:2922Type:4 Cycle, 60°V, 16 Cylinder DieselAspiration:Turbocharged and CACEmission Control Device:Electronic Control

Bore:	6.25 in. (159 mm)
Stroke:	7.48 in. (190 mm)
Displacement:	3673 cu. in. (60.2 liters)
Compression Ra	itio: 14.5:1
Exhaust Stack D	iameter: 2 - 14 in.

Diesel Fuel Emission Limits

D2 Cycle Exhaust Emissions	Grams per BHP-hr Gram				ns per kl	s per kWm-hr	
	NOx + NMHC	<u>co</u>	<u>PM</u>	<u>NOx +</u> NMHC	<u>co</u>	<u>PM</u>	
Test Results - Diesel Fuel (300-4000 ppm Sulfur)	4.2	0.7	0.10	5.6	1.0	0.14	
EPA Emissions Limit	4.8	2.6	0.15	6.4	3.5	0.20	
Test Results - CARB Diesel Fuel (<15 ppm Sulfur)	3.8	0.7	0.09	5.1	1.0	0.12	
CARB Emissions Limit	4.8	2,6	0.15	6.4	3.5	0.20	

The CARB emission values are based on CARB approved calculations for converting EPA (500 ppm) fuel to CARB (15 ppm) fuel. Test Methods: EPA/CARB Nonroad emissions recorded per 40CFR89 (ref. ISO8178-1) and weighted at load points prescribed in Subpart E, Appendix A for Constant Speed Engines (ref. ISO8178-4, D2)

Diesel Fuel Specifications: Cetane Number: 40-48. Reference: ASTM D975 No. 2-D.

Reference Conditions: Air Inlet Temperature: 25°C (77°F), Fuel Inlet Temperature: 40°C (104°F). Barometric Pressure: 100 kPa (29.53 in Hg), Humidity: 10.7 g/kg (75 grains H2O/lb) of dry air; required for NOx correction, Restrictions: Intake Restriction set to a maximum allowable limit for clean filter; Exhaust Back Pressure set to a maximum allowable limit.

Tests conducted using alternate test methods, instrumentation, fuel or reference conditions can yield different results. Engine operation with excessive air intake or exhaust restriction beyond published maximum limits, or with improper maintenance, may result in elevated emission levels.

Exhaust Emission Data Sheet 2000DQKAB*

60 Hz Diesel Generator Set

Engine Information:					
Model: Cummins Inc QSK6	0-G6 NR2		Bore:	6.25 in. (158 m	
Type: 4 Cycle, 60°V, 16 C	4 Cycle, 60°V, 16 Cylinder Diesel			7.48 in. (189 m	
Aspiration: Turbocharged and L			Displacement:	3673 cu. In. (6	0.1 liters)
Aftercooled					
Compression Ratio: 14.5;1					
Emission Control Device: Turboo	harged and Low	/ Temperature /	Aftercooled		
			ĩ	-	
	1/4	1/2	3/4	<u>Full</u>	Full
PERFORMANCE DATA	Standby	<u>Standby</u>	Standby	<u>Standby</u>	<u>Prime</u>
BHP @ 1800 RPM (60 Hz)	730	1460	2189	2919	2639
Fuel Consumption (gal/Hr)	46.5	82	107.3	141.3	124.1
Exhaust Gas Flow (CFM)	6510	10220	12000	14920	13780
Exhaust Gas Temperature (°F)	772	838	873	893	884
EXHAUST EMISSION DATA					
HC (Total Unburned Hydrocarbons)	0.22	0,13	0.10	0.11	0.09
NOx (Oxides of Nitrogen as NO2)	2.70	3.10	4.70	5.30	6.00
CO (carbon Monoxide)	0.57	0.36	0.13	0.18	0.16
PM (Particular Matter)	0.16	0.14	0.04	0.04	0.02
SO2 (Sulfur Dioxide)	0.14	0,13	0.11	0.11	0.11
Smoke (Bosch)	0.50	0.60	0.20	0.20	0.10
		A	I values are Grams	per HP-Hour, Sn	noke is Bosch#

TEST CONDITIONS

Data is representative of steady-state engine speed (± 25 RPM) at designated genset loads. Pressures, temperatures, and emission rates were stabilized.

Fuel Specification:	ASTM D975 No. 2-D diesel fuel with 0.03-0.05% sulfur content (by weight), and 40-48 cetane number.
Fuel Temperature:	99 \pm 9 °F (at fuel pump inlet)
Intake Air Temperature:	77±9°F
Barometric Pressure:	29.6 ± 1 in. Hg
Humidity:	NOx measurement corrected to 75 grains H2O/lb dry air
Reference Standard:	ISO 8178

The NOx, HC, CO and PM emission data tabulated here are representative of test data taken from a single engine under the test conditions shown above. Data for the other components are estimated. These data are subjected to instrumentation and engine-to-engine variability. Field emission test data are not guaranteed to these levels. Actual field test results may vary due to test site conditions, installation, fuel specification, test procedures and instrumentation. Engine operation with excessive air intake or exhaust restriction beyond published maximum limits, or with improper maintenance, may results in elevated emission levels.

Model: DQKAB Frequency: 60 Fuel type: Diesel KW rating: 2000 standby 1825 prime

Emissions level: EPA NSPS Stationary Emergency Tier 2

> Generator set data sheet

Our energy working for you.™

Exhaust emission data sheet:	EDS-1065
Exhaust emission compliance sheet:	EPA-1099
Sound performance data sheet:	
Cooling performance data sheet:	MCP-158
Prototype test summary data sheet:	PTS-267
Standard set-mounted radiator cooling outline:	0500-4392
Optional set-mounted radiator cooling outline:	0500-4780
Optional heat exchanger cooling outline:	
Optional remote radiator cooling outline:	0500-4393

Standby		by			Prime		Continuous		
Fuel consumption	kW (k	VA)			kW (k	VA)			kW (kVA)
Ratings	ngs 2000 (2500) 1825 (2281)		2000 (2500)		1825 (2281)				
Load	1/4	1/2	3/4	Full	1/4	1/2	3/4	Full	Full
US gph	46.5	82	107.3	141.3	43.4	75.1	100.6	124.1	
L/hr	176	311	407	535	164	285	381	470	

Engine	Standby rating	Prime rating	Continuous
Engine manufacturer	Cummins Inc.	rucing	
Engine model	QSK60-G6 NR2		
Configuration	Cast iron, V 16 cyl	inder	
Aspiration	Turbocharged and	low temperature aftercoolec	The second second
Gross engine power output, kWm (bhp)	2179 (2922)	1975 (2647)	
BMEP at set rated load, kPa (psi)	2420 (350)	2185 (316)	
Bore, mm (in)	159 (6.25)		
Stroke, mm (in)	190 (7.48)		
Rated speed, rpm	1800		
Piston speed, m/s (ft/min)	11.4 (2244)		
Compression ratio	14.5:1		
Lube oil capacity, L (qt)	334 (304)		
Overspeed limit, rpm	2100 ±50		
Regenerative power, kW	168		

Fuel flow

ruernow		
Maximum fuel flow, L/hr (US gph)	946 (250)	
Maximum fuel inlet restriction, kPa (in Hg)	30 (9.0)	
Maximum fuel inlet temperature, °C (°F)	71 (160)	

1

©2011 Cummins Power Generation Inc. All rights reserved. Cummins Power Generation and Cummins are registered trademarks of Cummins Inc. "Our energy working for you." is a trademark of Cummins Power Generation. Specifications are subject to change without notice. D-3336h (10/11)

Air	Standby rating	Prime rating	Continuous rating
Combustion air, m³/min (scfm)	178 (6295)	159 (5615)	
Maximum air cleaner restriction, kPa (in H,O)	6.2 (25)		
Alternator cooling air, m ³ /min (cfm)	204 (7300)	16 P. & 19 P. B. C. P.	

Exhaust	The second second		
Exhaust flow at set rated load, m ³ /min (cfm)	436 (15385)	385 (13580)	
Exhaust temperature, °C (°F)	488 (900)	466 (870)	
Maximum back pressure, kPa (in H ₂ O)	6.8 (27)		

Standard set-mounted radiator cooling

			and the second se
Ambient design, °C (°F)	40 (104)	40 (104)	
Fan load, kWm (HP)	57 (77)	57 (77)	
Coolant capacity (with radiator), L (US gal)	492 (130)	492 (130)	
Cooling system air flow, m ³ /min (scfm)	1922 (67870)	1922 (67870)	
Total heat rejection, MJ/min (Btu/min)	99.5 (94395)	99.5 (94395) 91.0 (86382)	
Maximum cooling air flow static restriction, kPa (in H,O)	0.12 (0.5)	0.12 (0.5)	
Maximum fuel return line restriction kPa (in Hg)	30 (9.0)	30 (9.0)	

Optional set-mounted radiator cooling

Ambient design, °C (°F)	50 (122)		
Fan load, kW _m (HP)	57 (77)		
Coolant capacity (with radiator), L (US gal)	617 (163)		
Cooling system air flow, m ³ /min (scfm)	2795 (98700)	The state of the second	
Total heat rejection, MJ/min (Btu/min)	99.5 (94395)	91 (86382)	A CONTRACTOR OF A CONTRACT
Maximum cooling air flow static restriction, kPa (in H ₂ O)	0.12 (0.5)		
Maximum fuel return line restriction, kPa (in Hg)	30 (9.0)		

Optional heat exchanger cooling

Set coolant capacity, L (US gal)		
Heat rejected, jacket water circuit, MJ/min (Btu/min)	Constant In 191	
Heat rejected, aftercooler circuit, MJ/min (Btu/min)		
Heat rejected, fuel circuit, MJ/min (Btu/min)		
Total heat radiated to room, MJ/min (Btu/min)		
Maximum raw water pressure, jacket water circuit, kPa (psi)		
Maximum raw water pressure, aftercooler circuit, kPa (psi)		
Maximum raw water pressure, fuel circuit, kPa (psi)		
Maximum raw water flow, jacket water circuit, L/min (US gal/min)		
Maximum raw water flow, aftercooler circuit, L/min (US gal/min)		
Maximum raw water flow, fuel circuit, L/min (US gal/min)		
Minimum raw water flow at 27 °C (80 °F) inlet temp, jacket water circuit, L/min (US gal/min)		
Minimum raw water flow at 27 °C (80 °F) inlet temp, aftercooler circuit, L/min (US gal/min)		
Minimum raw water flow at 27 $^\circ C$ (80 $^\circ F) inlet temp, fuel circuit, L/min (US gal/min)$		
Raw water delta P at min flow, jacket water circuit, kPa (psi)		
Raw water delta P at min flow, aftercooler circuit, kPa (psi)		
Raw water delta P at min flow, fuel circuit, kPa (psi)		
Maximum jacket water outlet temp, °C (°F)		
Maximum aftercooler inlet temp, °C (°F)		
Maximum aftercooler inlet temp at 25 °C (77 °F) ambient, °C (°F)		
Maximum fuel return line restriction, kPa (in Hg)		

Our energy working for you.™

www.cumminspower.com

©2011 Cummins Power Generation Inc. All rights reserved. Cummins Power Generation and Cummins are registered trademarks of Cummins Inc. "Our energy working for you." is a trademark of Cummins Power Generation. Specifications are subject to change without notice. D-3336h (10/11)

Optional remote radiator cooling ¹	Standby rating	Prime rating	Continuous rating
Set coolant capacity, L (USg gal)		and and the second s	
Max flow rate at max friction head, jacket water circuit, L/min (US gal/min)	1902 (502)		
Max flow rate at max friction head, aftercooler circuit, L/min (US gal/min)	606 (160)		
Heat rejected, jacket water circuit, MJ/min (Btu/min)	46.9 (44526)	44.1 (41824)	
Heat rejected, aftercooler circuit, MJ/min (Btu/min)	33.9 (32156)	30.4 (28887)	
Heat rejected, fuel circuit, MJ/min (Btu/min)			
Total heat radiated to room, MJ/min (Btu/min)			
Maximum friction head, jacket water circuit, kPa (psi)	69 (10)		
Maximum friction head, aftercooler circuit, kPa (psi)	48 (7)		
Maximum static head, jacket water circuit, m (ft)	18 (60)		
Maximum static head, aftercooler circuit, m (ft)	18 (60)	•	
Maximum jacket water outlet temp, °C (°F) 104 (220)		100 (212)	
Maximum aftercooler inlet temp at 25 °C (77 °F) ambient, °C (°F)	49 (120)		
Maximum aftercooler inlet temp, °C (°F)	66 (150)		
Maximum fuel flow, L/hr (US gph)			
Maximum fuel return line restriction, kPa (in Hg)	30 (9.0)		

Weights²

Unit dry weight kgs (lbs)	14628 (32249)
Unit wet weight kgs (lbs)	15155 (33410)

Notes:

6 . · · •

¹ For non-standard remote installations contact your local Cummins Power Generation representative. ² Weights represent a set with standard features. See outline drawing for weights of other configurations.

Derating factors

Standby	Engine power available up to 447 m (1466 ft) at ambient temperatures up to 40 °C (104 °F). From 447 m (1466 ft) up to 2001 m (6562 ft) engine derates at 5.1% per 305 m (1000 ft) for 40 °C (104 °F). Above these elevations, derate an additional 5.8% per 305 m (1000 ft). For temperatures from 40 °C (104 °F) to 50 °C (122 °F) derate 14.6%. For temperatures above 50 °C (122 °F) derate 29% per 10 °C (50 °F).				
Prime	Engine power available up to 447 m (1466 ft) at ambient temperatures up to 40 °C (104 °F). From 447 m (1466 ft) up to 2001 m (6562 ft) engine derates at 5.1% per 305 m (1000 ft) for 40 °C (104 °F). Above these elevations, derate an additional 5.8% per 305 m (1000 ft). For temperatures from 40 °C (104 °F) to 50 °C (122 °F) derate 14.6%. For temperatures above 50 °C (122 °F) derate 29% per 10 °C (50 °F).				
Continuous					

.

Ratings definitions

Emergency standby power	Limited-time running power	Prime power (PRP):	Base load (continuous)
(ESP):	(LTP):		power (COP):
Applicable for supplying power to varying electrical load for the duration of power interruption of a reliable utility source. Emergency Standby Power (ESP) is in accordance with ISO 8528. Fuel Stop power in accordance with ISO 3046, AS 2789, DIN 6271 and BS 5514.	Applicable for supplying power to a constant electrical load for limited hours. Limited Time Running Power (LTP) is in accordance with ISO 8528.	Applicable for supplying power to varying electrical load for unlimited hours. Prime Power (PRP) is in accordance with ISO 8528. Ten percent overload capability is available in accordance with ISO 3046, AS 2789, DIN 6271 and BS 5514.	Applicable for supplying power continuously to a constant electrical load for unlimited hours. Continuous Power (COP) is in accordance with ISO 8528, ISO 3046, AS 2789, DIN 6271 and BS 5514.

©2011 Cummins Power Generation Inc. All rights reserved. Cummins Power Generation and Cummins are registered trademarks of Cummins Inc. "Our energy working for you." is a trademark of Cummins Power Generation. Specifications are subject to change without notice. D-3336h (10/11)

Alternator data

Voltage	Connection'	Temp rise degrees C	Duty	Single phase factor [*]	Max surge kVA⁴	Winding No.	Alternator data sheet	Feature Code
380	Wye, 3-phase	150/125/105	S/P/C		7327	13	ADS-515	B595
380	Wye, 3-phase	125/105/80	S/P/C		7327	13	ADS-515	B598
380	Wye, 3-phase	105/80	S/P		7327	13	ADS-515	B599
380	Wye, 3-phase	80	S		7963	13	ADS-516	B660
440	Wye, 3-phase	125/105/80	S/P/C		7361	312	ADS-334	B663
440	Wye, 3-phase	105	S		7284	12	ADS-515	B665
480	Wye, 3-phase	125/105/80	S/P/C	61 N N N	7361	312	ADS-334	B462
480	Wye, 3-phase	105/80	S/P		7695	312	ADS-335	B463
480	Wye, 3-phase	125/105	P/C		6716	312	ADS-332	B464
480	Wye, 3-phase	80	S		8412	12	ADS-516	B601
480	Wye, 3-phase	80	Р	ingen (1990) offic	8412	12	ADS-516	B694
480	Wye, 3-phase	105	S		7695	12	ADS-517	B796
600	Wye, 3-phase	125/105/80	S/P/C		7361	07	ADS-334	B465
600	Wye, 3-phase	105/80	S/P		7695	07	ADS-335	B301
600	Wye, 3-phase	125/105	P/C		6716	07	ADS-333	B466
600	Wye, 3-phase	80	S		7265	07 -	ADS-516	B604
4160	Wye, 3-phase	125/105/80	S/P/C		6307	51	ADS-518	B467
4160	Wye, 3-phase	105/80	S/P		6307	51	ADS-518	B313
4160	Wye, 3-phase	80	S		6307	51	ADS-518	B605
4160	Wye, 3-phase	105	S		6307	51	ADS-520	B795
12470-13800	Wye, 3-phase	125/105/80	S/P/C		6062	91	ADS-521	B448
12470	Wye, 3-phase	105/80	S/P		6038	87	ADS-521	B567
13200-13800	Wye, 3-phase	105/80	S/P		6062	91	ADS-521	B612
12470	Wye, 3-phase	80	S		6685	87	ADS-522	B607
13200-13800	Wye, 3-phase	80	S	ing the second	8012	91	ADS-523	B628
13800	Wye, 3-phase	80	S	and second second	6833	91	ADS-521	B610
13800	Wye, 3-phase.	105	S.		6062	91	ADS-523	B797

Notes: -

¹Limited single phase capability is available from some three phase rated configurations. To obtain single phase rating, multipy the three phase kW rating by the Single Phase Factor³. All single phase ratings are at unity power factor.

² Standby (S), Prime (P) and Continuous ratings (C).

³ Factor for the Single Phase Output from Three Phase Alternator formula listed below.

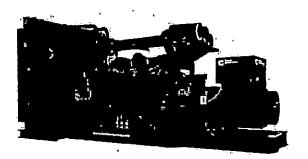
⁴Maximum rated starting kVA that results in a minimum of 90% of rated sustained voltage during starting.

Formulas for calculating full load currents:

Three phase output	Single phase output		
kW x 1000	kW x SinglePhaseFactor x 1000	1	in a A
Voltage x 1.73 x 0.8	Voltage	11 e	, , , , , , , , , , , , , , , , , , ,
Cummins Power Generation 1400 73 ^{ed} Avenue N.E. Minneapolis, MN 55432 USA Phone: 763 574 5000 Fax: 763 574 5298			

Warning: Back feed to a utility system can cause electrocution and/or property damage. Do not connect to any building's electrical system except through an approved device or after building main switch is open.

Our energy working for you.™


www.cumminspower.com

©2011 Cummins Power Generation Inc. All rights reserved. Cummins Power Generation and Cummins are registered trademarks of Cummins Inc. "Our energy working for you." is a trademark of Cummins Power Generation. Specifications are subject to change without notice. D-3336h, (10/11)

1 .

Diesel generator set QSK60 series engine

LUME

Generati

> Specification sheet 1600 kW - 2000 kW 60 Hz

Our energy working for you.TM

Description

Cummins Power Generation commercial generator sets are fully integrated power generation systems providing optimum performance, reliability and versatility for stationary standby and prime power applications. Codes or standards compliance may not be available with all model configurations – consult factory for availability.

	60 Hz	50 Hz	60 Hz	50 H			
	Standby rating	3	Prime rating				
Internationa Building Code	for seismic a following Inte	The generator set package is available certified for selsmic application in accordance with the following international Building Code: IBC2000, IBC2003, IBC2006 and IBC2009.					
U.S. EPA	EPA New Sou CFR 60 subp	urce Performan art III Tier 2 ext applications mu	Emergency U.S ce Standards, 40 naust emission st be applied pe	D			
(ŲL)	Stationary Er Hz low voltag control is Lisi U.S. and Car assemblies a continuous o	The generator set is available listed to UL 2200, Stationary Engine Generator Assemblies for all 60 Hz low voltage models. The PowerCommand control is Listed to UL 508 - Category NITW7 for U.S. and Canadian usage. Circuit breaker assemblies are UL 489 Listed for 100% continuous operation and also UL 869A Listed Service Equipment.					
		All low voltage models are CSA certified to product class 4215-01.					
	The Prototype Test Support (PTS) program verifies the performance integrity of the generator set design. Cummins Power Generation products bearing the PTS symbol meet the prototype test requirements of NFPA 110 for Level 1 systems.						
1 <u>50 9001</u>	certified to IS	This generator set is designed in facilities certified to ISO 9001 and manufactured in facilities certified to ISO 9001 or ISO 9002.					
model config	urations - con	sult factory fo	or availability.				

Features

Cummins[®] heavy-duty engine - Rugged 4-cycle, industrial diesel delivers reliable power, low emissions and fast response to load changes.

Alternator - Several alternator sizes offer selectable motor starting capability with low reactance 2/3 pitch windings, low waveform distortion with non-linear loads and fault clearing short-circuit capability.

Permanent magnet generator (PMG) - Offers enhanced motor starting and fault clearing short-circuit capability.

Control system - The PowerCommand[®] electronic control is standard equipment and provides total genset system integration including automatic remote starting/stopping, precise frequency and voltage regulation, alarm and status message display, AmpSentryTM protection, output metering, auto-shutdown at fault detection and NFPA 110 Level 1 compliance.

Cooling system - Standard integral set-mounted radiator system, designed and tested for rated ambient temperatures, simplifies facility design requirements for rejected heat.

NFPA - The genset accepts full rated load in a single step in accordance with NFPA 110 for Level 1 systems.

Warranty and service - Backed by a comprehensive warranty and worldwide distributor network.

	Standby ratin	g	Prime rating	1	Continuous	rating	Data sheet	bs
Model	60 Hz kW (kVA)	50 Hz kW (kVA)	60 Hz kW (kVA)	50 Hz kW (kVA)	60 Hz kW (kVA)	50 Hz kW (kVA)	60 Hz	50 Hz
DQKAA	1750 (2188)		1600 (2000)			an an an	D-3335	· · · · · · · · · · · · · · · · · · ·
DQKAB	2000 (2500)		1825 (2281)				D-3336	

©2011 Cummins Power Generation Inc. All rights reserved. Cummins Power Generation and Cummins are registered trademarks of Cummins Inc. PowerCommand, AmpSentry and "Our energy working for you." are trademarks of Cummins Power Generation. Other company, product or service names may be trademarks or service marks of others. Specifications are subject to change without notice. S-1514g (6/11)

Generator set specifications

Governor regulation class	ISO8528 Part 1 Class G3
Voltage regulation, no load to full load	± 0.5%
Random voltage variation	± 0.5%
Frequency regulation	Isochronous
Random frequency variation	± 0.25%
Radio frequency emissions compliance	IEC 801.2 through IEC 801.5; MIL STD 461C, Part 9

Engine specifications

Bore	158.8 mm (6.25 in)
Stroke	190.0 mm (7.48 in)
Displacement	60.2 litres (3673 in ³)
Configuration	Cast iron, V 16 cylinder
Battery capacity	2200 amps minimum at ambient temperature of -18 °C to 0 °C (0 °F to 32 °F)
Battery charging alternator	40 amps
Starting voltage	24 volt, negative ground
Fuel system	Cummins' Modular Common Rail System
Fuel filter	Dual element, 10 micron filtration, spin-on fuel filters with 15 micror water separator
Air cleaner type	Dry replaceable element
Lube oil filter type(s)	Four spin-on, combination full flow filter and bypass filters
Standard cooling system	High ambient radiator

Alternator specifications

Design	Brushless, 4 pole, drip proof revolving field		
Stator	2/3 pitch		
Rotor	Single bearing, flexible discs		
Insulation system	Class H on low and medium voltage, Class F on high voltage		
Standard temperature rise	150 °C standby at 40 °C ambient		
Exciter type	PMG (permanent magnet generator)		
Phase rotation	A (U), B (V), C (W)		
Alternator cooling	Direct drive centrifugal blower fan		
AC waveform total harmonic distortion	< 5% no load to full linear load, < 3% for any single harmonic		
Telephone influence factor (TIF)	< 50 per NEMA MG1-22.43		
Telephone harmonic factor (THF)	< 3		

Available voltages

60 Hz line-	Hz line-neutral/line-line		50 Hz line-neutral/line-line				
• 219/380	• 277/480	• 2400/4160	• 7620/13200	• 220/380	• 240/415	• 1905/3300	• 3810/6600
• 254/440	• 347/600	• 7200/12470	• 7970/13800	• 230/400	• 254/440	• 3640/6300	• 6350/11000

* Note: Consult factory for other voltages.

Generator set options and accessories

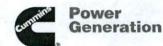
- Engine 208/240/480 V coolant heater for ambient above 4.5 °C (40 °F)
- 208/240/480 V coolant heater for ambient below 4.5 °C (40 °F)

Control panel

- □ 120/240 V 100 W control
- anti-condensation heater □ Paralleling configuration
- Remote fault signal package
 Run relay package

□ 80 °C rise □ 105 °C rise □ 125 °C rise

Alternator


- 120/240 V 300 W anti-condensation
- heater Temperature sensor - RTDs,
- 2/phase Temperature sensor - alternator bearing RTD
- Differential current transformers

* Note: Some options may not be available on all models - consult factory for availability.

Our energy working for you.™

www.cumminspower.com

©2011 Cummins Power Generation Inc. All rights reserved. Cummins Power Generation and Cummins are registered trademarks of Cummins Inc. PowerCommand, AmpSentry and "Our energy working for you." are trademarks of Cummins Power Generation. Other company, product or service names may be trademarks or service marks of others. Specifications are subject to change without notice. S-1514g (6/11)

Exhaust system

- silencer
- Residential grade exhaust silencer
- T Critical grade exhaust silencer

Cooling system Remote radiator

- Battery

Generator set □ AC entrance box

- Battery rack with hold-down -floor standing
- Circuit breaker set mounted
- Disconnect switch set mounted
- -PowerCommand Network
- Remote annunciator panel

- Spring isolators
 2 year warranty
 10 year major components warranty

Control system PCC 3201

PowerCommand control is an integrated generator set control system providing governing, voltage regulation, engine protection and operator interface functions. Major features include:

- Integral AmpSentry Protective Relay providing a full range of alternator protection functions that are matched to the alternator provided.
- Battery monitoring and testing features and smart starting control system.
- Three phase sensing, full wave rectified voltage regulation system, with a PWM output for stable operation with all load types.
- Control suitable for operation in ambient temperatures from -40 °C to +70 °C (-40 °F to +158 °F) and altitudes to 5000 meters (13,000 feet).
- Prototype tested; UL, CSA, and CE compliant.
 InPower[™] PC-based service tool available for detailed diagnostics.
- Optional Echelon® LONWORKS® network interface.

Operator/display panel

- Off/manual/auto mode switch
- Manual run/stop switch
- Panel lamp test switch
- Emergency stop switch
- Exercise switch
- Alpha-numeric display with pushbutton access for viewing engine and alternator data and providing setup, controls and adjustments
- LED lamps indicating not in auto, common warning, common shutdown, remote start
- Configurable for local language

Engine protection

- Overspeed shut down
- Low oil pressure warning and shut down
- High coolant temperature warning and shut down
- High oil temperature warning
- Low coolant level warning or shut down
- Low coolant temperature warning
- High and low battery voltage warning
- Weak battery warning
- Dead battery shut down
- Fail to start (overcrank) shut down
- Fail to crank shut down
- Redundant start disconnect
- Cranking lockout
- Sensor failure indication

Engine data

- DC voltage
- Lube oil pressure
- Coolant temperature
- Lube oil temperature
- Engine speed
- Engine ECM data

AmpSentry AC protection

- Over current and short-circuit shut down
- Over current warning
- Single and three phase fault regulation
- Over and under voltage shut down
- Over and under frequency shut down
- Overload warning with alarm contact
- Reverse power and reverse Var shut down

Alternator data

- Line-to-line and line-to-neutral AC volts
- Three phase AC current
- Frequency
- Total and individual phase power factor, kW and kVA
- Bus voltage and frequency (with paralleling options)

Other data

- Genset model data
- Start attempts, starts, running hours
- kW hours (total and since reset)
- Fault history
- Load profile (accessible with InPower)

Governing

- Digital electronic isochronous governor
- Temperature dynamic governing
- Smart idle speed mode

Voltage regulation

- Digital PWM electronic voltage regulation
- Three phase line-to-neutral sensing
- Single and three phase fault regulation
- Configurable torque matching

Control functions

- Data logging on faults
- Fault simulation (requires inPower)
- Time delay start and cooldown
- Cycle cranking
- Configurable customer outputs (4)
- Configurable network inputs (8) and outputs (16) (with optional network)
- Remote emergency stop

Paralleling (Option)

- Active digital phase lock loop synchronizer
- Isochronous kW and kVar load sharing controls
- kW import/export and kVar/PF control for utility (mains) paralleling

Options

- Thermostatically controlled space heater
- Key-type mode switch
- Ground fault module
- Auxiliary relays (3)
- -Echelon LONWORKS interface
- Modion Gateway to convert to Modbus (loose)
- PowerCommand iWatch web server for remote monitoring and alarm notification (loose)

Power

Generation

- Digital input and output module(s) (loose)
- -E-Remote annunciator (loose)
- Paralleling
- Power transfer control

For further detail see document S-1444.

Our energy working for you.™

www.cumminspower.com

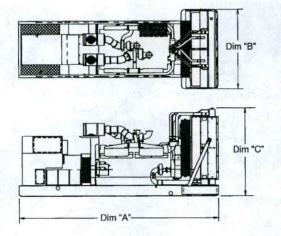
@2011 Cummins Power Generation Inc. All rights reserved .. Cummins Power Generation and Cummins are registered trademarks of Cummins Inc. PowerCommand, AmpSentry and "Our energy working for you," are trademarks of Cummins Power Generation. Other company, product or service names may be trademarks or service marks of others. Specifications are subject to change without notice. S-1514g (6/11)

Ratings definitions

Emergency standby power (ESP):

Applicable for supplying power to varying electrical load for the duration of power interruption of a reliable utility source. Emergency Standby Power (ESP) is in accordance with ISO 8528. Fuel Stop power in accordance with ISO 3046, AS 2789, DIN 6271 and BS 5514.

Limited-time running power (LTP):


Applicable for supplying power to a constant electrical load for limited hours. Limited Time Running Power (LTP) is in accordance with ISO 8528.

Prime power (PRP):

Applicable for supplying power to varying electrical load for unlimited hours. Prime Power (PRP) is in accordance with ISO 8528. Ten percent overload capability is available in accordance with ISO 3046, AS 2789, DIN 6271 and BS 5514.

Base load (continuous) power (COP):

Applicable for supplying power continuously to a constant electrical load for unlimited hours. Continuous Power (COP) in accordance with ISO 8528, ISO 3046, AS 2789, DIN 6271 and BS 5514.

This outline drawing is for reference only. See respective model data sheet for specific model outline drawing number.

Do not use for installation design

Model	Dim "A" mm (in.)	Dim "B" mm (in.)	Dim "C" mm (in.)	Set Weight* dry kg (lbs)	Set Weight* wet kg (lbs)
DQKAA	6175 (243)	2534 (100)	3043 (120)	15231 (33569)	15396 (33932)
DQKAB	6175 (243)	2534 (100)	3043 (120)	17382 (38309)	17908 (39470)

* Note: Weights represent a set with standard features. See outline drawings for weights of other configurations.

Cummins Power Generation 1400 73rd Avenue N.E. Minneapolis, MN 55432 USA Telephone: 763 574 5000 Fax: 763 574 5298

Warning: Back feed to a utility system can cause electrocution and/or property damage. Do not connect to any building's electrical system except through an approved device or after building main switch is open.

Our energy working for you.TM

www.cumminspower.com

©2011 Cummins Power Generation Inc. All rights reserved..Cummins Power Generation and Cummins are registered trademarks of Cummins Inc. PowerCommand, AmpSentry and "Our energy working for you." are trademarks of Cummins Power Generation. Other company, product or service names may be trademarks or service marks of others. Specifications are subject to change without notice. S-1514g (6/11)

