East Tennessee Natural Gas, LLC 5400 Westheimer Court Houston, TX 77056 Mailing Address: P.O. Box 1642 Houston, TX 77251-1642

2010 DEC 14 PM 1: 13

December 13, 2010

Mr. John E. Trimmer
East Tennessee Permit Program
Division of Air Pollution Control
Tennessee Department of Environment & Conservation
9th Floor, L & C Annex
401 Church Street
Nashville, TN 37243-1531

RE: EAST TENNESSEE NATURAL GAS
STATION 3110 (WARTBURG)
OPERATING PERMIT RENEWAL
PERMIT NO. 053993F
EMISSION SOURCE NO. 65-0028-01

Dear Mr. Stephens:

East Tennessee Natural Gas, LLC (ETNG) submitted a renewal application for the above-reference permit on June 2, 2010. After receipt of the Department's letter dated November 30, 2010, a review of our archive information regarding Source 65-0028-01 and the basis for emission estimates was initiated.

The Wartburg Station was among several acquired from El Paso Natural Gas several years ago. We have been trying to base renewal applications on available data from Solar where we lacked verifiable test data used by El Paso. In developing the renewal application for Wartburg, an assumption was made that the units were similar to those in place at our Station 3201 (Lobelville). Upon further research, two references were found that more accurately characterize potential emissions from the Wartburg Station. The first is currently available operating and nominal emissions expectations from the turbine manufacturer (Solar); the second is a performance test that was conducted by El Paso in 1996. For your convenience, a copy of certain portions of the 1996 test report and TDEC's review are attached.

Based on the most appropriate manufacturer emissions expectations, which are supported by the results of the 1996 performance test, ETNG is re-submitting the renewal application for 65-0028-01. ETNG requests your consideration of the following in its review of the enclosed application and ultimate authorization to continue operations.

The manufacturer and test data indicate that maximum potential annual emissions for this source are below major source levels. There have been no physical changes to and there have been no changes in the method of operation of the permitted equipment. ETNG is requesting authorization as a Conditional Major Source based on the nominal emission rates for NOx, CO provided by Solar. ETNG is willing to confirm compliance with these emission rates by representative periodic testing with consideration to the actual operating schedule of the units.

Should you have any questions concerning the present application, please feel free to contact me or Sabino Gomez at (713) 989-8342.

Sincerely,

Victoria Wagner
Victoria Wagner

EHS Manager - US Operations

Enclosures

c: Daniel Myshrall, Spectra Energy Transmission/ETNG, Nashville Barry Buchanan, Spectra Energy Transmission/ETNG, Abingdon, VA

STATION 3110 - WARTBURG **OPERATING PERMIT RENEWAL APPLICATION FORMS**

AND

SUPPORTING DOCUMENTATION

(RESUBMITTAL)

9th Floor, L & C Annex 401 Church Street Nashville, TN 37243-1531 Telephone: (615) 532-0554 FAX: (615) 532-0614

NOT TO BE USED FOR TITLE V APPLICATIONS

					APC 20
PLEASE TYPE OR I DESCRIPTION FOR		T IN DUPLICATE FO	OR EACH EMISS	SION SO	URCE. ATTACH APPROPRIATE SOURCE
1. ORGANIZATIO East Tennessee Natural	N'S LEGAL NAME			/// FOR	APC COMPANYPOINT NO.
2. MAILING ADDI P.O. Box 1642	RESS (ST/RD/P.O. BOX	ζ)		/// APC	APC LOG/PERMIT NO.
CITY Houston		STATE TX	ZIP CODE 77251-1642		PHONE WITH AREA CODE (713) 627-5210
3. PRINCIPAL TEO Edward L Anderson – N	CHNICAL CONTACT Ionterey Office				PHONE WITH AREA CODE (931) 839-2268
4. SITE ADDRESS 142 Clayton Howard Ro					COUNTY NAME Morgan
CITY OR DISTAN Wartburg	ICE TO NEAREST TO	WN	ZIP CODE 37887		PHONE WITH AREA CODE (931) 346-3579
5. EMISSION SOUR IDENTIFIES THIS 65-0028-01	RCE NO. (NUMBER W SOURCE)	HICH UNIQUELY	PERMIT RENEW YES (X) NO (
6. BRIEF DESCRIP Three natural gas-fired S [1466 HP @ 0 °F]	TION OF EMISSION tolar Saturn T-1300 turb		ISO standard conditi	ions).	
7. TYPE OF PERMI	T REQUESTED				
	STARTING DATE	COMPLETION DATE	LAST PERMIT	NUMBER	EMISSION SOURCE REFERENCE NUMBER
OPERATING (X)	DATE CONSTRU- CTION STARTED 06/10/1996	DATE COMPLETED 09/01/1996	LAST PERMIT I O53993F	NUMBER	R EMISSION SOURCE REFERENCE NUMBER 65-0028-01
LOCATION TRANSFER	TRANSFER DATE	03/04/1330	LAST PERMIT	NUMBER	
ADDRESS OF LAS	ST LOCATION				
OPERATING PER No physical cha a Conditional M	RMIT APPLICATION. Inges or changes in	the method of opera on the nominal emis	ation have occur sion rates for NO	red or a	re proposed. Authorization is being requested as provided by Solar so that emission
9. SIGNATURE (API	PLICATION MUST BE	SIGNED BEFORE IT W	VILL BE PROCESS	ED)	DATE
10. SIGNER'S NAME	(TYPE OR PRINT)	TITLE			PHONE WITH AREA CODE
Fulkra J Mason		Vice Pro	esident		(713) 627-5400

(OVER)

CN-0730

TABLE OF POLLUTION REDUCTION DEVICE OR METHOD CODES (ALPHABETICAL LISTING)

NOTE: FOR CYCLONES, SETTLING CHAMBERS, WET SCRUBBERS, AND ELECTROSTATIC PRECIPITATORS. THE EFFICIENCY RANGES CORRESPOND TO THE FOLLOWING PERCENTAGES:

HIGH: 95-99+%. MEDIUM: 80-95%. AND LOW: LESS THAN 80%.

IF THE SYSTEM HAS SEVERAL PIECES OF CONNECTED CONTROL EQUIPMENT, INDICATE THE SEQUENCE, FOR EXAMPLE: 008'010.97%.

IF NONE OF THE BELOW CODES FIT, USE 999 AS A CODE FOR OTHER AND SPECIFY IN THE COMMENTS.

NO EQUIPMENT	000
ACTIVATED CARBON ADSORPTION	048
AFTERBURNERDIRECT FLAME	02
AFTERBURNERDIRECT FLAME WITH HEAT EXCHANGER	022
AFTERBURNERCATALYTIC	019
AFTERBURNERCATALYTIC WITH HEAT EXCHANGER	
ALKALIZED ALUMINA	040
CATALYTIC OXIDATION FLUE GAS DESULFURIZATION	
CYCLONEHIGH EFFICIENCY	007
CYCLONEMEDIUM EFFICIENCY	008
CYCLONELOW EFFICIENCY	009
DUST SUPPRESSION BY CHEMICAL STABILIZERS	
OR WETTING AGENTS	062
ELECTROSTATIC PRECIPITATORHIGH EFFICIENCY	010
ELECTROSTATIC PRECIPITATORMEDIUM EFFICIENCY	011
ELECTROSTATIC PRECIPITATORLOW EFFICIENCY	
FABRIC FILTERHIGH TEMPERATURE	016
FABRIC FILTERMEDIUM TEMPERATURE	017
FABRIC FILTERLOW TEMPERATURE	018
FABRIC FILTERMETAL SCREENS (COTTON GINS)	
FLARING	023
GAS ADSORPTION COLUMNPACKED	050
GAS ADSURPTION COLUMNTRAY TYPE	, 051
GAS SCRUBBER (GENERAL: NOT CLASSIFIED)	013

LIMESTONE INJECTIONDRY	
LIMESTONE INJECTIONWET	042
LIQUID FILTRATION SYSTEM	049
MIST ELIMINATORHIGH VELOCITY	014
MIST ELIMINATORLOW VELOCITY	015
PROCESS CHANGE	046
PROCESS ENCLOSED	054
PROCESS GAS RECOVERY	060
SETTLING CHAMBERHIGH EFFICIENCY	004
SETTLING CHAMBERMEDIUM EFFICIENCY	005
SETTLING CHAMBERLOW EFFICIENCY	006
SPRAY TOWER (GASEOUS CONTROL ONLY)	052
SULFURIC ACID PLANTCONTACT PROCESS	043
SULFURIC ACID PLANTDOUBLE CONTACT PROCESS	
SULFUR PLANT	045
VAPOR RECOVERY SYSTEM (INCLUDING CONDENSERS,	
HOODING AND OTHER ENCLOSURES)	047
VENTURI SCRUBBER (GASEOUS CONTROL ONLY)	053
WET SCRUBBERHIGH EFFICIENCY	001
WET SCRUBBERMEDIUM EFFICIENCY	002
WET SCRUBBERLOW EFFICIENCY	003
WET SUPPRESSION BY WATER SPRAYS	061

TABLE OF EMISSION ESTIMATION METHOD CODES

NOT APPLICABLE EMISSIONS ARE KNOWN TO BE ZERO	0
EMISSIONS BASED ON SOURCE TESTING	1
EMISSIONS BASED ON MATERIAL BALANCE USING ENGINEERING EXPERTISE AND KNOWLEDGE OF PROCESS	2
EMISSIONS CALCULATED USING EMISSION FACTORS FROM EPA PUBLICATION NO. AP-42 COMPILATION OF	
AIR POLLUTANT EMISSIONS FACTORS	3
JUDGEMENT	4
EMISSIONS CALCULATED USING A SPECIAL EMISSION FACTOR DIFFERING FROM THAT IN AP-42	5
OTHER (SPECIFY IN COMMENTS)	6

NOT TO BE USED FOR TITLE V APPLICATIONS

9th Floor, L & C Annex 401 Church Street Nashville, TN 37243-1531 Telephone: (615) 532-0554 FAX: (615) 532-0614

EMISSION POINT DESCRIPTION DEC 14 PM 1: 13

APC 22

PLEASE TYPE OR PRINT ATTACH TO THE PERMI			CATE FOR EACH ST	ACK OR EMISSIO	N POINT.			
1. ORGANIZATION NAMI East Tennessee Natural Gas Co	_		11		/// FOR	APC COMPA	NY POINT NO.	
2. EMISSION SOURCE NO	APC SEQUENCE NO.							
65-0028-01	. (FROM APP	LICATION)	FLOW DIAGRAM PO Not Applicable	JINI NUMBEK	APC	AFC SEQUE	NCE NO.	
3. LOCATION:	LATITUDE		LONGITUDE	UTM VERTICAL	Arc	UTM HORIZ	ONTAL	
\rightarrow	36° 04' 15"		84° 32' 29"					
4. BRIEF EMISSION POIN T-1A: Natural gas-fired Solar S						DISTANCE T PROPERTY I		
1-1A: Natural gas-med Solar S	atum 1-1500 t	urome (1,500 on)	p at 150 standard conditi	ons) exhaust stack.			ZIINE (I-T)	
						212		
COMPLETE LINES 5 AND 6	IF DIFFEREN	FROM THAT	ON THE PROCESS OR	FUEL BURNING SOU	RCE DESCRIPTION	ON (APC 21)		
5. NORMAL OPERATION:	HOURS/DA	Y	DAYS/WEEK 7	WEEK/YEAR 52		DAYS/YEAR 365		
OI BRATION.			,			303		
→ 6. PERCENT ANNUAL	DECFEB.		MARCH-MAY	JUNE-AUG.		SEPTNOV.		
THROUGHPUT: →	25		25		25			
7. STACK OR EMISSION							OF EXIT	
POINT DATA:	GRADE (F	Τ)	(FT)	(°F)	OVER 125°F	(UP, DOWN (HORIZONTA		
→	22.33		2.00	974	100	UP		
DATA AT EXIT CONDITIONS:	FLOW (ACT FT ³ /MIN.)	TUAL	VELOCITY (FT/SEC)	MOISTURE (GRAINS/FT ³)		MOISTURE (PERCENT)		
	30,493		161.77	187		5.93 vol%		
ightarrow DATA AT STANDARD	FLOW (DRY	STD.	VELOCITY	MOISTURE		MOISTURE		
CONDITIONS:	FT ³ /MIN)		(FT/SEC)	(GRAINS/FT³)		(PERCENT) 0.00 vol% (dry)		
\rightarrow	10,183		54.02 (dry)	0 (dry)		0.00 voi% (dr)	()	
8. AIR CONTAMINANTS			TUAL EMISSIONS	Live Histogram	E) (fagyo) fat	GOVERDOV	govern or	
	AVG.	NS (LBS/HR) MAXIMUM	CONCENTRATION	AVG. EMISSIONS (TONS/YR)	EMISSIONS* EST.	CONTROL DEVICES*	CONTROL EFFICIENCY%	
PARTICULATES	0.11	0.36 0.12	**	0.47	3	000	0	
SULFUR		0.10	***					
DIOXIDE CARBON	0.06	0.06	PPMVD at 15% O2	0.24	3	000	0	
MONOXIDE	3,55	35:01 11.67		15.53	5	000	0	
ORGANIC COMPOUNDS	0.03	1,48 0.47	PPMVD at 15% O2	0.14	5	000	0	
NITROGEN OXIDES	4,69	14.52 4.84	PPMVD at 15% O2	20.54	5	000	0	
FLUORIDES								
OTHER(SPECIFY)						000	0	
OTHER(SPECIFY) Formaldehyde	0.01	0.16		0.05	3	000	0 -	

NOT TO BE USED FOR TITLE V APPLICATIONS

9th Floor, L & C Annex 401 Church Street Nashville, TN 37243-1531 Telephone:(615) 532-0554 FAX: (615) 532-0614

PROCESS OR FUEL BURNING DEC 14 PM 1: 13 SOURCE DESCRIPTION

APC21(& 24)

PLEASE TYPE OR PRINT, SUBM	IT IN DUPL	ICATE AND	ATTACH TO TH	E PERMIT A	PPLICA	ATION.		
1. ORGANIZATION NAME East Tennessee Natural Gas Company					/// FOR	APC COMPANY-POINT NO.		
2. EMISSION SOURCE NO. (AS C 65-0028-01	APC PERMIT/LOG NO.							
3. DESCRIPTION OF PROCESS OF Three natural gas-fired Solar Saturn T-13			at ISO standard cond	litions; 1466 hp	@ 0 °F).			
4. NORMAL OPERATION: →	HOURS/DA	AY DAYS/	WEEK	WEEKS/YEA	AR	DAYS/YEAR 365		
5. PERCENT ANNUAL THROUGHPUT: →	DECFEB. 25	MARC 25	H-MAY	JUNE-AUG. 25		SEPTNOV, 25		
6. TYPE OF PERMIT APPLICATION	N					(CHECK BELOW ONE ONLY)		
PROCESS SOURCE: APPLY FOR (CHECK AT RIGH			R EACH SOURCE. ES 7, 8, 13, AND 14).		()		
	SEPARATE HT, AND COM	PERMIT FOR MPLETE LINE	EACH SOURCE. ES 7, 8, AND 10 THE	ROUGH 14)		()		
NON-PROCESS FUEL BURNING SOURCE: PRODUCTS OF COMBUSTION DO NOT CONTACT MATERIALS HEATED. COMPLETE THIS FORM FOR EACH BOILER OR FUEL BURNER AND COMPLETE AN EMISSION POINT DESCRIPTION FORM (APC 22) FOR EACH STACK. (CHECK AT RIGHT, AND COMPLETE LINES 9 TO 14)						(X)		
7. TYPE OF OPERATION: CONTIN	NUOUS ,	BA	TCH	NORMAL BA	ATCH	NORMAL BATCHES/DAY		
8. PROCESS MATERIAL INPUTS A IN-PROCESS SOLID FUELS		IAGRAM* EFERENCE	INPUT RATES DESIGN	POUNDS/HOU ACTUAL		/ (FOR APC USE ONLY) / SCC CODE		
A.						1		
В.						1		
C.						1		
D_{x}						1		
E,						/ /		
F.					/ /			
G.					1			
	TO	OTALS				//		

^{*} A SIMPLE PROCESS FLOW DIAGRAM MUST BE ATTACHED.

9.	BOILER O	R BURNER D	ATA: (COMPLETE L	JNES 9 TO 14	LUSING A SEP	ARATE F	ORM	FOR EAG	CH BOILER)		
	BOILER	STACK	TYPE OF FIRING**		RATED B	OILER		ED INPU	T OTHER BOI		
	NUMBER	NUMBER**			HORSEPO	WER		ACITY BTU/HR)		ΑPA	CITY AND UNITS)
	TIA	T1A	Single Pipe, High Pr	essure	1466 at	0°F	18	.11 at 0°F (HHV)			
	BOILER SE	RIAL NO.	DATE CONSTRUC	TED	DATE OF	LAST M	ODIFIC	CATION	(EXPLAIN IN COM	1ME	ENTS BELOW).
	21139		06/10/1996								
			MMON STACK WILL								
	REINJE		R (WITH OR WITHO ER STOKER (SPECIF								
10.			TE FOR A PROCESS S	SOURCE WIT	H IN-PROCESS	FUEL O	RAN	ON-PRO	CESS FUEL BURN	INC	SOURCE)
		FUEL TYPE (S	PECIFY)				DBY F	TUEL TY	PE(S)(SPECIFY)	
Nati	ural Gas	D	ANNUAL TIOAGE	Lioun	IN HIGH CE	None		01	DOWNEY		(FOR ANGOVERS
	FUELS USE	D	ANNUAL USAGE	DESIGN	LY USAGE AVERAGE	SULI		% ASH	BTU VALUE OF FUEL		(FOR APC ONLY)
	NATURAL	GAS	10 ⁶ CUFT	CUFT	CUFT	/ /		ASH /	OF FUEL	_	SCC CODE
	HATOKAL	OAS.	140.995	16,095	16,095	111		1 1	1,020 BTU/scf (HHV)		16. 4 MM Potu
	#2 FUEL OI	L:	10 ³ GAL	GAL	GAL			1.1			
								11			
	#5 FUEL OI	L:	10 ³ GAL	GAL	GAL			1 1			
_	#6 FUEL OI	L:	10 ³ GAL	GAL	GAL			1 1		-	
								1 1			
	COAL:		TONS	LBS	LBS					-	
	WOOD:		TONS	LBS	LBS	111		1.1			
								11			
	LIQUID PRO	PANE:	10 ³ GAL	GAL	GAL	111		11	85,000		
	OTHER (.SP	ECIFY									
	TYPE & UN	ITS.):									
11.	IF WOOD IS	S USED AS A F	UEL, SPECIFY TYI	PES AND EST	I TIMATE PERC	ENT BY	WEI	GHT OF	BARK		
12.	IF WOOD IS	S USED WITH	OTHER FUELS, SPI	ECIFY PERC	ENT BY WEIG	HT OF	WOOI	D CHAR	GED TO THE BU	RNI	ER.
13.	COMMENT	S									
		1									
		. //									
	/ 1	1//									
1	1	1/11	_								12-9-10
14	SIGNATURI	MU								T	DATE
	M/										
Fulk	ra J Mason	Vice Preside	ent								

APC 21 (& 24)										
9. BOI	LER OF	R BURNER DA	ATA: (COMPLETE L	INES 9 TO 14	USING A SEPA	ARATE FO	ORM FOI	R EAC	CH BOILER)		
BOIL	LER	STACK NUMBER**	TYPE OF FIRING**		RATED BO HORSEPO	DILER	RATED CAPACI	INPU' ITY	T OTHER BOIL		RATING CITY AND UNITS)
T-2A		T-2A	Single Pipe, High Pre	ssure	1,466 at	0°F	18.11	,	Please see Ta		A-1 for site-rated capacities nt temperatures.
	BOILER SERIAL NO. DATE CONSTRUCTED D 06/10/1996					LAST MC	DIFICAT	TION (EXPLAIN IN CON	1MI	ENTS BELOW).
*** C	CYCLON REINJEC	NE, SPREADEI	MMON STACK WILL R (WITH OR WITHOU ER STOKER (SPECIF)	JT REINJECT	ION), PULVER	RIZED (W	VET OR I				
10. FUE	L DATA	: (COMPLET	TE FOR A PROCESS S	OURCE WITI	H IN-PROCESS	FUEL OF	R A NON-	-PROC	CESS FUEL BURN	INC	SOURCE)
PRIM Natural Ga		UEL TYPE (SI	PECIFY)			STANI None	OBY FUE	EL TYI	PE(S)(SPECIFY)	
FUEL	FUELS USED ANNUAL USAGE HOURLY USAGE					%	- 1	%	BTU VALUE		(FOR APC ONLY)
				DESIGN	AVERAGE	SULF	UR A	ASH	OF FUEL		SCC CODE
NAT	URAL G	AS:	10 ⁶ CUFT 140.995	CUFT 16,095	CUFT 16,095	111	' 1'		1,020 BTU/scf (HHV)		16 YMMBtu h
#2 FU	JEL OIL:	:	10 ³ GAL	GAL	GAL		1	7			

Natural Gas	PRIMARY FUEL TYPE (SPECIFY) Natural Gas					STANDBY FUEL TYPE(S) (SPECIFY) None					
FUELS USED	ANNUAL USAGE	HOUR	LY USAGE	%	%	BTU VALUE	T	(FOR APC ONLY)			
		DESIGN	AVERAGE	SULFUR	ASH	OF FUEL		SCC CODE			
NATURAL GAS:	10 ⁶ CUFT 140.995	CUFT 16,095	CUFT 16,095	1111	/ / / / /	1,020 BTU/scf (HHV)		16 YMMBtu hu			
#2 FUEL OIL:	10 ³ GAL	GAL	GAL		1 1						
#5 FUEL OIL:	10 ³ GAL	GAL	GAL		1 1						
#6 FUEL OIL:	10 ³ GAL	GAL	GAL		/ /						
COAL:	TONS	LBS	LBS								
WOOD:	TONS	LBS	LBS	1111	1 1 1 1 1			^			
LIQUID PROPANE:	10 ³ GAL	GAL	GAL	1111	/ / / / /	85,000					
OTHER (.SPECIFY TYPE & UNITS.):											

11. IF WOOD IS USED AS A FUEL, SPECIFY TYPES AND ESTIMATE PERCENT BY WEIGHT OF BARK

12.	IF WOOD IS USED WITH	OTHER FUELS, SPECIFY F	PERCENT BY WEIGHT	OF WOOD	CHARGED TO T	HE BURNER

13. COMMENTS

14. HUNATURE

12/9/10 DATE

Fulkra J Mason, Vice President

9.	BOILER O	R BURNER DA	ATA: (COMPLETE L	INES 9 TO 14	USING A SEPA	RATE FOR	RM FOR EA	CH BOILER)		
	BOILER NUMBER	STACK NUMBER**	TYPE OF FIRING**	*	RATED BO HORSEPO	WER C	RATED INPU CAPACITY 10 ⁶ BTU/HR	(SPECIFY CA	ER RATING APACITY AND UNITS)	
	T-3A	T-3A	Single Pipe, High Pre	essure	1,466 at					
	BOILER SE 10897	RIAL NO.	DATE CONSTRUCT 06/10/1996	red	DATE OF I	F LAST MODIFICATION (EXPLAIN IN COMMENTS BELOW).				
	*** CYCLO REINJE IN COM	NE, SPREADE CTION), OTHE IMENTS).	MMON STACK WILL R (WITH OR WITHOU ER STOKER (SPECIF	JT REINJECT Y TYPE), HA	ION), PULVER ND FIRED, AU	IZED (WE FOMATIC,	OR OTHER	TYPE (DESCRIBE	BELOW	
10.			TE FOR A PROCESS S	OURCE WIT	H IN-PROCESS					
Nati	PRIMARY I iral Gas	FUEL TYPE (SI	PECIFY)			None None	BY FUEL TY	PE(S)(SPECIFY)		
	FUELS USE	D	ANNUAL USAGE	HOURI	LY USAGE	%	%	BTU VALUE	(FOR APC ONLY)	
				DESIGN	AVERAGE	SULFUI	R ASH	OF FUEL	SCC CODE	
	NATURAL	GAS:	10 ⁶ CUFT 140.995	CUFT 16,095	CUFT 16,095	1111		1,020 BTU/scf (HHV)	16 4 MMBtu/6	
	#2 FUEL OI	L;	10 ³ GAL	GAL	GAL		1 / /			
	#5 FUEL OI	L:	10 ³ GAL	GAL	GAL		1 /			
,	#6 FUEL OI	L:	10 ³ GAL	GAL	GAL		1 1			
	COAL:		TONS	LBS	LBS					
	WOOD:		TONS	LBS	LBS	1111				
	LIQUID PRO	PANE:	10 ³ GAL	GAL	GAL	1111	1.7	85,000		
	OTHER (.SP TYPE & UN									
11.	IF WOOD IS	S USED AS A F	FUEL, SPECIFY TYF	PES AND EST	TIMATE PERC	ENT BY W	VEIGHT OF	BARK	- L	
12.	IF WOOD IS	S USED WITH	OTHER FUELS, SPE	CIFY PERC	ENT BY WEIG	HT OF WO	OOD CHAR	GED TO THE BUI	RNER.	
10	COMMENT	C								

Fulkra J Mason, Vice President

Fulkra J Mason, Vice President

9. CHECK TYPES OF MONITORING AND RECORDING INSTRUMENTS THAT ARE ATTACHED:	
OPACITY MONITOR (), SO2 MONITOR (), NOX MONITOR (), OTHER (SPECIFY IN COMMENTS) (X)
10. COMMENTS	
Section 7: Stack exhaust data is based on manufacturer's data at an average annual ambient temperature of 59.10°F (see Table A	A-1).
Section 8: Emissions data is based on calculations that are documented in Tables A-2.	
Section 9: Monitoring or recordkeeping should be necessary to document compliance with the terms and condition of the permit	. Monthly fuel consumption records
and 12-month running total fuel consumption records should be sufficient.	
The turbine is subject to NSPS, Subpart GG. Performance testing was conducted on November 20, 1996 in accordance with the Subparts A and GG. The turbine complies with the NSPS, Subpart GG nitrogen and sulfur monitoring requirements in accordance to the complex of the complex	applicable requirements of NSPS, ace with §§60.334(h)(2) and
11. SIGNATURE	DATE

REFER TO THE BACK OF THE PERMIT APPLICATION FORM FOR ESTIMATION METHOD AND CONTROL DEVICE CODES.

** EXIT GAS PARTICULATE CONCENTRATION UNITS: PROCESS — GRAINS/DRY STANDARD FT3 (70°F); WOOD FIRED BOILERS — GRAINS/DRY STANDARD FT3 (70°F); ALL OTHER BOILERS — LBS/MILLION BTU HEAT INPUT.

*** EXIT GAS SULFUR DIOXIDE CONCENTRATIONS UNITS: PROCESS — PPM BY VOLUME, DRY BASES; BOILERS — LBS/MILLION BTU HEAT INPUT.

9th Floor, L & C Annex 401 Church Street Nashville, TN 37243-1531 Telephone: (615) 532-0554 FAX: (615) 532-0614

NOT TO BE USED FOR TITLE V APPLICATIONS

EMISSION POINT DESCRIPTION

APC 22

DV D L GD GW IDD OD DD III					2010-1	FC 111 PM	ter ve		
PLEASE TYPE OR PRINT			CATE FOR EACH ST	CACK OR EMISSIO	N POINT.	LU I'M PM	1: 13		
ATTACH TO THE PERMI		ITON.							
1. ORGANIZATION NAM	_				/ / /	APC COMPA	ANY POINT NO.		
East Tennessee Natural Gas Co	ompany				EOD				
2. EMISSION SOURCE NO) (EDOM ADD	I ICATION)	FLOW DIAGRAM POINT NUMBER ///			A DC SEQUE	NOTNO		
65-0028-01	. (FROM AFF	LICATION)	Not Applicable	JINI NUMBER	///	APC SEQUE	NCE NO.		
05 0020 01			A A						
3. LOCATION:	LATITUDE		LONGITUDE	UTM VERTICAL	10	UTM HORIZ	ONTAL		
	36° 04' 15"		84° 32' 29"	O TANA Y EAR THO THE		O THE HORIZ	OTTAL		
\rightarrow									
4. BRIEF EMISSION POIN	T DESCRIPT	TON (ATTACH	A SKETCH IF APPROP	PRIATE):		DISTANCE 7	TO NEAREST		
T-2A: Natural gas-fired Solar S	Saturn T-1300 t	urbine (1,360 bh	p at ISO standard conditi	ons) exhaust stack.		PROPERTY	LINE (FT)		
						205			
GOVERNMENT NAME & AND &									
COMPLETE LINES 5 AND 6					JRCE DESCRIPTI				
5. NORMAL	HOURS/DA	Y	DAYS/WEEK WEEK/YEAR			DAYS/YEAR			
OPERATION:	24		7	52		365			
\rightarrow									
6. PERCENT ANNUAL	DECFEB.		MARCH-MAY	JUNE-AUG.		SEPTNOV.			
THROUGHPUT:	25		25	25		25			
→	23			23		23			
7. STACK OR EMISSION	HEIGHT AB	OVE	DIAMETER	TEMPERATURE	% OF TIME	DIRECTION	OF EXIT		
POINT DATA:	GRADE (F	T)	(FT)	(°F)	OVER 125°F	(UP, DOWN			
				` '		HORIZONTA	L)		
\rightarrow	22.33		2.00	974	100	UP			
DATA AT EXIT	FLOW (ACT	UAL	VELOCITY	MOISTURE		MOISTURE (PERCENT)			
CONDITIONS:	FT ³ /MIN.)		(FT/SEC)	(GRAINS/FT ³)	S/FT³)				
	30,493		161.77	187					
\rightarrow	ELOW (DD)	/ Omto	LUEV O CUENT	VO (GWYID D					
DATA AT STANDARD CONDITIONS:	FLOW (DRY FT ³ /MIN)	SID.	VELOCITY	MOISTURE (GRAINS/FT ³)		MOISTURE	(PERCENT)		
CONDITIONS.	10,183		(FT/SEC) 54.02 (dry)	0 (dry)		0.00 vol% (dry)			
>	10,103		54.02 (dry)	(dry)					
8. AIR CONTAMINANTS		AC	TUAL EMISSIONS			 			
	EMISSION	IS (LBS/HR)	CONCENTRATION	AVG. EMISSIONS	EMISSIONS*	CONTROL	CONTROL		
	AVG.	MAXIMUM		(TONS/YR)	EST.	DEVICES*	EFFICIENCY%		
PARTICULATES			**						
	0.11	0.12		0.47	3	000	0		
SULFUR			***				=======================================		
DIOXIDE	0.06	0.06		0.24	3	000	0		
CARBON			PPMVD at 15% O2						
MONOXIDE	3.55	11.67		15.53	5	000	0		
ORGANIC	0.00		PPMVD at 15% O2						
COMPOUNDS	0.03	0.47		0.14	5	000	0		
NITROGEN	4.60	4.04	PPMVD at 15% O2	20.54	-	000			
OXIDES	4.69	4.84		20.54	5	000	0		
FLUORIDES									
OTHER(SPECIFY)									
OTHER(STECIL'I)						000	0		
OTHER(SPECIFY)						300			
Formaldehyde	0.01	0.16		0.05	3	000	0		

OPACITY MONITOR (), SO2 MONITOR (), NOX MONITOR (), OTHER (SPECIFY IN COMMENTS) (X)	
10. COMMENTS	
Section 7: Stack exhaust data is based on manufacturer's data at an average annual ambient temperature of 59.10°F (see Table A-1).	
Section 8: Emissions data is based on calculations that are documented in Tables A-2.	
Section 9: Monitoring or recordkeeping should be necessary to document compliance with the terms and condition of the permit. Monthly fuel consumption records	
and 12-month running total fuel consumption records should be sufficient.	
The turbine is subject to NSPS, Subpart GG. Performance testing was conducted on November 20, 1996 in accordance with the applicable requirements of NSPS, Subparts A and GG. The turbine complies with the NSPS, Subpart GG nitrogen and sulfur monitoring requirements in accordance with §§60.334(h)(2) and 60.334(h)(3), respectively.	
11. SIGNATURE DATE Fulkra I Mason, Vice President	_

REFER TO THE BACK OF THE PERMIT APPLICATION FORM FOR ESTIMATION METHOD AND CONTROL DEVICE CODES.

9. CHECK TYPES OF MONITORING AND RECORDING INSTRUMENTS THAT ARE ATTACHED:

- ** EXIT GAS PARTICULATE CONCENTRATION UNITS: PROCESS GRAINS/DRY STANDARD FT3 (70°F); WOOD FIRED BOILERS GRAINS/DRY STANDARD FT3 (70°F); ALL OTHER BOILERS LBS/MILLION BTU HEAT INPUT.
- *** EXIT GAS SULFUR DIOXIDE CONCENTRATIONS UNITS: PROCESS PPM BY VOLUME, DRY BASES; BOILERS LBS/MILLION BTU HEAT INPUT.

9th Floor, L & C Annex 401 Church Street Nashville, TN 37243-1531 Telephone: (615) 532-0554 FAX: (615) 532-0614

NOT TO BE USED FOR TITLE V APPLICATIONS

EMISSION POINT DESCRIPTION

APC 22

					2010 DEC 14	PM 1: 17	APC 22
PLEASE TYPE OR PRINT ATTACH TO THE PERMI			CATE FOR EACH ST	ACK OR EMISSIO	N POINT,		
1. ORGANIZATION NAM	E	ON.			1///	APC COMPA	ANY POINT NO.
East Tennessee Natural Gas Co	ompany				FOR		
2. EMISSION SOURCE NO 65-0028-01). (FROM APPL	ICATION)	FLOW DIAGRAM PO	DINT NUMBER	///	APC SEQUE	NCE NO.
			Not Applicable		APC		
3. LOCATION: →	14 LATITUDE 36° 04' 15"		LONGITUDE 84° 32' 29"	UTM VERTICAL		UTM HORIZ	ONTAL
4. BRIEF EMISSION POIN T-3A: Natural gas-fired Solar S						DISTANCE T	O NEAREST LINE (FT)
		(1,2 00 01	P 44 - 15 0 5 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	, 		202	
COMPLETE LINES 5 AND 6					IRCE DESCRIPTION		
5. NORMAL OPERATION:	HOURS/DAY		DAYS/WEEK 7	WEEK/YEAR 52		DAYS/YEAR 365	
						300	
6. PERCENT ANNUAL	DEC,-FEB,		MARCH-MAY	JUNE-AUG.		SEPTNOV.	
THROUGHPUT: →	25		25	25		25	
7. STACK OR EMISSION	HEIGHT ABO	VE	DIAMETER	TEMPERATURE	% OF TIME	DIRECTION	OF EXIT
POINT DATA:	GRADE (FT)	(FT)	(°F)	OVER 125°F	(UP, DOWN (
\rightarrow	22.33		2.00	974	100	UP	L)
DATA AT EXIT	FLOW (ACTU FT ³ /MIN.)	AL	VELOCITY	MOISTURE		MOISTURE (PERCENT)	
CONDITIONS:	30,493		(FT/SEC) 161.77	(GRAINS/FT ³) 187			
ightarrow DATA AT STANDARD	FLOW (DRY S	OTT	VELOCITY	MOISTURE	MOISTURE		
CONDITIONS:	FT ³ /MIN)	110,	(FT/SEC)	(GRAINS/FT ³)		(PERCENT)	
\rightarrow	10,183		54.02 (dry)	0 (dry)		0.00 vol% (dry)	
8. AIR CONTAMINANTS		AC	TUAL EMISSIONS				T
	EMISSIONS AVG.		CONCENTRATION	AVG. EMISSIONS (TONS/YR)	EMISSIONS* EST.	CONTROL DEVICES*	CONTROL EFFICIENCY%
PARTICULATES	0.11	0.12	**	0.47	3	000	0
SULFUR DIOXIDE	0.06	0.06	***	0.24	3	000	0
CARBON			PPMVD at 15% O2				
MONOXIDE ORGANIC	3.55	11.67	PPMVD at 15% O2	15.53	5	000	0
COMPOUNDS	0.03	0.47	DDMAND -/ 150/ 00	0.14	5	000	0
NITROGEN OXIDES	4.69	4.84	PPMVD at 15% O2	20.54	5	000	0
FLUORIDES							
OTHER(SPECIFY)						000	0
OTHER(SPECIFY) Formaldehyde	0.01	0.16		0.05	3	000	0

Fulkra J Mason, Vice President

9. CHECK TYPES OF MONITORING AND RECORDING INSTRUMENTS THAT ARE ATTACHED:
OPACITY MONITOR (), SO2 MONITOR (), NOX MONITOR (), OTHER (SPECIFY IN COMMENTS) (X)
10. COMMENTS
Section 7: Stack exhaust data is based on manufacturer's data at an average annual ambient temperature of 59.10°F (see Table A-1).
Section 8: Emissions data is based on calculations that are documented in Tables A-2.
Section 9: Monitoring or recordkeeping should be necessary to document compliance with the terms and condition of the permit. Monthly fuel consumption records
and 12-month running total fuel consumption records should be sufficient.
The turbine is subject to NSPS, Subpar GG. Performance testing was conducted on November 20, 1996 in accordance with the applicable requirements of NSPS,
Subparts A and GG. The turbing complies with the NSPS, Subpart GG nitrogen and sulfur monitoring requirements in accordance with §§60.334(h)(2) and
60.334(h)(3), respectively.
1 (1/1/11).
14/10
11. SIGNATURE

- REFER TO THE BACK OF THE PERMIT APPLICATION FORM FOR ESTIMATION METHOD AND CONTROL DEVICE CODES.
- ** EXIT GAS PARTICULATE CONCENTRATION UNITS: PROCESS GRAINS/DRY STANDARD FT3 (70°F); WOOD FIRED BOILERS GRAINS/DRY STANDARD FT3 (70°F); ALL OTHER BOILERS LBS/MILLION BTU HEAT INPUT.
- *** EXIT GAS SULFUR DIOXIDE CONCENTRATIONS UNITS: PROCESS PPM BY VOLUME, DRY BASES; BOILERS LBS/MILLION BTU HEAT INPUT.

East Tennessee Natural Gas Company Station 3110 (Wartburg Compressor Station) Turbine Manufacturer's Operating and Nominal Emissions Data for Saturn T-1360

Parameters			Values							
Ambient ²	Temperature	°F	0.00	20.00	26.50	40.00	59.10	60.00	80.00	100.0
	Elevation	ft	1,310	1,310	1,310	1,310	1,310		1,310	1,31
	Pressure	psia	14.02	14.02	14.02	14.02	14.02	14.02	14.02	14.0
	Relative Humidity	%	60	60	60	60	60	60	60	6
	Specific Humidity	lb _{H2O} /lb _{Dry Air}	0.0006	0.0015	0.0021	0.0033	0.0068	0.0070	0.0139	0.026
Fuel ³	Lower Heating Value (LHV)	BTU/scf	939.2	939.2	939.2	939.2	939.2	939.2	939.2	939
	Higher Heating Value (HHV)	BTU/scf	1,043.6	1,043.6	1,043.6	1,043.6	1,043.6	1,043.6	1,043.6	1,043
Turbine	Elevation Loss	hp	87	77	76	73	69	69	64	5
(tr	Inlet Loss	in _{H2O}	3	3	3	3	3	3	3	
		hp	23	22	22	21	20	20	19	1
	Exhaust loss	in _{II2O}	4	4	4	4	4	4	4	
		hp	13	13	13	13	13	13	13	1
	Off-Optimum NPT Loss	hp	53	50	48	45	39	39	31	2
	Net Output Power	hp	1,466	1,420	1,403	1,369	1,313	1,310	1,234	1,13
	Heat Input at LHV	MMBTU/hr	16.30	15.82	15.65	15.30	14.78	14.75	14.13	13.3
	Heat Rate at LHV	BTU/hp-hr	11,119	11,135	11,152	11,177	11,256	11,260	11,452	11,82
	Heat Input at HHV	MMBTU/hr	18.11	17.58	17.39	17.00	16.42	16.39	15.70	14.8
	Heat Rate at HHV	BTU/hp-hr	12,354	12,379	12,391	12,419	12,507	12,511	12,724	13,13
	Fuel Consumption	MMscf/hr	0.017	0.017	0.017	0.016	0.016	0.016	0.015	0.01
Exhaust	Temperature	°F	890	907	912	922	938	939	954	96
	Water Fraction	vol%	5.03%	5.15%	5.24%	5.42%	5.93%	5.95%	6.95%	8.719
	Non-Water Fraction	vol%	94,97%	94.85%	94.76%	94,58%	94.07%	94.05%	93.05%	91.299
	O ₂ Content	vol% (dry)	16.20%	16.20%	16.20%	16.21%	16.21%	16.21%	16.22%	16.249
	Molecular Weight	lb/lb-mol	28.65	28.63	28.62	28.60	28.54	28.54	28.43	28.2
	Flow Rate	lb/hr	53,701	52,119	51,586	50,479	48,791	48,711	46,733	44,37
		scfm	11,859	11,515	11,401	11,165	10,813	10,796	10,399	9,94
10 W C		acfm	32,302	31,751	31,551	31,136	30,493	30,463	29,654	28,63
		lb/lb-mol	46.01	46.01	46.01	46.01	46.01	46.01	46.01	46.0
		ppmvd, 15% O ₂	74.16	77.92	78.67	80.22	79.72	79.70	74.45	62.58
		ppmvw	56,11	58,88	59.34	60.31	59.62	59.59	54.95	45.12
		lb/hr	4.84	4.93	4.92	4.90	4.69	4.68	4.16	3.26
		lb/MMBTU at LHV	0.297	0.312	0.314	0.320	0.317	0.317	0,294	0.244
		lb/MMBTU at HHV	0.267	0.281	0.283	0.288	0.286	0.285	0.265	0,220
O Emission		lb/lb-mol	28.01	28.01	28.01	28.01	28.01	28.01	28.01	28.01
	<u>l</u>	ppmvd, 15% O ₂	293.88	226.84	205.08	159.89	99.05	96.17	96.86	98.10
		ppmvw	222,33	171.40	154.71	120.21	74.07	71.90	71.49	70.73
		lb/hr	11.67	8.74	7.81	5.94	3.55	3.44	3.29	3.11
		lb/MMBTU at LHV	0.716	0.552	0.499	0.388	0,240	0.233	0.233	0.233
		lb/MMBTU at HHV	0.644	0.497	0.449	0.350	0.216	0.210	0.210	0.210
HC Emission	F	lb/lb-mol	16.80	16.80	16.80	16.80	16.80	16.80	16.80	16.80
	H H	ppmvd, 15% O ₂	7.86	7.88	7.91	7.96	7.96	8.03	8.15	8.42
	- I	ppmvw	5.95	5.96	5.97	5.98	5.95	6.00	6.01	6.07
	į	lb/hr	0.19	0.18	0.18	0.18	0.17	0.17	0.17	0.16
			0.19 0.011 0.010	0.18 0.012 0.010	0.18 0.012 0.010	0.18 0.012 0.010	0.17 0.012 0.010	0.17 0.012 0.010	0.17 0.012 0.011	0.16

Operating and emissions data was provided by the turbine manufacturer (Solar Turbines, Inc.) for the following ambient temperatures: 0°F, 20°F, 40°F, 60°F and 80°F. Data for 26.5°F and 59.1°F are interpolated from the manufacturer's data. An ambient temperature of 26.5°F corresponds to the lowest monthly daily minimum ambient temperature and 59.1°F corresponds to average annual ambient temperature as obtained from USEPA's TANKS 4.0 program for Nashville, TN.

^{2.} Ambient pressure and humidity are values assumed by the turbine manufacturer to be representative. Emissions are affected by the values used; however, it is believed that the affect is minimal.

^{3.} The heating value of the natural gas used to fuel the turbine will vary. However, it is believed that any variation would have a minimal affect.

1100

STATE OF TENNESSEE

DEPARTMENT OF ENVIRONMENT AND CONSERVATION 9th Floor, L & C Annex 401 Church Street Nashville, Tennessee 37243-1531

April 28, 1997

Mr. Ted Wurfel Environmental Scientist Tenneco Energy P. O. 2511 1010 Milam Street Houston, Texas 77252-2511

Reference Number: 65-0028-01-S4 (Station 3110)

Dear Mr. Wurfel:

The Tennessee Division of Air Pollution Control has received the gaseous source test report submitted by Tenneco Energy for a Solar Saturn T-1360 gas-fired compressor turbine (Unit 3A) operated by East Tennessee Natural Gas and located in Morgan County (Station 3110). This source testing was conducted on November 20, 1996 by personnel of the Tenneco Energy Environmental, Health, Safety, and Technology Services. Pursuant to the United States Environmental Protection Agency (EPA) letter dated September 19, 1996, compliance testing could be waived for two of the three gas turbines that make up this fuel burning installation if one of the turbines was determined to have nitrogen oxides emissions of less than fifty percent of the applicable federal emission standard.

The source test report has been reviewed by the Compliance Validation Program. Based on this review it has been determined that the report is technically correct and thus, is acceptable to the agency. From the review of the source test report it was noted that the sampling methodology utilized followed the procedures outlined in EPA Source Test Method 20 (40 CFR 60, Appendix A) and the Tenneco testing protocol dated October 15, 1996.

In the review of the operational parameters presented in the report it was noted that the turbine operated very close to its designed power rating. Specifics of this are listed on Attachment 1 to this letter. Thus, the operation of this turbine was at an acceptable level for an official compliance demonstration.

Mr. Ted Wurfel Tenneco Energy Station 3110 Unit 3A April 28, 1996 page 2 of 3

During the testing period the measured nitrogen oxides from Unit 3A were 55.6 ppm corrected to 15 percent oxygen and ISO standard conditions and 2.8 pounds per hour. The 55.6 ppm nitrogen oxides corrected to 15 percent oxygen and ISO standard conditions demonstrates compliance with the regulatory nitrogen oxides emission standard of 150 ppm by volume at 15 percent oxygen and on a dry basis. This standard is set forth Subparagraph 1200-3-16-.31 (3) (a) 2. of the Tennessee Air Pollution Control Regulations (40 CFR 60.332 (a) (2)). This also compliance with the current permit demonstrates stipulated nitrogen oxides emission limit of 84 ppm of nitrogen oxides corrected to 15 percent oxygen (Permit #741853F, Condition 5). In addition the 3.76 pounds per hour of nitrogen oxides demonstrates compliance with the current permit stipulated nitrogen oxides emission limit of 27.7 pounds per hour the three turbines that constitute this fuel burning installation (Permit #741853F, Condition 5).

The measured sulfur concentration value of the fuel being combusted in this turbine, less than one ppm sulfur, demonstrates that this turbine was demonstrating compliance with either the sulfur dioxide emission standard of 150 ppm by volume at 15 percent oxygen and on a dry basis or the maximum fuel sulfur content of 0.8 percent by weight. These standards are set forth in Paragraph 1200-3-16-.31 (4) of the Regulations (40 CFR 60.333). This also demonstrates compliance with the current permit stipulated sulfur dioxide emission limits of four ppm of sulfur dioxide corrected to 15 percent oxygen and on a dry basis and 1.47 pounds per hour (Permit #741853F, Condition 4).

The Division considers that this source test report is acceptable as a demonstration of compliance and from the data presented considers that this turbine has met the stipulated testing requirements and is in compliance with the applicable nitrogen oxides and sulfur dioxide emission standards. In addition, as the nitrogen oxides emission rate was less than fifty percent of the applicable federal emission standard, the testing requirement for the other two turbines located at this fuel burning installation is waived pursuant to the EPA letter dated September 19, 1996.

Mr. Ted Wurfel Tenneco Energy Station 3110 Unit 3A April 28, 1996 page 3 of 3

If you have any questions concerning the matters addressed by this letter, please contact Mr. Jeryl W. Stewart at (615) 532-0605.

Sincerely,

John W. Walton, P.E.

Tennessee Air Pollution Control Board

attachment - 1

cc: Knoxville Field Office

ATTACHMENT 1

Summary of Turbine Operation

Station 3110 Unit 3A

Test Date November 20, 1996

Turbine 3A heat input during test 13.9 MMBtu/hr

Rated heat input capacity for this turbine 14.45 MMBtu/hr (from April 4, 1994 permit application)

Turbine 3A turbine horsepower during test 1,209 BHP

Rated turbine horsepower for this turbine 1,300 BHP (from April 4, 1994 permit application)

TENNECO Energy

COMPLIANCE TEST REPORT
for
THE SOLAR SATURN TURBINES
at
TENNESSEE GAS PIPELINE STATION 3110
Wartburg, TN

November 25, 1996

Prepared for the

STATE OF TENNESSEE
DEPARTMENT OF HEALTH AND ENVIRONMENT

By

Richard C. Schoonover Research Engineer

TENNECO ENERGY ENVIRONMENTAL, HEALTH, SAFETY AND TECHNICAL SERVICES

> 5510 South Rice Avenue Houston, TX 77081 (713) 662-5335

Emissions Test Report for Compliance Testing at Station 3110 Wartburg, Tennessee

INTRODUCTION

The three Solar Saturn turbines at Station 3110 have been uprated from T-1100 units to T-1360 units. The Environmental, Health, Safety and Technology Services Department of Tenneco Energy conducted testing to determined the exhaust emission rates for oxides of nitrogen (NOx). The corrected NOx emissions level fell below the 75 ppm threshold set by the EPA, thereby allowing the data collected during the compliance test will to be used as representative data for the other two Solar Saturn turbines at the station. The test was conducted in basic accordance with approved Environmental Protection Agency (EPA) test methods as described in the Code of Federal Regulations, Title 40, Part 60, Appendix A and Tenneco Energy's test protocol.

TEST SUMMARY

The results of the emissions compliance test performed on November 20, 1996 at East Tennessee Natural Gas compressor station 3110, in Wartburg, Tennessee are summarized below. The two-minute averages, collected during the test, analyzer calibrations, and certification sheets, are included in the appendices of this report.

Table I:

Run#	Completion Time	Ambient Rated Horsepower	Exhaust Oxygen Content	Corrected NOx ppm Level
11	10:30 am	1,215	16.65%	54.9
2	11:58 am	1,209	16.65%	55,5
3	1:25 pm	1,202	16.65%	56.4
Average		1,208.6	16.65%	55.6

Additionally, a fuel gas sample was collected and analyzed for the overall sulfur content of the gas. The sulfur content of the fuel gas was below 0.0001% by weight. The results of the analysis are listed in the appropriate section of the Appendices.

SECTION I

Summary of Test Results

TENNECO ENERGY

SAINCHE CATATOR BARBIT - TERRA LATAR SAINCES	IDDINE DOTATING ENGINE				111111111111111111111111111111111111111	2000		OHOOTIOO C	0		
Shaded rows indicate raw data.		,				TEST CHIMICS TEST	ł.	C. NOWAK	CER		
STATISTS.	East Tennessee Natural Gas 3110					FUEL OF	NEL OTHER DIAM.	0.875 h.	ei ei		
TAND	Solar Satura		RATED BHP	AMBIENT	EHP		AGA UDINY:	1033	033 btu/dscf		
DATE:	17-Dec-96										
RUK	LAVG ZAVG	3AVG									
TIME	OKOPAN STESSTAN	MOINT HA									
TURBINE OPERATING CONDITIONS	NOI										
HORSEPOWER	(215)										
GP SPEED RPM											
PT SPEED RPM	20590] 20630]	Ì									
2.10 = (EV) = (EV) = (EV)											
BARONIS (CIC XCE HID)	20										
FAREST HAIM (STEEL) FAREST											
% LOAD											
HEAT RATE(BTU/HP-HR)	10596 10574	1966									
EMISSIONS CONCENTRATIONS AND CALCULATED MASS EMI	IS AND CALCULATED MAS	SEMISSIONS									
									- C.		
NOx g/BHP-HR **		1.039									
NOX LB/HR **											
CO PPM									To be a contract of		
CO g/BHP-HR **		0.501									
COLB/HR **											
7,62	16.65	(-0.50)									
CALCULATED EMISSIONS CONCENTRATIONS	NCENTRATIONS										
WCOZ(WET)	2.28 2.28										
%COZ(DRY) *	2.42 2.42	2.42									
*H20 *											
%02(WET) *	15,68 15.68	15.68									
CALCULATED FLOWS											
FUEL FLOW (SCFM)	230.40 228.80	214.40								- W. W.	
EX. FLOW (LEMR) **		63									
EX. FLOW (WSCFM)	`	9532									
AIR FLOW (WSCFM)	9731 9664										

^{**} BASED ON FUEL SPECIFIC DRY F-FACTOR CALCULATION ** BASED ON CARBON BALANCE (STOICH. + 02) . A/F IS TOTAL MASS RATIO

TABLE A-2 Gas-Fired Turbines Hourly and Annual Emission Estimates

Type						
Type	Source			Wartburg		
Make Solar						
Model Fuel Higher Heating Value (HHV) 1,020 BTU/sef S9 °F 1,1313 bhp (mech.) 979 kW (elec.) 12,354 BTU/hp-hr Operating Hours 16,095 sefth 140,995 MMsc/fly 16,422 MMBTU/hr 163,821 MMBTU/hr 143,815 MM						
Fuel Higher Heating Value (HHV)						
Fuel Higher Heating Value (HHV)						
Ambient Temperature				Natural Gas		
Power Output				TO HER TOTAL	The state of the s	
Heat Rate at HHV	Ambient Temperature					
Heat Rate at HHV	Power Output			Control of the second		JULIA DA TINA
Departing Hours						
Fuel Consumption					12,354 BTU/hp-hr	
Heat Input at HHV	Operating Hours			100		
Heat Input at HHV	Fuel Consumption				17,756 scfh	
Heat Input at HHV	t det Consumption					
NO _X 291.32 lb/MMscf 4.6889 lb/hr 20.5375 tpy 272.49 lb/MMscf 4.8385 lb/hr CO 220.35 lb/MMscf 3.5465 lb/hr 15.5338 tpy 657.38 lb/MMscf 11.6727 lb/hr SO ₂ 3.47 lb/MMscf 0.0558 lb/hr 0.2445 tpy 3.47 lb/MMscf 0.0616 lb/hr PM ₁₀ 6.73 lb/MMscf 0.1084 lb/hr 0.4746 tpy 6.73 lb/MMscf 0.1195 lb/hr TOC (Total) 10.62 lb/MMscf 0.1709 lb/hr 0.7487 tpy 139.68 lb/MMscf 2.4802 lb/hr Methane 8.30 lb/MMscf 0.1336 lb/hr 0.5854 tpy 109.20 lb/Mmscf 1.9391 lb/hr Ethane 0.29 lb/MMscf 0.0047 lb/hr 0.0204 tpy 3.81 lb/Mmscf 0.0676 lb/hr VOC (Total) 2.03 lb/MMscf 0.0326 lb/hr 0.1429 tpy 26.67 lb/Mmscf 0.4735 lb/hr Acetaldehyde 3.86E-02 lb/Mmscf 0.0006 lb/hr 0.0009 tpy 13.05 lb/Mmscf 0.2316 lb/hr Acrolein 6.18E-03 lb/Mmscf 0.0000 lb/hr 0.0004 tpy 8.13E-01 lb/Mmscf 0.0001 lb/hr Ethylbenzene 3.09E-02 lb/Mmscf 0.0000 lb/hr 0.0000 tpy 5.46E-03 lb/Mmscf 0.0007 lb/hr Ethylbenzene 3.09E-02 lb/Mmscf 0.0110 lb/hr 0.0483 tpy 9.02E+00 lb/Mmscf 0.0001 lb/hr Naphthalene 1.26E-03 lb/Mmscf 0.0000 lb/hr 0.0001 tpy 3.68E-01 lb/Mmscf 0.0001 lb/hr Naphthalene 1.26E-03 lb/Mmscf 0.0000 lb/hr 0.0001 tpy 3.68E-01 lb/Mmscf 0.0001 lb/hr Naphthalene 1.26E-03 lb/Mmscf 0.0000 lb/hr 0.0001 tpy 3.68E-01 lb/Mmscf 0.0001 lb/hr Naphthalene 1.26E-03 lb/Mmscf 0.0000 lb/hr 0.0001 tpy 3.68E-01 lb/Mmscf 0.0003 lb/hr Naphthalene 1.26E-03 lb/Mmscf 0.0000 lb/hr 0.0001 tpy 3.68E-01 lb/Mmscf 0.0005 lb/hr	Heat Input at HHV				18.11 MMBTU/hr	
CO 220.35 lb/MMscf 3.5465 lb/hr 15.5338 tpy 657.38 lb/MMscf 11.6727 lb/hr SO2 3.47 lb/MMscf 0.0558 lb/hr 0.2445 tpy 3.47 lb/MMscf 0.0616 lb/hr PM ₁₀ 6.73 lb/MMscf 0.1084 lb/hr 0.4746 tpy 6.73 lb/MMscf 0.1195 lb/hr TOC (Total) 10.62 lb/MMscf 0.1709 lb/hr 0.7487 tpy 139.68 lb/MMscf 2.4802 lb/hr Methane 8.30 lb/MMscf 0.1336 lb/hr 0.5854 tpy 109.20 lb/MMscf 1.9391 lb/hr Ethane 0.29 lb/MMscf 0.0047 lb/hr 0.0204 tpy 3.81 lb/MMscf 0.0676 lb/hr VOC (Total) 2.03 lb/MMscf 0.0326 lb/hr 0.1429 tpy 26.67 lb/MMscf 0.04735 lb/hr HAP (Total) 0.99 lb/Mmscf 0.0160 lb/hr 0.0699 tpy 13.05 lb/Mmscf 0.2316 lb/hr Acrolein 6.18E-03 lb/MMscf 0.0006 lb/hr 0.0027 tpy 5.08E-01 lb/MMscf 0.0014 lb/hr Acrolein 6.18E-03 lb/Mmscf 0.0001 lb/hr 0.0004 tpy 8.13E-02 lb/Mmscf 0.0014 lb/hr Butadiene (1,3-) 4.15E-04 lb/Mmsc						
SO2 3.47 lb/MMscf 0.0558 lb/hr 0.2445 tpy 3.47 lb/MMscf 0.0616 lb/hr PM ₁₀ 6.73 lb/MMscf 0.1084 lb/hr 0.4746 tpy 6.73 lb/MMscf 0.1195 lb/hr TOC (Total) 10.62 lb/MMscf 0.1709 lb/hr 0.7487 tpy 139.68 lb/MMscf 2.4802 lb/hr Methane 8.30 lb/MMscf 0.1336 lb/hr 0.5854 tpy 109.20 lb/MMscf 1.9391 lb/hr Ethane 0.29 lb/MMscf 0.0047 lb/hr 0.0204 tpy 3.81 lb/MMscf 0.0676 lb/hr VOC (Total) 2.03 lb/MMscf 0.0326 lb/hr 0.1429 tpy 26.67 lb/MMscf 0.4735 lb/hr HAP (Total) 0.99 lb/MMscf 0.0160 lb/hr 0.0699 tpy 13.05 lb/MMscf 0.2316 lb/hr Acetaldehyde 3.86E-02 lb/MMscf 0.0006 lb/hr 0.0027 tpy 5.08E-01 lb/MMscf 0.099 lb/hr Acrolein 6.18E-03 lb/MMscf 0.0001 lb/hr 0.0002 tb/hr 0.0004 tpy 8.13E-02 lb/MMscf 0.001 lb/hr Butadiene (1,3-) 4.15E-04 lb/MMscf 0.0002 lb/hr 0.0000 tpy 5.46E-03 lb/Mmscf 0.0001 lb/hr But	NO_X	291.32 lb/MMscf			272.49 lb/MMscf	4.8385 lb/hr
PM ₁₀ 6.73 lb/MMscf 0.1084 lb/hr 0.4746 tpy 6.73 lb/MMscf 0.1195 lb/hr TOC (Total) 10.62 lb/MMscf 0.1709 lb/hr 0.7487 tpy 139.68 lb/MMscf 2.4802 lb/hr Methane 8.30 lb/MMscf 0.1336 lb/hr 0.5854 tpy 109.20 lb/MMscf 1.9391 lb/hr Ethane 0.29 lb/MMscf 0.0047 lb/hr 0.0204 tpy 3.81 lb/MMscf 0.0676 lb/hr VOC (Total) 2.03 lb/MMscf 0.0326 lb/hr 0.1429 tpy 26.67 lb/MMscf 0.4735 lb/hr HAP (Total) 0.99 lb/MMscf 0.0160 lb/hr 0.0699 tpy 13.05 lb/MMscf 0.2316 lb/hr Acetaldehyde 3.86E-02 lb/MMscf 0.0006 lb/hr 0.0027 tpy 5.08E-01 lb/MMscf 0.099 lb/hr Acrolein 6.18E-03 lb/MMscf 0.0001 lb/hr 0.00027 tpy 5.08E-01 lb/MMscf 0.0014 lb/hr Butadiene (1,3-) 1.16E-02 lb/MMscf 0.0002 lb/hr 0.0008 tpy 1.52E-01 lb/MMscf 0.0027 lb/hr Butylbenzene 3.09E-02 lb/MMscf 0.0005 lb/hr 0.0002 tpy 5.46E-03 lb/Mscf 0.0001 lb/hr Formaldehyde <td></td> <td>220.35 lb/MMscf</td> <td>3.5465 lb/hr</td> <td>15.5338 tpy</td> <td>657.38 lb/MMscf</td> <td>11.6727 lb/hr</td>		220.35 lb/MMscf	3.5465 lb/hr	15.5338 tpy	657.38 lb/MMscf	11.6727 lb/hr
TOC (Total) 10.62 lb/MMscf 0.1709 lb/hr 0.7487 tpy 139.68 lb/MMscf 2.4802 lb/hr Methane 8.30 lb/MMscf 0.1336 lb/hr 0.5854 tpy 109.20 lb/MMscf 1.9391 lb/hr Ethane 0.29 lb/MMscf 0.0047 lb/hr 0.0204 tpy 3.81 lb/MMscf 0.0676 lb/hr VOC (Total) 2.03 lb/MMscf 0.0326 lb/hr 0.1429 tpy 26.67 lb/MMscf 0.4735 lb/hr HAP (Total) 0.99 lb/MMscf 0.0160 lb/hr 0.0699 tpy 13.05 lb/Mscf 0.2316 lb/hr Acetaldehyde 3.86E-02 lb/MMscf 0.0006 lb/hr 0.0027 tpy 5.08E-01 lb/Mscf 0.0090 lb/hr Acrolein 6.18E-03 lb/MMscf 0.0001 lb/hr 0.0004 tpy 8.13E-02 lb/Mscf 0.0014 lb/hr Benzene 1.16E-02 lb/MMscf 0.0002 lb/hr 0.0008 tpy 1.52E-01 lb/Mscf 0.0027 lb/hr Butadiene (1,3-) 4.15E-04 lb/Mscf 0.0000 lb/hr 0.0000 tpy 5.46E-03 lb/Mscf 0.0001 lb/hr Formaldehyde 6.86E-01 lb/Mscf 0.0005 lb/hr 0.0022 tpy 4.06E-01 lb/Mscf 0.1601 lb/hr Naphthalene </td <td>SO_2</td> <td>3.47 lb/MMscf</td> <td>0.0558 lb/hr</td> <td>0.2445 tpy</td> <td>3.47 lb/MMscf</td> <td>0.0616 lb/hr</td>	SO_2	3.47 lb/MMscf	0.0558 lb/hr	0.2445 tpy	3.47 lb/MMscf	0.0616 lb/hr
Methane 8.30 lb/MMscf 0.1336 lb/hr 0.5854 tpy 109.20 lb/MMscf 1.9391 lb/hr Ethane 0.29 lb/MMscf 0.0047 lb/hr 0.0204 tpy 3.81 lb/MMscf 0.0676 lb/hr VOC (Total) 2.03 lb/MMscf 0.0326 lb/hr 0.1429 tpy 26.67 lb/MMscf 0.4735 lb/hr HAP (Total) 0.99 lb/MMscf 0.0160 lb/hr 0.0699 tpy 13.05 lb/MMscf 0.2316 lb/hr Acetaldehyde 3.86E-02 lb/MMscf 0.0006 lb/hr 0.0027 tpy 5.08E-01 lb/MMscf 0.0090 lb/hr Acrolein 6.18E-03 lb/MMscf 0.0001 lb/hr 0.0004 tpy 8.13E-02 lb/MMscf 0.0014 lb/hr Benzene 1.16E-02 lb/MMscf 0.0002 lb/hr 0.0008 tpy 1.52E-01 lb/MMscf 0.0027 lb/hr Butadiene (1,3-) 4.15E-04 lb/MMscf 0.0000 lb/hr 0.0000 tpy 5.46E-03 lb/MMscf 0.0001 lb/hr Ethylbenzene 3.09E-02 lb/MMscf 0.0005 lb/hr 0.0022 tpy 4.06E-01 lb/Mscf 0.0001 lb/hr Formaldehyde 6.86E-01 lb/Mscf 0.0110 lb/hr 0.0483 tpy 9.02E+00 lb/Mscf 0.1601 lb/hr Na	PM_{10}	6.73 lb/MMscf	0.1084 lb/hr	0.4746 tpy	6.73 lb/MMscf	0.1195 lb/hr
Ethane 0.29 lb/MMscf 0.0047 lb/hr 0.0204 tpy 3.81 lb/MMscf 0.0676 lb/hr VOC (Total) 2.03 lb/MMscf 0.0326 lb/hr 0.1429 tpy 26.67 lb/MMscf 0.4735 lb/hr HAP (Total) 0.99 lb/MMscf 0.0160 lb/hr 0.0699 tpy 13.05 lb/MMscf 0.2316 lb/hr Acetaldehyde 3.86E-02 lb/MMscf 0.0006 lb/hr 0.0027 tpy 5.08E-01 lb/MMscf 0.0090 lb/hr Acrolein 6.18E-03 lb/MMscf 0.0001 lb/hr 0.0004 tpy 8.13E-02 lb/MMscf 0.0014 lb/hr Benzene 1.16E-02 lb/MMscf 0.0002 lb/hr 0.0008 tpy 1.52E-01 lb/MMscf 0.0027 lb/hr Butadiene (1,3-) 4.15E-04 lb/MMscf 0.0000 lb/hr 0.0000 tpy 5.46E-03 lb/MMscf 0.0001 lb/hr Ethylbenzene 3.09E-02 lb/MMscf 0.0005 lb/hr 0.0022 tpy 4.06E-01 lb/MMscf 0.0072 lb/hr Formaldehyde 6.86E-01 lb/MMscf 0.0110 lb/hr 0.0483 tpy 9.02E+00 lb/MMscf 0.1601 lb/hr Naphthalene 1.26E-03 lb/MMscf 0.0000 lb/hr 0.0001 tpy 1.65E-02 lb/MMscf 0.0005 lb/hr	TOC (Total)	10.62 lb/MMscf	0.1709 lb/hr	0.7487 tpy	139.68 lb/MMscf	2.4802 lb/hr
VOC (Total) 2.03 lb/MMscf 0.0326 lb/hr 0.1429 tpy 26.67 lb/MMscf 0.4735 lb/hr HAP (Total) 0.99 lb/MMscf 0.0160 lb/hr 0.0699 tpy 13.05 lb/MMscf 0.2316 lb/hr Acetaldehyde 3.86E-02 lb/MMscf 0.0006 lb/hr 0.0027 tpy 5.08E-01 lb/MMscf 0.0090 lb/hr Acrolein 6.18E-03 lb/MMscf 0.0001 lb/hr 0.0004 tpy 8.13E-02 lb/MMscf 0.0014 lb/hr Benzene 1.16E-02 lb/MMscf 0.0002 lb/hr 0.0008 tpy 1.52E-01 lb/MMscf 0.0027 lb/hr Butadiene (1,3-) 4.15E-04 lb/MMscf 0.0000 lb/hr 0.0000 tpy 5.46E-03 lb/MMscf 0.0001 lb/hr Ethylbenzene 3.09E-02 lb/MMscf 0.0005 lb/hr 0.0022 tpy 4.06E-01 lb/MMscf 0.0072 lb/hr Formaldehyde 6.86E-01 lb/MMscf 0.0110 lb/hr 0.0483 tpy 9.02E+00 lb/MMscf 0.1601 lb/hr Naphthalene 1.26E-03 lb/MMscf 0.0000 lb/hr 0.0001 tpy 1.65E-02 lb/MMscf 0.0003 lb/hr PAH 2.12E-03 lb/MMscf 0.0000 lb/hr 0.0001 tpy 2.79E-02 lb/MMscf 0.0065 lb/hr <	Methane	8.30 lb/MMscf	0.1336 lb/hr	0.5854 tpy	109.20 lb/MMscf	1.9391 lb/hr
HAP (Total) 0.99 lb/MMscf 0.0160 lb/hr 0.0699 tpy 13.05 lb/MMscf 0.2316 lb/hr Acetaldehyde 3.86E-02 lb/MMscf 0.0006 lb/hr 0.0027 tpy 5.08E-01 lb/MMscf 0.0090 lb/hr Acrolein 6.18E-03 lb/MMscf 0.0001 lb/hr 0.0004 tpy 8.13E-02 lb/MMscf 0.0014 lb/hr Benzene 1.16E-02 lb/MMscf 0.0002 lb/hr 0.0008 tpy 1.52E-01 lb/MMscf 0.0027 lb/hr Butadiene (1,3-) 4.15E-04 lb/MMscf 0.0000 lb/hr 0.0000 tpy 5.46E-03 lb/MMscf 0.0001 lb/hr Ethylbenzene 3.09E-02 lb/MMscf 0.0005 lb/hr 0.0022 tpy 4.06E-01 lb/MMscf 0.0072 lb/hr Formaldehyde 6.86E-01 lb/MMscf 0.0110 lb/hr 0.0483 tpy 9.02E+00 lb/MMscf 0.1601 lb/hr Naphthalene 1.26E-03 lb/MMscf 0.0000 lb/hr 0.0001 tpy 1.65E-02 lb/MMscf 0.0003 lb/hr PAH 2.12E-03 lb/MMscf 0.0000 lb/hr 0.0001 tpy 2.79E-02 lb/MMscf 0.0005 lb/hr Toluene 1.26E-01 lb/MMscf 0.0020 lb/hr 0.0020 tpy 3.68E-01 lb/MMscf 0.0293 lb/hr	Ethane	0.29 lb/MMscf	0.0047 lb/hr	0.0204 tpy	3.81 lb/MMscf	0.0676 lb/hr
Acetaldehyde 3.86E-02 lb/MMscf 0.0006 lb/hr 0.0027 tpy 5.08E-01 lb/MMscf 0.0090 lb/hr Acrolein 6.18E-03 lb/MMscf 0.0001 lb/hr 0.0004 tpy 8.13E-02 lb/MMscf 0.0014 lb/hr Benzene 1.16E-02 lb/MMscf 0.0002 lb/hr 0.0008 tpy 1.52E-01 lb/MMscf 0.0027 lb/hr Butadiene (1,3-) 4.15E-04 lb/MMscf 0.0000 lb/hr 0.0000 tpy 5.46E-03 lb/MMscf 0.0001 lb/hr Ethylbenzene 3.09E-02 lb/MMscf 0.0005 lb/hr 0.0022 tpy 4.06E-01 lb/MMscf 0.0072 lb/hr Formaldehyde 6.86E-01 lb/MMscf 0.0110 lb/hr 0.0483 tpy 9.02E+00 lb/MMscf 0.1601 lb/hr Naphthalene 1.26E-03 lb/MMscf 0.0000 lb/hr 0.0001 tpy 1.65E-02 lb/MMscf 0.0003 lb/hr PAH 2.12E-03 lb/MMscf 0.0000 lb/hr 0.0001 tpy 2.79E-02 lb/MMscf 0.0005 lb/hr Propylene Oxide 2.80E-02 lb/MMscf 0.0005 lb/hr 0.0020 tpy 3.68E-01 lb/MMscf 0.0065 lb/hr Toluene 1.26E-01 lb/MMscf 0.0020 lb/hr 0.0044 tpy 8.13E-01 lb/MMscf 0.0144 lb/hr	VOC (Total)	2.03 lb/MMscf	0.0326 lb/hr	0.1429 tpy	26.67 lb/MMsef	0.4735 lb/hr
Acrolein 6.18E-03 lb/MMscf 0.0001 lb/hr 0.0004 tpy 8.13E-02 lb/MMscf 0.0014 lb/hr Benzene 1.16E-02 lb/MMscf 0.0002 lb/hr 0.0008 tpy 1.52E-01 lb/MMscf 0.0027 lb/hr Butadiene (1,3-) 4.15E-04 lb/MMscf 0.0000 lb/hr 0.0000 tpy 5.46E-03 lb/MMscf 0.0001 lb/hr Ethylbenzene 3.09E-02 lb/MMscf 0.0005 lb/hr 0.0022 tpy 4.06E-01 lb/MMscf 0.0072 lb/hr Formaldehyde 6.86E-01 lb/MMscf 0.0110 lb/hr 0.0483 tpy 9.02E+00 lb/MMscf 0.1601 lb/hr Naphthalene 1.26E-03 lb/MMscf 0.0000 lb/hr 0.0001 tpy 1.65E-02 lb/MMscf 0.0003 lb/hr PAH 2.12E-03 lb/MMscf 0.0000 lb/hr 0.0001 tpy 2.79E-02 lb/MMscf 0.0005 lb/hr Propylene Oxide 2.80E-02 lb/MMscf 0.0005 lb/hr 0.0020 tpy 3.68E-01 lb/MMscf 0.0065 lb/hr Toluene 1.26E-01 lb/MMscf 0.0020 lb/hr 0.0088 tpy 1.65E+00 lb/MMscf 0.0293 lb/hr Xylenes 6.18E-02 lb/MMscf 0.0010 lb/hr 0.0044 tpy 8.13E-01 lb/MMscf 0.0144 lb/hr </td <td></td> <td></td> <td></td> <td></td> <td>13.05 lb/MMscf</td> <td>0.2316 lb/hr</td>					13.05 lb/MMscf	0.2316 lb/hr
Benzene 1.16E-02 lb/MMscf 0.0002 lb/hr 0.0008 tpy 1.52E-01 lb/MMscf 0.0027 lb/hr Butadiene (1,3-) 4.15E-04 lb/MMscf 0.0000 lb/hr 0.0000 tpy 5.46E-03 lb/MMscf 0.0001 lb/hr Ethylbenzene 3.09E-02 lb/MMscf 0.0005 lb/hr 0.0022 tpy 4.06E-01 lb/MMscf 0.0072 lb/hr Formaldehyde 6.86E-01 lb/MMscf 0.0110 lb/hr 0.0483 tpy 9.02E+00 lb/MMscf 0.1601 lb/hr Naphthalene 1.26E-03 lb/MMscf 0.0000 lb/hr 0.0001 tpy 1.65E-02 lb/MMscf 0.0003 lb/hr PAH 2.12E-03 lb/MMscf 0.0000 lb/hr 0.0001 tpy 2.79E-02 lb/MMscf 0.0005 lb/hr Propylene Oxide 2.80E-02 lb/MMscf 0.0005 lb/hr 0.0020 tpy 3.68E-01 lb/MMscf 0.0065 lb/hr Toluene 1.26E-01 lb/MMscf 0.0020 lb/hr 0.0088 tpy 1.65E+00 lb/MMscf 0.0293 lb/hr Xylenes 6.18E-02 lb/MMscf 0.0010 lb/hr 0.0044 tpy 8.13E-01 lb/MMscf 0.0144 lb/hr		3.86E-02 lb/MMscf	0.0006 lb/hr		5.08E-01 lb/MMscf	0.0090 lb/hr
Butadiene (1,3-) 4.15E-04 lb/MMscf 0.0000 lb/hr 0.0000 tpy 5.46E-03 lb/MMscf 0.0001 lb/hr Ethylbenzene 3.09E-02 lb/MMscf 0.0005 lb/hr 0.0022 tpy 4.06E-01 lb/MMscf 0.0072 lb/hr Formaldehyde 6.86E-01 lb/MMscf 0.0110 lb/hr 0.0483 tpy 9.02E+00 lb/MMscf 0.1601 lb/hr Naphthalene 1.26E-03 lb/MMscf 0.0000 lb/hr 0.0001 tpy 1.65E-02 lb/MMscf 0.0003 lb/hr PAH 2.12E-03 lb/MMscf 0.0000 lb/hr 0.0001 tpy 2.79E-02 lb/MMscf 0.0005 lb/hr Propylene Oxide 2.80E-02 lb/MMscf 0.0005 lb/hr 0.0020 tpy 3.68E-01 lb/MMscf 0.0065 lb/hr Toluene 1.26E-01 lb/MMscf 0.0020 lb/hr 0.0088 tpy 1.65E+00 lb/MMscf 0.0293 lb/hr Xylenes 6.18E-02 lb/MMscf 0.0010 lb/hr 0.0044 tpy 8.13E-01 lb/MMscf 0.0144 lb/hr			0.0001 lb/hr		8.13E-02 lb/MMscf	0.0014 lb/hr
Ethylbenzene 3.09E-02 lb/MMscf 0.0005 lb/hr 0.0022 tpy 4.06E-01 lb/MMscf 0.0072 lb/hr Formaldehyde 6.86E-01 lb/MMscf 0.0110 lb/hr 0.0483 tpy 9.02E+00 lb/MMscf 0.1601 lb/hr Naphthalene 1.26E-03 lb/MMscf 0.0000 lb/hr 0.0001 tpy 1.65E-02 lb/MMscf 0.0003 lb/hr PAH 2.12E-03 lb/MMscf 0.0000 lb/hr 0.0001 tpy 2.79E-02 lb/MMscf 0.0005 lb/hr Propylene Oxide 2.80E-02 lb/MMscf 0.0005 lb/hr 0.0020 tpy 3.68E-01 lb/MMscf 0.0065 lb/hr Toluene 1.26E-01 lb/MMscf 0.0020 lb/hr 0.0088 tpy 1.65E+00 lb/MMscf 0.0293 lb/hr Xylenes 6.18E-02 lb/MMscf 0.0010 lb/hr 0.0044 tpy 8.13E-01 lb/MMscf 0.0144 lb/hr		1.16E-02 lb/MMscf				
Formaldehyde 6.86E-01 lb/MMscf 0.0110 lb/hr 0.0483 tpy 9.02E+00 lb/MMscf 0.1601 lb/hr Naphthalene 1.26E-03 lb/MMscf 0.0000 lb/hr 0.0001 tpy 1.65E-02 lb/MMscf 0.0003 lb/hr PAH 2.12E-03 lb/MMscf 0.0000 lb/hr 0.0001 tpy 2.79E-02 lb/MMscf 0.0005 lb/hr Propylene Oxide 2.80E-02 lb/MMscf 0.0005 lb/hr 0.0020 tpy 3.68E-01 lb/MMscf 0.0065 lb/hr Toluene 1.26E-01 lb/MMscf 0.0020 lb/hr 0.0088 tpy 1.65E+00 lb/MMscf 0.0293 lb/hr Xylenes 6.18E-02 lb/MMscf 0.0010 lb/hr 0.0044 tpy 8.13E-01 lb/MMscf 0.0144 lb/hr	Butadiene (1,3-)	4.15E-04 lb/MMscf				
Naphthalene I.26E-03 lb/MMscf 0.0000 lb/hr 0.0001 tpy I.65E-02 lb/MMscf 0.0003 lb/hr PAH 2.12E-03 lb/MMscf 0.0000 lb/hr 0.0001 tpy 2.79E-02 lb/MMscf 0.0005 lb/hr Propylene Oxide 2.80E-02 lb/MMscf 0.0005 lb/hr 0.0020 tpy 3.68E-01 lb/MMscf 0.0065 lb/hr Toluene I.26E-01 lb/MMscf 0.0020 lb/hr 0.0088 tpy I.65E+00 lb/MMscf 0.0293 lb/hr Xylenes 6.18E-02 lb/MMscf 0.0010 lb/hr 0.0044 tpy 8.13E-01 lb/MMscf 0.0144 lb/hr	Ethylbenzene	3.09E-02 lb/MMscf	0.0005 lb/hr		4.06E-01 lb/MMscf	0.0072 lb/hr
PAH 2.12E-03 lb/MMscf 0.0000 lb/hr 0.0001 tpy 2.79E-02 lb/MMscf 0.0005 lb/hr Propylene Oxide 2.80E-02 lb/MMscf 0.0005 lb/hr 0.0020 tpy 3.68E-01 lb/MMscf 0.0065 lb/hr Toluene 1.26E-01 lb/MMscf 0.0020 lb/hr 0.0088 tpy 1.65E+00 lb/MMscf 0.0293 lb/hr Xylenes 6.18E-02 lb/MMscf 0.0010 lb/hr 0.0044 tpy 8.13E-01 lb/MMscf 0.0144 lb/hr		6.86E-01 lb/MMscf	0.0110 lb/hr		9.02E+00 lb/MMscf	0.1601 lb/hr
Propylene Oxide 2.80E-02 lb/MMscf 0.0005 lb/hr 0.0020 tpy 3.68E-01 lb/MMscf 0.0065 lb/hr Toluene 1.26E-01 lb/MMscf 0.0020 lb/hr 0.0088 tpy 1.65E+00 lb/MMscf 0.0293 lb/hr Xylenes 6.18E-02 lb/MMscf 0.0010 lb/hr 0.0044 tpy 8.13E-01 lb/MMscf 0.0144 lb/hr						
Toluene I.26E-01 lb/MMscf 0.0020 lb/hr 0.0088 tpy I.65E+00 lb/MMscf 0.0293 lb/hr Xylenes 6.18E-02 lb/MMscf 0.0010 lb/hr 0.0044 tpy 8.13E-01 lb/MMscf 0.0144 lb/hr						
Xylenes 6.18E-02 lb/MMscf 0.0010 lb/hr 0.0044 tpy 8.13E-01 lb/MMscf 0.0144 lb/hr						
NOTES	Xylenes	6.18E-02 lb/MMscf	0.0010 lb/hr	0.0044 tpy	8.13E-01 lb/MMscf	0.0144 lb/hr
			NOTES		بالدالة الأراب بالراقة	

- 1. Fuel higher heating value selected to correspond to AP-42 emissions factors, but representative of gas in Tennessee.
- 2. Manufacturer provided data on: power output, heat rate, along with NOx, CO, and UHC (or TOC) emissions.
- 3. The average annual temperature for Nashville, TN (59°F) was extracted from USEPA's TANKS program and 55°F is used as the temperature appropriate for estimating annual emissions. A temperature of 0°F is used to estimate maximum hourly emissions.
- 4. With the exception of NOx, CO, TOC, and TAPs, emissions based data provided in Table 3.1-1 of AP-42 (dated 4/00).
- 5. Speciated TAP emissions based on data provided in Table 3.1-3 of AP-42 (dated 4/00).
- 6. Methane, Ethane, VOC, HAP, and Speciate TAP AP-42 emission factors were scaled based on manufacturer's data for TOC: $EF_{Scaled} = (EF_{AP42})(EF_{TOC}/EF_{TOC-AP42})$

63.6