From: <u>Air.Pollution Control</u>
To: <u>APC Permitting</u>

Subject: FW: Application for Production Air Permit for Hormann LLC

Date: Tuesday, November 3, 2020 4:05:55 PM
Attachments: Production Air Permit for Hormann LLC.pdf

From: Ethan, Herman <e.herman@hormann.us>

Sent: Tuesday, November 3, 2020 15:26

To: Air.Pollution Control <Air.Pollution.Control@tn.gov>

Cc: Collin Scherdell <Collin@stevensenvironmental.com>; Shea Cofer (shea@stevensenvironmental.com) <shea@stevensenvironmental.com> **Subject:** [EXTERNAL] Application for Production Air Permit for Hormann LLC

To Whom It May Concern,

I am submitting this application for the production air permit on behalf of Hormann LLC. If there are any questions or concerns please let me know. Thank you.

Sincerely,

Ethan Herman
Engineering Department Manager
Hörmann LLC
450 Airport Rd
Sparta, TN 38583

Mobile: 630.788.3093 Fax: 630.859.8122 November 3, 2020

Division of Air Pollution Control Tennessee Department of Environment & Conservation William R. Snodgrass Tennessee Tower 312 Rosa L. Parks Avenue, 15th Floor Nashville, TN 37243

Subject:

Hormann LLC

True Minor Operating Permit Application

ESRN: 93-0118

Greetings:

With this letter, Hormann LLC submits an operating permit application and initial startup certification for Source 02 and requests extension to the current construction permit for Source 03. The facility in Sparta, TN currently holds Construction Permit 974979. The facility has five (5) emission sources as outlined in the table below. Insignificant sources were approved in the letter from TDEC dated December 19, 2018 and are therefore exempt from permitting.

Source	Status
01, 04, 05	Insignificant
02	Installation complete. Hormann is submitting an operating permit application
	and startup certification for this source.
03	Not yet installed. Hormann LLC requests an extension to Construction
	Permit 974979 for installation of this source.

Hormann started production on Source 02 on October 5, 2020 as indicated on the attached startup certification page. This operating permit application is being submitted in a timely manner in accordance with Condition G11 of permit 974979. Hormann understands that the operation may continue under the construction permit since the application was submitted within 30 days of startup.

A conversation between Jerry Swinea of TDEC and Shea Cofer, environmental consultant, occurred on October 23, 2020, in which it was discussed that Hormann should request the operating permit for Source 02 and request an extension to the construction permit for Source 03. Hormann requests that the construction permit for Source 03 be extended until January 2023. A separate startup certification and operating application will be submitted within 30 days of startup of Source 03.

The calculations included in this application for Source 02 include window cutting. This is an enclosed milling process which has a small dust collector vacuum for industrial hygiene purposes.

Startup certification, application pages, process flow diagram, and emission calculations are attached. If you have questions or comments, please contact Ethan Herman, Engineering Manager at (423) 337-3993, or my consultant, Shea Cofer at (615) 418-1414.

I hereby certify that, based on information and belief formed after reasonable inquiry, the statements and information in the document are true, accurate, and complete.

Sincerely,

Camron Rudd President

Attachments: Source 02 Startup Certification

Source 02 Operating Permit Application

Source 02 Operating Permit Application

DEPARTMENT OF ENVIRONMENT AND CONSERVATION DIVISION OF AIR POLLUTION CONTROL William R. Snodgrass Tennessee Tower

APC 100

312 Rosa L. Parks Avenue, 15th Floor, Nashville, TN 37243 Telephone: (615) 532-0554, Email: Air.Pollution.Control@TN.gov

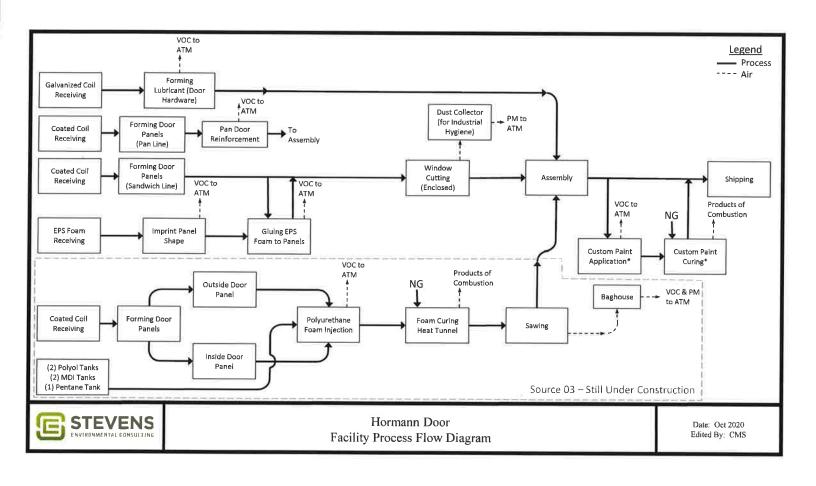
NON-TITLE V PERMIT APPLICATION FACILITY IDENTIFICATION

	Type or print and submit. Attach appropriate source description forms.								
					ORMATION				
1.	. Organization's legal name and SOS control number [as registered with the TN Secretary of State (SOS)]								
	ormann LLC 000932606								
2.	Site name (if differer	nt from legal nam	ie)						
3.	3. Is a construction permit application fee being submitted? Yes No volume (see instructions for appropriate fee to submit)								
4.	Site address (St./Rd./	/Hwy.)					County name		
450	Airport Road						White		
	City			Zip	code		5. NAICS or SIC code		
Spa	irta			385	83		332321		
6.	Site location	Latitude				Longitude			
	(in lat. /long.)	36.05565 N				85.52171 W			
	CONTACT INFORMATION (RESPONSIBLE PERSON)								
7.	Responsible person/	/Authorized con	tact			Phone number	Phone number with area code		
Can	mron Rudd					(630) 859-300	(630) 859-3000		
	Mailing address (St./	/Rd./Hwy.)				Fax number v	with area code		
450	Airport Road								
	City		State		Zip code	Email address			
Spa	ırta		TN		38583				
		CONT	ACT INF	ORN	ATION (TECH	INICAL)			
8.	Principal technical c	ontact				Phone number	er with area code		
Etha	an Herman					(630) 859-3000 ext. 160			
	Mailing address (St./	/Rd./Hwy.)				Fax number with area code			
450	Airport Road					(630) 859-8122			
	City		State		Zip code	Email address	5		
Spa	rta		TN		38583	e.herman@ho	rmann.us		
4 7		CON	TACT IN	FOR	MATION (BIL				
9.	Billing contact		Phone numbe	er with area code					
	Mailing address (St./l	Rd./Hwy.)				Fax number w	vith area code		
	City		State		Zip code	de Email address			

APC 100

						- AI C 10	
RI RI RI					FORMATION		
process emissior and include a Un uniquely identific	10. Description of air contaminant source(s) and Unique Source ID(s). List, identify, and briefly describe process emission sources, fuel burning installations, and incinerators that are contained in this application and include a Unique Source ID for each source. The Unique Source ID is a name/number/letter, which uniquely identifies the air contaminant source(s), like Boiler #1, Paint Line #1, Engine #1, etc. (see instructions for more details)						
qualified as insignifica exempt from permitti permit including Sour	nufacturing facility has 5 int activities as stated in ng. Two permitted emis ce 02. Source 03 has no requested extension to t	the lession s t beer	etter from sources ar n installed	TDEC date of the second second displayed and second	ated December 19, 201 pelow. This application not included in this ap	8. They are therefore is for an operating plication. Source 03 will	
Source Description							
02 EPS Foam Pa	anel Imprinting and Glui	ing					
/							
						*	
11. Is the air contam	inant source(s) in a no	natt	ainment a	area? If	"Yes". then minor so	urce BACT must be	
addressed. Yes	No						
12. Normal	Hours/Day	_	s/Week		Weeks/Year	Days/Year	
operation: 13. Percent annual	24	7	-l- B.4		52	365	
throughput	Dec. – Feb. 25	25	ch – May		June – August 25	Sept. – Nov. 25	
	TYPE OF PERMIT	REQ	UESTED (d	heck a	opropriate box)		
14. Operating permit	Date construction star September 2018	ted	Date cor Oct 2020		Date of ownership of	change (if applicable)	
	Last permit number(s)		•	Emissio	on Source Reference N	umber(s)	
	Construction Permit 97	74979	•	93-0118	3-02		
Construction Last permit number(s) Emission Source Reference Number(s) permit							
If you chose Construct	tion permit above, then	choo	se either N	lew Con	struction, Modification	, or Location Transfer	
New Construction Sta				ompletio			

Location Transfer Transfer date


Modification

Date completed or will complete

Address of last location

Date modification started or will start

15. Describe changes that have been made to this equipment or operation(s) since the last construction or operating permit application:
Potential production volumes have been updated since the construction application. The new volumes are reflected in the attached emission calculations.
An additional adhesive process has been added to the Source 02 emission calculations, which has the potential to contribute 0.14 tpy VOC.
16. Comments
Note that the address for this facility has changed from 420 Airport Rd, as written on the construction permit, to 450 Airport Rd. The physical location has not changed.
7
SIGNATURE
Based upon information and belief formed after a reasonable inquiry, I, as the responsible person of the above mentioned facility, certify that the information contained in this application is accurate and true to the best of my knowledge. As specified in TCA Section 39-16- $702(a)(4)$, this declaration is made under penalty of perjury.
17. Signature (application must be signed before it will be processed) Date
3N2, 7d7 d
Signer's name (type or print) Title Phone number with area code
Comron Rudd President, Hormann UC 63\$ -518-\$623

DEPARTMENT OF ENVIRONMENT AND CONSERVATION DIVISION OF AIR POLLUTION CONTROL William R. Snodgrass Tennessee Tower

APC 101

William R. Snodgrass Tennessee Tower 312 Rosa L. Parks Avenue, 15th Floor, Nashville, TN 37243 Telephone: (615) 532-0554, Email: Air.Pollution.Control@TN.gov

NON-TITLE V PERMIT APPLICATION EMISSION POINT DESCRIPTION

	Type	or	print and submit f	or eac	th stack or air con	taminan	t cource	Submit with th	A DC 100
	туре	UI			IDENTIFICATION				e APC 100.
	rganization'		egal name and SC	-					of State (SOS)]
	2. Unique Source ID (name/number/letter which uniquely identifies this air contaminant source, like Boiler #1) D2: EPS Foam Panel Imprinting and Gluing								
02-1	and addition	al f	Point ID (name/r ugitive emissions	(see co	omment)			·	oint, like Stack #1)
EPS F	4. Brief description of air contaminant source (Attach a diagram if appropriate): EPS Foam Panel Imprinting and Gluing Operation: EPS foam panels are imprinted or embossed to the shape of the garage door. Emissions are from the foam burned away in the impressions and gluing to the metal door panels.								
	nission poin cation	t	Latitude 36.05565 N		Longitude 85.52171 W		6. Dis	tance to neare	st property line (Ft.)
ar LV			THE PARTY OF THE P	S	TACK AND EMISS	ION DA	TA		No. 30 17 (18) 84
er	ack or nission pint data: →	Height above grade (Ft.) 45		- 1	Diameter (Ft.) 2.12	Temperature (°F) Ambient		% of time over 125°F 0	Direction of exit (Up, down or horizontal) Up
	ata at exit enditions: →		ow (actual Ft. ³ /Mir ,600 ACFM	· 1	Velocity (Ft. /Sec.) 50		Moisture (Grains/Ft. ³) Ambient		Moisture (Percent) Ambient
sta	ata at andard anditions: →	10,000			Velocity (Ft. /Sec.) 50		Moistu Ambier	re (Grains/Ft. ³) nt	Moisture (Percent) Ambient
Op	8. Monitoring device and recording instrument (check all that apply): Opacity SO ₂ NO _X Strip Electronic Other (specify No monitor monitor monitor chart data logger in comments) (none)							•	
	mission limit								ure compliance with ressure drop, etc.).

10. Air contaminants. Emission estimates for each air contaminant emitted from this point should be based on stack sampling results or engineering calculations. Calculations should be attached on a separate sheet. (see instructions for more details)

Air contaminants	Average Emissions (Lbs./Hr.)	Maximum Emissions (Lbs./Hr.)	Concen- tration	Average Emissions (Ton/Yr.)	Potential Emissions (Ton/Yr.)	Emissions Estimation Method Code *	Control Devices	Control Effi- ciency %
Particulate matter (PM)	0.002	0.002	**	0.01	0.01			
Sulfur dioxide (SO ₂)			***					
Carbon monoxide (CO)			PPM					
compounds (VOC)	0.99	0.99	PPM	4.98	4.98	2	000	N/A
Nitrogen oxides (NO _X)			PPM					
Hydrogen fluoride (HF)								
Hydrogen chloride (HCl)	*							
Lead (Pb)								
Greenhouse gases (CO ₂ equivalents)								
Hazardous air pollutant (specify) MDI (101-68-8)	0.71	0.71		3.10	3.10	2	000	N/A
Hazardous air pollutant (specify) Styrene (100-42-5)	0.007	0.007		0.03	0.03	2	000	N/A
Hazardous air pollutant (specify)								
Hazardous air pollutant (specify)								
Hazardous air pollutant (specify)								
Other (specify)								
Other (specify)							۵	
Other (specify)								
Other (specify)								

1	1	C	a	m	m	P	ni	1
		_	v			C		

Emissions from foam panel imprinting have a dedicated ventilation point. Gluing operation emissions are fugitive. There is not a control device for either process.

SIGNATURE

If this form is being submitted at the same time as an APC 100 form, then a signature is not required on this form. Date this form regardless of whether a signature is provided. If this form is NOT being submitted at the same time as an APC 100 form, then a signature is required.

Based upon information and belief formed after a reasonable inquiry, I, as the responsible person of the above mentioned facility, certify that the information contained in this application is accurate and true to the best of my knowledge. As specified in TCA Section 39-16-702(a)(4), this declaration is made under penalty of perjury.

12. Signature	Date	
Signer's name (type or print)	Title	Phone number with area code

- * Refer to the tables in the instructions for estimation method and control device codes.
- ** Exit gas particulate matter concentration units: Process Grains/Dry Standard Ft³ (70⁰F), Wood fired boilers Grains/Dry Standard Ft³ (70⁰F), all other boilers Lbs. /Million BTU heat input.
- *** Exit gas sulfur dioxide concentrations units: Process PPM by volume, dry bases, and boilers Lbs. /Million BTU heat input

DEPARTMENT OF ENVIRONMENT AND CONSERVATION DIVISION OF AIR POLLUTION CONTROL

William R. Snodgrass Tennessee Tower

312 Rosa L. Parks Avenue, 15th Floor, Nashville, TN 37243 Telephone: (615) 532-0554, Email: Air.Pollution.Control@TN.gov

NON-TITLE V PERMIT APPLICATION PROCESS OR FUEL BURNING SOURCE DESCRIPTION

Type or print. Submit with the APC 100.								
GENERAL IDENTIFICATION AND DESCRIPTION								
1. Organization's legal name and SOS control number [as registered with the TN Secretary of State (SOS)] Hormann LLC 000932606 2. Emission Source Reference Number 93-0118-02								
3. Is this air contaminant source subject to an NSPS or NESHAP rule? If Yes, list rule citation, including Part, Subpart, and applicable Sections:								
4. Unique Source ID (see instructions) 5. Unique Emission Point ID (see instructions)								
02: EPS Foam Panel Imprinting and G	· ·	Source 02 Fugitives	,	,				
6. Description of air contaminant	source							
EPS Foam Panel Imprinting and Gluir door. Emissions are from the foam b								
7. Type of air contaminant source	(Check only one opt	ion to the right)						
Process Emission Source: For each process emission source, submit a separate application. (Check at right and complete lines 8, 9, and 14)								
Process Emission Source with in procheated. For each process emission so complete lines 8 through 14)								
Non-Process fuel burning source: Pro Complete this form for each boiler o Description Form (APC 101) for each	r fuel burner and cor	mplete a Non-Title V Emissio	n Point					
	S EMISSION SOURC	E DESCRIPTION AND DATA						
8. Type of operation: Continuous	Batch	Normal batch time	Norr	nal batches/day				
9. Process material inputs and	Diagram	Input rates (pounds/ho					
In-process solid fuels	reference	Design		Actual				
A. N/A (Foam Panel Imprinting)	Source 02	N/A		N/A				
	B. PURMELT 513C GLUE Source 02 7.07 7.07							
C. Teroson MS 939NA Adhesive	Source 02	2.95		2.95				
D.								
E.								
F _s								
G.								
Totals		10.02	10.02					

APC 102

^{*} A simple process flow diagram must be attached.

DESCRIPTION OF BOILER, BURNER, ENGINE, OR OTHER FUEL BURNING SOURCE									
10. Boiler or burner d	ata: (Con	nplete li	nes 10 thr	ough 14 ເ	using a separ	ate for	m for each bo	iler,	, burner, etc.)
Serial Number				Тур	e of firing***				
Rated horsepower		Rat	ed input o	l capacity (1	10 ⁶ BTU/Hr.)	Othe	r rating (specif	fy ca	apacity and units)
Date constructed		Date ma	anufacture	ed	Date of last	modifi	cation (explair	n in	comments below)
*** Cyclone, spreader	** Source with a common stack will have the same stack number. *** Cyclone, spreader (with or without reinjection), pulverized (wet or dry bottom, with or without reinjection), other stoker (specify type, hand fired, automatic, or other type (describe below in comments).								
FUEL	USED IN	BOILER	, BURNER	R, ENGINE	, OR OTHER	FUEL !	BURNING SOL	JRC	E DE LES PONT
11. Fuel data: (Comple		rocess	emission s	source wit				s fu	el burning source)
Primary fuel type (s			1				pe(s) (specify)		
Fuels used	Annual	usage		ly usage	% Cultur	% Ash	BTU value		(For APC use only)
			Design	Average	e Sulfur	Ash	of fuel	\perp	SCC code
Natural gas:	10 ⁶ Cu.		Cu. Ft.	Cu. Ft.	//////////////////////////////////////	///// /////	1,000		
#2 Fuel oil:	10 ³ Gal	že.	Gal.	Gal.		11/11			
#5 Fuel oil:	10 ³ Gal.	5 8	Gal.	Gal.		///// /////			
#6 Fuel oil:	10 ³ Gal.	tii	Gal.	Gal.		///// /////			
Coal:	Tons		Lbs.	Lbs.					
Wood:	Tons		Lbs.	Lbs.	///////////////////////////////////////	///// /////			
Liquid propane:	10 ³ Gal.	•6	Gal.	Gal.	///////	///// /////	85,000		
Other (specify type & units):									
12. If Wood is used as a fuel, specify types and estimate percent by weight of bark									
13. If Wood is used wit	:h other (fuels, s	pecify per	rcent by v	weight of wo	od ch	arged to the b	ouri	ner.

APC 102

14. Comments						
If this forms in his property of the distance of the same	SIGNATURE					
If this form is being submitted at the same Date this form regardless of whether a sign as an APC 100 form, then a signature is req	nature is provided. If this form					
Based upon information and belief formed after a reasonable inquiry, I, as the responsible person of the above mentioned facility, certify that the information contained in this application is accurate and true to the best of my knowledge. As specified in TCA Section 39-16-702(a)(4), this declaration is made under penalty of perjury.						
15. Signature		Date				
Signer's name (type or print)	Title	Phone number with area code				

Plantwide Production Data Hormann Door Sparta, Tennessee

Direct data entry

300,000	Potential Annu	Potential Annual Production Volume					
75,000	25%	25% Sandwich Doors					
120,000	40%	Pan Doors					
105,000	35%	Polyurethane Injection Doors					
8,760	Operating Hou	Operating Hours (production)					
3,000	Gallons Annua	Usage of Custom Paint					
61,920	Pounds Annual	Usage of EPS Foam Panel Glue (PUR 513C)					
35	kg/hour Pentai	kg/hour Pentane consumption at full system speed					
1,035	kg/hour Methy	kg/hour Methylene Diphenyl Diisocyanate (MDI) consumption at full system speed					
627	kg/hour Polyol	consumption at full system speed					

Max Foam Component / Blowing Agent Usage Rate				
Component	(lb/month)	(lb/year)	(tpy)	
Pentane	56,328	675,930	338	
MDI	1,665,686	19,988,226	9,994	
Polyol	1,009,067	12,108,810	6,054	
Total	2,731,081	32,772,966	6,392	

Plantwide Emission Summary Hormann Door Sparta, TN

				Criteria F	Poluttant Emissi	ons (tpy)				Hazardous Air Pollutant (HAP) Emissions		ions
Source	Description	TSP ²	PM10 ²	PM2.5 ²	NOx	VOC	SO2	со	CO2eq	Methylene Diphenyl Diisocyanate (MDI) CAS:101- 68-8	Styrene CAS:100-42-5	Tolal HAPs
001 Insignificant	Forming Door Hardware	1-1	28	*		0,21	(H)	181	-	-	941	0.00
002	EPS Foam Panel Imprinting and Gluing Operation	0,01	0,01	-	Ħ	4,98	365		(#E	3,10	0.03	3,13
003 ³	Polyurethane Foam Injection, Heat Tunnel, and Sawing Operation	2,57	2,57	2,57	0.26	25.87	0,002	0.22	318,37	0,0007	-	0,0007
004 Insignificant	Custom Paint Application (Includes Paint Cure Oven Burner and Replacement Air Unit Combustion Emissions)	0,18	0.18	0,18	2.36	4,48	0,01	1_96	2,850,96	20	22.1	0.00
005 Insignificant	Fugitives: Blowing Agent Tank Recirc Loop	(45)	255	5.5		0,58	200	;±:			ж:	0,00
	Totals *	2.76	2.76	2.75	2.63	36.13	0.02	2.20	3,169.33	3.10	0.03	3.13
	Totals Excluding Source 03 =	0.19	0.19	0.18	2.36	10.25	0.01	1.98	2,850.96	3.10	0.03	3.13

Note:

1) Source 002 VOC emission calculations based on maximum garage door production of 300,000 Doors per Year

2) TSP, PM10 and PM2.5 include filterable and condensable particulate matter.

3) Source 03 is not installed at the time of initial operating permit application for Source 02. Source 03 remains under Construction Permit 974979,

Source 001 (Insignificant) Forming Door Hardware VOC Emissions from Forming lubricant for galvanized coil forming (Insignificant Activity)

Operating Parameters

Hours of Operation

8,760 hrs/yr

Lubricant Name	Annual Usage (gal)	Material Density (lb/gal)	VOC Content (%)	VOC Er	nissions
Edditant Name	Ailliual Osage (gai)	Material Density (ID/gai)	VOC Content (70)	lb/year	TPY
921 DS 1MO CANT RUST (M2)	55	7.089	90%	350.9	0.18
251 ROLL FILM	10	6.672	99%	66.1	0.03
				Total	0.21

Example Calculation:

VOC Emissions = Annual Usage (gal) x Material Density (lb/gal) x VOC Content (%)

Source 002

Imprinting Panel Shape in EPS Foam¹

VOC Emissions from EPS Foam Loss during Imprinting Door Foam Panels.

EPS = Expanded Polystryene

Direct Data Entry

Operating Parameters

Hours of Operation 8,760 hrs/yr

Ventilation Rate 10,600 CFM

Foam Loss Calculation:

24 Impressions per average 12 ft by

Number of impressions 7 ft Door

Production Rate¹ 75,000 Doors produced per year

Foam Loss Rate (Volume) 0.0334 Ft³ of foam is burned away per impression

Annual Imprinting EPS Foam Loss

(Volume) 60,120 Ft³ of foam burned away per year (from imprinting)

Assumed additional Foam loss from

cutting and router 1.5% Margin of Safety - from cutting panels with hot wire or routers for windows

Annual Total Foam Loss (volume) 61,022 Ft³ of foam lost annually from imprinting and cutting

Emission Calculation:

EPS Foam Density 1.0 pcf or lb/ft³ Nominally 1pcf per EPS Foam Tech Sheet

Tolerance for Density Variance 10%

EPS Foam VOC Content

5% per EPS Foam SDS from Pentanes
EPS Foam HAP Content

0.10% Styrene content per EPS Foam SDS

Source Summary	VOC ²		HAP (Styrene)	
	lb/hr	TPY	lb/hr	TPY
Emissions from EPS Panel Imprinting and Cutting	0.38	1.68	0.007	0.03

Notes and Example Calculation:

1) VOC emission calculations based on maximum garage door production of

300,000 Doors per Year

2) VOC emissions (TPY) = [EPS Foam Density (pcf) x Annual EPS Foam Loss from Imprinting and cutting (fi ³) x EPS Foam VOC Content(%)]/2,000 lb/ton

Source 002 **EPS Foam Panel Gluing Emissions** VOC and HAP Emissions from Annual Usage of PURMELT Adhesive

Direct Data Entry

Operating Parameters

Hours of Operation

8,760 hrs/yr

PURMELT 513C GLUE contains

HAP Content

5% Percent Methylenebls(phenylisocyanate). Also known as MDI. CAS

number 101-68-8

Current Annual Usage of EPS Foam Panel Glue

(PURMELT 513C)

61,920 Lbs per year

Multiplier for increased production

2 Assumed that at full capacity for 1 shift at the TN plant, production/glue usage doubles.

Source Summary	HAPs (VOC) from MDI		
	lb/hr	tpy	
Emissions from Gluing EPS Foam to Door Panels	0.71	3.10	

Example Calculation:

HAP Emissions from MDI (tpy) = [Annual usage of PURMELT 513C (lbs/yr) x Multiplier for increased production x HAP Content (%)] / 2,000 lb/ton

Source 002 EPS Foam Panel Gluing Emissions VOC Emissions from Annual Usage of TEROSON MS 939NA Adhesive

Direct Data Entry

Operating Parameters

Hours of Operation

8,760 hrs/yr

Production volume

120,000 Pan Doors

Adhesive VOC Content

1.62% Per TEROSON MS 939NA GREY SDS

Adhesive Usage

0.216 lbs per pan door

Source Summary	HAPs (VOC) from MDI		
	lb/hr	tpy	
Emissions from Gluing EPS Foam to Door Panels	0.05	0.21	

Example Calculation:

VOC Emissions (tpy) = [Annual Door Production (Qty) x Adhesive Usage per Door (lb) x VOC Content (%)] / 2,000 lb/ton

Source 002

Window Cutting

This process is enclosed, and the dust collector is used for industrial hygiene.

Operating Hours	8,760 hr/yr	
Doors Per year	37,500 (assuming 50%	% receive windows)
Max cut length / door	209 in	1008 X 317mm X 2
Cut width	0.39 in	
Max Foam Thickness	1.856 in	
Foam Density	1 lb/ft ³	
Foam Material Loss	2 tpy	
Steel Thickness	0.03 in	
Steel Density	500 lb/ft ³	
Steel Material Loss	13 tpy	

D 16 II 1 1 D	Process	Capture		Interior	PI	М
Dust Collector I.D.	Material Loss	Efficiency ¹		Settling Factor ³	lb/hr	tpy⁴
Window Cutting DC	15	100%	99.9%	50%	0.002	0.01

Example Calculations and Notes:

- (1) Closed Process
- (2) Engineering estimate
- (3) Dust Collector exhausts inside the building
- (4) Emissions = Process Material Loss * Capture Efficiency * (1-Control Eff.) * (1-Settling Factor)

Source 003 Polyurethane Foam Injection VOC emissions from blowing agent, MDI

VOC (Pentane) Emissions

Development of Emission Factor

 Average Pentane (blowing agent) added
 Direct data entry
 Ib/hr

 Assumed Pentane Released in Manufacturing
 77.16
 lb/hr

 Average inlet mass to ATM
 5,79
 lb/hr

Emission Factor 0.075 lb VOC to ATM/lb Pentane added

VOC Emissions from Manufacturing

Maximum Annual Pentane Usage (Blowing Agent added to process)		VOC Emi	ssions
(lbs/yr)	Emission Factor	(lbs/yr)	(TPY)
675.930	0,075	50,695	25.35

Notes and Example Calculation:

1) Conservative Estimate based upon engineering judgement and testing results in similar industry processes

2) VOC Emissions (TPY) = [Maximum Pentane Added(lbs/yr) x Emission Factor(lb VOC to ATM/lb Pentane added)]/2,000 lb/tor

Fugitive Emissions MDI - HAPs

MDI Calculations RCAP Combined

Page 104 (App A) Vapor Pressure / Temperature chart

Emission Calculation Development (MDI)

Page 109 (App B) Vapor Pressure Adjustment Factors (K)

Average Foam Injection rate	3,741	lb/l
MDI Introduced	2,282	lb/h
L _c (MDI Emissions) =	1 2621	lb/y
Margin of Compliance ¹ =	15%	
L _c (MDI Emissions) ≂	1.4514	lb/y

Equation for Calculating Stack Emissions of MDI from Doors

Section 10.0 page 5-25 of MDI Emissions Reporting Guidelines for the Polyurethanes Industry

Lc = Vair * (1 / 359) * (273:15 / Tproc) * (VPMDI / 760) * Mw * KMDI

Tproc = 158 °F (or 70°C in the polyurethane line heat tunnel)

Tproc = 343.15 K

VP_{MDI} = 1.36E-03 mm Hg per App A MDI Emissions Reporting Guidelines...

Mw = 250.26 this is the molecular weight of MDI

K_{MDI} = 0.659 adjustment factor (function of MDI Concentration in feedstock and temperature) App B MDI Emissions Reporting Guidelines...

359 359 the molar volume of an ideal gas in ft³/lb-mole @ 0°C and 1-atmosphere

Mixture = 61% MDI 61.0%

Vair (Annual Volume of Air Displaced)

Door Section Volume	(44)
Avg. Section Height	21 inch
Avg. Section Thickness	1.75 inch
Avg. Section Width	12 ft

Volume per section	3.0625	ft ³
Average Door Number of		sections / garage
sections	6	door
Production rate Number of		
sections/yr	630,000	sections/year

Annual Volume of Air displaced		1969
≠ Vair =	1,929,375	ft ³

MDI Emissions Calculations

Max. MDI Usage	MDI Fugitive Emissions		
(ibs/yr)	(lb/yr)	(tpy)	
19,988,226	1.45	0.0007	

Notes:

(1) Based on process knowledge, variability is estimated at 10%. A conservative value of 15% is used in calculations. This value may be adjusted in the future as additional emissions data is obtained.

Operating Parameters

Fuel Type Natural Gas

Maximum Firing Rate

Unit Description (MMBtu/hr)

Heat Tunnel for Polyurethane Foam Injection 0.614 MMBtu/hr

Operating hours 8,760 hr/yr

 Annual Fuel Usage
 Natural Gas
 Hourly Usage

 Heat Tunnel
 5
 MMCF/yr
 602
 Cu. Ft./hr

Emission Calculations

Emission Factors for Natural Gas Combustion 1,2

	lb/10 ⁶ scf	Ib/MMBtu-HHV	
Particulate Matter (PM _{Total})	7.6	0.0075	AP-42
Particulate Matter (PM _{Cond})	5.7	0.0056	AP-42
Particulate Matter (PM _{Filter}) ³	1.9	0.0019	AP-42
Nitrogen Oxides (NO _x)	100	0.0980	AP-42
Carbon Monoxide (CO)	84	0.0820	AP-42
Sulfur Dioxide (SO ₂)	0.6	0.0006	AP-42
VOC	5.5	0.0054	AP-42
Carbon Dioxide (CO ₂)	120,000	117.65	AP-42
Methane (CH ₄)	2.3	2.255E-03	AP-42
Nitrous Oxide (N₂O)	2.2	2.157E-03	AP-42

Natural Gas Emissions

Heat Tunnel

	2 11	Annual *,5
	lb/hr	ton/year
Particulate Matter (PM _{Total}) ³	0.00	0.02
Particulate Matter (PM ₁₀) ³	0.00	0.02
Particulate Matter (PM _{2.5}) ³	0.00	0.02
Nitrogen Oxides (NO _x)	0.06	0.26
Carbon Monoxide (CO)	0.05	0.22
Sulfur Dioxide (SO ₂)	0.000	0.00
Combustion VOC	0.00	0.01
Carbon Dioxide (CO ₂)	72	316
Methane (CH₄)	0.00	0.01
Nitrous Oxide (N2O)	1.32E-03	0.006
CO ₂ Equivalent (CO ₂ eq) ⁷	-	318

GW	/P ⁶
CH4	25
N2O	298

Example Calculations/Notes:

- (1) Compilation of Air Pollutant Emission Factors, AP-42, Supplement D, Fifth Edition, Section 1.4, Tables 1.4-1 and 1.4-2, July 1998, Small Boilers < 100 MMBtu/hr
- (2) Per AP-42, Table 1.4-1 and 1.4-2, to convert from lb/10⁶ scf to kg/10⁶ m³, multiply by 16. To convert from lb/10⁶ scf to lb/MMBtu, divide by 1,020.
- (3) Assume $PM_{Total} = PM_{2.5} = PM_{10}$. (Includes filterable and condensable particulate matter)
- (4) Maximum Emissions (lb/hr) = Emission Factor (lb/MMscf) * Natural Gas Usage (MMCF)
- (5) Annual Emissions (tpy) = Average Emissions (lb/hr) * 8,760 (hr/yr) / 2,000 (lb/ton)
- (6) GWP from 40 CFR 98 Subpart A Table A-1
- (7) CO_2 Equivalent (CO_2 eq) = CO_2 + [GWP_{CH4} * CH_4] + [GWP_{N2O} * N_2O]

Source 003

Polyurethane Foam Injection Line Sawing Operation: VOC released to Dust Collector

Operating Parameters

Hours of Operation

8,760 hrs/yr

Maximum Potential to Emit - VOC

Maximum Annual Pentane Usage	VOC Loss at Manufacturing		Section Foam Trimmed ^{2,3}	VOC Emissions ^{4,5}	
(lbs/yr)	(lbs/yr)	(lbs/yr)	(%)	(lbs/yr)	(tpy)
675.930	50 695	625,236	0.16%	1.026	0.51

lb/hr 0.12

Notes:

- (1) VOC Available at Sawing (lbs) = Max Blowing Agent VOC (lbs) VOC Loss at Manufacturing (lbs)
- (1) VOC Available at Sawing (los) what blowing Agent voc (los) voc Loss at Maintacturing (los) (2) The maximum cut volume is determined first by calculating the trim from each side of the garage door section. As indicated, automated saws trim the edges of the doors, trimming approximately 3mm from each side. Average Garage door section width is 12 ft, average section height is 21 inch, and the average section thickness is 1,75 inch. All saw cut emissions are collected and routed to the baghouse dust collector. The table below contains a detailed calculation of the overall cut volume.
- (3) Assume that the mass of trimmed door section is proportional to volume (0.16%).
- (4) VOC Emissions (lbs) = VOC Available at Sawing (lbs) * Section Foam Trimmed (%) / 100
- (5) VOC Emissions (tons) = VOC Emissions (lbs) / 2000

Percentage of Total Volume	0.16%	
Number of cuts per section	2	cuts
Volume Trimmed/cut	0.0025	ft ³
Saw Kerf	3	mm
Volume of Section Trimmed		
Volume of Untrimmed Section	3.06	ft ³
Avg. Section Width	12	ft
Avg. Section Thickness	1.75	inch
Avg. Section Height	21	inch
Door Section Volume		

Source 003 Sawing Dust Collector Emissions

Operating Hours

8,760

hr/yr

Back avec I D	Flow Rate	Exhaust	Exhaust Cross-Sectional	Exit Velocity	Exit	Exit Temp	Moisture	Flow	Exhaust	Pf	и
Baghouse I.D.	(ACFM)	Diameter (ft)	Area (ft ²)	(ft/sec)	Velocity (ft/min)	(F)	Content %	Rate ¹ (DSCFM)	PM Conc. (gr/dscf)	lb/hr²	tpy ³
Sawing DC	3,531	1.00	0.79	74.9	4496.4	80	2.0%	3,397	0.02	0.58	2.55

Example Calculations and Notes:

- (1) Flow Rate (DSCFM) = (ACFM x ((460+70)/(460 + Exit Temp))) x (1 Moisture Content)
- (2) PM Emissions (lb/hr) = DSCFM x Exhaust PM Conc. x 60 (min/hr) x (1 lb / 7000 grains)
- (3) PM Emissions (tpy) = (PM Emissions (lb/hr) \times 8760 (hr/yr)) / (2000 (lb/ton))

Source 004 (Insignificant) Custom Paint Application VOC Emissions from Annual Usage of Custom Paint

Direct Data Entry

Operating Parameters

Hours of Operation

8,760 hrs/yr

VOC Content

Carbithane 11 Series Low VOC Coatings

2.9 lb/gal per Product Data Sheet

Custom Paint Application Annual Usage

3,000 Gallons per year

Source Summary	V	OC .
	lb/hr	TPY
Emissions from Custom Paint Application	0.99	4.4

Example Calculation:

VOC emissions (tpy) = Coating VOC Content (lb/gal) x Coating Annual Usage (gal/yr) / 2,000 lb/ton

Operating Parameters

Fuel Type Natural Gas

Maximum Firing Rate

Firin

Unit Description

(MMBtu/hr)

Custom Paint Cure Oven Burner Operating hours 2.50 8,760 MMBtu/hr hr/yr

Annual Fuel Usage	Natural Gas	Hourly Usage
Custom Paint Cure Oven Burner	21 MMCF/vr	2,451 Cu. Ft./hr

Emission Calculations

Emission Factors for Natural Gas Combustion 1,2

	lb/10 ⁶ scf	lb/MMBtu-HHV	
Particulate Matter (PM _{Total})	7.6	0.0075	AP-42
Particulate Matter (PM _{Cond})	5.7	0.0056	AP-42
Particulate Matter (PM _{Filter}) ³	1.9	0.0019	AP-42
Nitrogen Oxides (NO _x)	100	0.0980	AP-42
Carbon Monoxide (CO)	84	0.0820	AP-42
Sulfur Dioxide (SO ₂)	0.6	0.0006	AP-42
VOC	5.5	0.0054	AP-42
Carbon Dioxide (CO ₂)	120,000	117.65	AP-42
Methane (CH ₄)	2.3	2.255E-03	AP-42
Nitrous Oxide (N₂O)	2.2	2.157E-03	AP-42

Natural Gas Emissions

Custom Paint Cure Oven

		Annual 4,5
	lb/hr	ton/year
Particulate Matter (PM _{Total}) ³	0.02	0.08
Particulate Matter (PM ₁₀) ³	0.02	0.08
Particulate Matter (PM _{2.5}) ³	0.02	0.08
Nitrogen Oxides (NO _x)	0.25	1.07
Carbon Monoxide (CO)	0.21	0.90
Sulfur Dioxide (SO ₂)	0.001	0.01
Combustion VOC	0.01	0.06
Carbon Dioxide (CO ₂)	294	1,288
Methane (CH₄)	0.01	0.02
Nitrous Oxide (N ₂ O)	5.39E-03	0.024
CO ₂ Equivalent (CO ₂ eq) ⁷	229	1,296

GW	/P ⁶
CH4	25
N2O	298

Example Calculations/Notes:

- (1) Compilation of Air Pollutant Emission Factors, AP-42, Supplement D, Fifth Edition, Section 1.4, Tables 1.4-1 and 1.4-2, July 1998, Small Boilers < 100 MMBtu/hr
- (2) Per AP-42, Table 1.4-1 and 1.4-2, to convert from $lb/10^6$ scf to $kg/10^6$ m³, multiply by 16. To convert from $lb/10^6$ scf to lb/MMBtu, divide by 1,020.
- (3) Assume PM_{Total} = PM_{2.5} = PM₁₀. (Includes filterable and condensable particulate matter)
- (4) Maximum Emissions (lb/hr) = Emission Factor (lb/MMscf) * Natural Gas Usage (MMCF)
- (5) Annual Emissions (tpy) = Average Emissions (lb/hr) * 8,760 (hr/yr) / 2,000 (lb/ton)
- (6) GWP from 40 CFR 98 Subpart A Table A-1
- (7) CO_2 Equivalent (CO_2 eq) = CO_2 + [GWP_{CH4} * CH_4] + [GWP_{N2O} * N_2O]

Source 004 (Insignificant)

Misc. Combustion Sources - Heat Tunnel for Polyurethane Foam Injection; Custom Paint Cure Oven Burner; Air Replacement Unit

Operating Parameters

Fuel Type Natural Gas

Maximum Firing Rate

Unit Description (MMBtu/hr)

Replacement Make-up Air Unit
Operating hours

3.00 8,760 MMBtu/hr hr/yr

Annual Fuel Usage		Natural Gas	_	Hour	ly Usage
Replacement Make-up Air Unit	26	MMCF/yr	2,	941	Cu. Ft./hr

Emission Calculations

Emission Factors for Natural Gas Combustion 1,2

	lb/10 ⁶ scf lb/MMBtu-HHV		
	ID/ TU SCI	Ib/MMBtu-HHV	
Particulate Matter (PM _{Total})	7.6	0.0075	AP-42
Particulate Matter (PM _{Cond})	5.7	0.0056	AP-42
Particulate Matter (PM _{Filter}) ³	1.9	0.0019	AP-42
Nitrogen Oxides (NO _x)	100	0.0980	AP-42
Carbon Monoxide (CO)	84	0.0820	AP-42
Sulfur Dioxide (SO ₂)	0.6	0.0006	AP-42
VOC	5.5	0.0054	AP-42
Carbon Dioxide (CO ₂)	120,000	117.65	AP-42
Methane (CH₄)	2.3	2.255E-03	AP-42
Nitrous Oxide (N₂O)	2.2	2.157E-03	AP-42

Natural Gas Emissions

Replacement Air Make-up Unit

	Annual 4,5		
l	lb/hr	ton/year	
Particulate Matter (PM _{Total}) ³	0.02	0.10	
Particulate Matter (PM ₁₀) ³	0.02	0.10	
Particulate Matter (PM _{2.5}) ³	0.02	0.10	
Nitrogen Oxides (NO _x)	0.29	1.29	
Carbon Monoxide (CO)	0.25	1.08	
Sulfur Dioxide (SO ₂)	0.002	0.01	
Combustion VOC	0.02	0.07	
Carbon Dioxide (CO₂)	353	1,546	
Methane (CH ₄)	0.01	0.03	
Nitrous Oxide (N₂O)	6.47E-03	0.028	
CO ₂ Equivalent (CO ₂ eq) ⁷	-	1,555	

GW	/P ⁶
CH4	25
N2O	298

Example Calculations/Notes:

- (1) Compilation of Air Pollutant Emission Factors, AP-42, Supplement D, Fifth Edition, Section 1.4, Tables 1.4-1 and 1.4-2, July 1998, Small Boilers < 100 MMBtu/hr
- (2) Per AP-42, Table 1.4-1 and 1.4-2, to convert from lb/10⁶ scf to kg/10⁶ m³, multiply by 16. To convert from lb/10⁶ scf to lb/MMBtu, divide by 1,020.
- (3) Assume PM_{Total} = PM_{2.5} = PM₁₀. (Includes filterable and condensable particulate matter)
- (4) Maximum Emissions (lb/hr) = Emission Factor (lb/MMscf) * Natural Gas Usage (MMCF)
- (5) Annual Emissions (tpy) = Average Emissions (lb/hr) * 8,760 (hr/yr) / 2,000 (lb/ton)
- (6) GWP from 40 CFR 98 Subpart A Table A-1
- (7) CO_2 Equivalent (CO_2 eq) = CO_2 + [GWP_{CH4} * CH_4] + [GWP_{N2O} * N_2O]

Source 05 (Insignificant) **Blowing Agent Component Fugitive Emissions**

Operating Parameters

Hours of Operation

8,760 hrs/yr

The blowing agent tank has a recirculating pump and loop that runs continually. The process draws blowing agent off this loop as required for production. The loop fittings are included,

Fugitive blowing agent emissions from leaks in the transfer lines and the process piping were calculated using US EPAs publication
"Fugitive VOC Emissions in the Synthetic Organic Chemical Manufacturing Industry (SOCMI)", December 1984 (EPA-625/10-84-004) Emission Factors
The factors presented in the original publication were revised based on June 1994 guidance from the Texas Natural Resource Conservation Commission (TNRCC),
The most conservative factors (i.e., light liquids) were used to represent blowing agent. The emission factors are as follows:

0.0035 lb/hr/component Pump Seals 0.0386 lb/hr/component Flanges 0.0005 lb/hr/component Relief Valves** 0.22963 lb/hr/component

0 lb/hr/component

Hormann expects that the blowing agent transfer and process system will consist of a maximum of 2 pumps, 27 flanged connections, 12 valves, and 2 relief valves,

Therefore, the minimum expected emissions from blowing agent transfer lines and process piping are:

Components # of Components	% VOC in Blowing Agent	Emission Factor	VOC Emissions ^{1,2}			
		(lb/hr/component)	(lb/hr)	(lb/yr)	(tpy)	
Valves	12	100%	0,0035	0.04	368	0,18
Pump Seals	2		0,0386	0.08	676	0.34
Flanges	27		0,0005	0,01	118,3	0.06
Relief Valves 5		0	0,00	0.0	0.00	
			Totai =	0.13	1,162	0.58

Notes:

(1) VOC Emissions (lbs) = # of Components * % VOC in Blowing Agent (%) * Emission Factor (lb/hr/component) / 100

(2) VOC Emissions (tpy) = VOC Emissions (lb/yr) / 2000 (lb/ton)

^{**}Because each tank will operate under pressure, there are assumed to be no emissions from pressure relief valves,