TOTAL HYDROCARBON DESTRUCTION EFFICIENCY COMPLIANCE TEST PROGRAM

Prepared for: Denso Manfacturing Athens Regenerative Thermal Oxidizer Athens, Tennessee

Prepared by: Civil & Environmental Consultants Inc. Knoxville, Tennessee

> *CEC Project* 184-566

Test Date October 30, 2018

ville 2704 Chan

TABLE OF CONTENTS

List of	Tables	s	i
1.0	Introd	uction	1
2.0	Test C	Conditions and Technical Approach	2
	2.1	Test Conditions and Schedule	
	2.2	Sample Locations	2
	2.3	Technical Approach	2
3.0	Perfor	mance Testing Emission Results	3
	3.1	Determination of Total Hydrocarbon Emissions	
	3.2	Description of Sampling Location	
	3.3	Process Sampling	6
	3.4	Flow Characterization	6
	3.5	Oxygen Determination	7
	3.6	Carbon Dioxide Determination	
4.0	Equip	ment Calibrations	9
	4.1	CEM Calibration Procedures	
	4.2	Stack Gas Flow Equipment Calibration Procedures	10
5.0	Qualit	y Assurance Procedures	12

APPENDIX

A: Reference Method Field I	Data Sheets
-----------------------------	-------------

B: Equipment Calibration Data and Gas Certification Sheets

LIST OF TABLES

2-1	Reference Method Test Procedures	.2
3-1	Test Results Summary	.3

Test Report for the Total Hydrocarbon Destruction Efficiency Compliance Test Program

REPORT CERTIFICATION

This report, testing details, and approach have been developed under the supervision (including review) of the persons named below. Results contained in this report relate only to the sources tested and the parameters included in the test program.

Civil & Environmental Consultants, Inc. (CEC) operates as an accredited air emission testing body (AETB) under a quality management system in conformance with ASTM D7036-04 (Reapproved 2011) "Standard Practice for Competence of Air Emission Testing Bodies". CEC has been issued accreditation certificate number 3913.01, expiration November 30, 2019, by the joint American Association for Laboratory Accreditation (A2LA) and the Stack Testing Accreditation Council (STAC).

Date <u>12/12/2018</u>

Signature Micha Mower

Michael Mowery, QSTI Principal Civil & Environmental Consultants, Inc.

Date <u>12/12/2018</u>

Signature Jodd Lugg

Todd Gregg, QSTI Senior Project Scientist Civil & Environmental Consultants, Inc.

1.0 INTRODUCTION

Civil & Environmental Consultants, Inc. (CEC) was contracted by Denso Manufacturing Athens (Denso) to perform compliance testing on the two regenerative thermal oxidizers (RTO) used at the Denso facility located in Athens, TN. The compliance tests were performed on October 30, 2018.

The intent of the compliance testing determined the RTO destruction efficiency of total hydrocarbons (THC). This data will be used by Denso for their facility emissions reporting.

Location	Address	Contact
Test Facility	DENSO Manufacturing Athens 2400 DENSO Drive Athens, TN 37303	Mr. Eddie Franks Manager Safety Health and Environment Phone (423) 746-0000 Eddie_Franks@DENSO-Diam.com
Testing Company Representative	Civil & Environmental Consultants Inc. 2704 Cherokee Farm Way, Suite 101 Knoxville, Tennessee 37920	Mr. Todd Gregg Project Manager 865-977-9997 (Office) 865-250-9067 (Cell) tgregg@cecinc.com

1.1 Project Contact Information

2.0 TEST CONDITIONS AND TECHNICAL APPROACH

2.1 Test Conditions and Schedule

CEC completed three test runs for THC at the inlet and outlet of the South RTO. The North RTO was not tested due to a malfunction the morning of the test date. Denso will continue to report zero removal efficiency (RE) from the North RTO for their emissions calculations.

2.2 Sample Locations

The inlet sampling location was a duct leading to the RTO and the outlet sampling location was a vertical stack attached to the RTO. Samples were collected by accessing the test port at each location.

2.3 Technical Approach

The methodologies that were utilized for data collection are presented and summarized in Table 2-1. The sampling procedures included in the technical approach were selected to accurately determine the RE of the RTO. The selected methodologies were consistent with those recommended and referenced in Title 40 of the Code of Federal Regulations Part 60 (40 CFR Part 60), Appendix A.

Parameter	40CFR Part 60 EPA Test Method	Comments
	Thermal O	xidizers
Exhaust Gas Flow Rate	M1, M2	Exhaust only. Inlet flow measured by DMAT process equipment.
Exhaust Gas Moisture Content	M4	Inlet & Exhaust
O ₂ / CO ₂	М3	For gas composition
THC (as propane)	M25A	Inlet & Exhaust

Table 2-1Reference Method Test Procedures

Civil & Environmental Consultants, Inc.

3.0 TESTING EMISSION RESULTS

During the compliance test program, CEC performed three inlet and outlet THC tests on the South RTO. Table 3-1 summarizes the test results:

	Test Results Su	mmary	
Parameters	Run 1	Run 2	Run 3
Date	10/30/2018	10/30/2018	10/30/2018
Test Time	10:20-11:30	14:00-15:00	15:25-16:25
THC inlet	496.52	378.25	332.71
THC outlet	53.46	52.32	19.48
Destruction efficiency (%)	93.79	92.62	96.39
Temperature (°F)	1477	1482	1489

Table 3-1 est Results Summa

No problems were encountered with the CEC testing equipment during the test program and no operational issues were reported to CEC by Denso during the test runs.

3.1 EPA Method 25A, Determination of Total Hydrocarbon Emissions

The Method 25A sampling and measurement system meets the requirements for measuring the THC concentrations as set forth by the USEPA. In particular, it meets the requirements of USEPA Reference Method 25A, "Determination of Total Gaseous Organic Concentration Using a Flame Ionization Analyzer," 40CFR60, Appendix A. This method applies to the measurement of total gaseous organic concentration of hydrocarbons. With this method, gas samples were extracted from the inlet and outlet of the RTO locations through heated Teflon[®] sample lines connected directly to the analyzers.

The flame ionization detectors (FIDs) used during this program were JUM Model 109-A High-Temperature Total Hydrocarbon Analyzers. They are highly sensitive FIDs that provide a direct reading of total organic vapor concentrations with linear ranges of 0-100, 1000, 10,000, and 100,000 ppm by volume. The instruments were calibrated using nitrogen zero and propane in nitrogen certified standards. The calibrations were performed before and after each test run. Sample time and location were logged simultaneously on a data logger.

Because the RE is calculated on a comparative basis, there is not a requirement to speciate individual volatile organics present in the gas streams. The performance demonstration tests were

Civil & Environmental Consultants, Inc.

performed by measuring the concentration of THC at the inlet and exhaust of the thermal oxidizer simultaneously.

The sampling was performed by extracting a sample of the gas stream from the inlet and exhaust of the RTO and transporting the sample gas through a heated Teflon sample line to the THC CEMs located in a thermally controlled sampling trailer. A continuous sample was extracted and measured for a 60 minute period. A total of three test runs were completed. The concentrations measured by the THC CEMs were recorded on an electronic datalogger.

During each test run the thermal oxidizer exhaust gas flow rate was measured with a calibrated Stype pitot tube according to procedures in 40 CFR Part 60, Appendix A, Methods 1 and 2. Due to the physical construction of the inlet to the thermal oxidizer being a very short distance in between disturbances, it was not be feasible to measure the gas flow rate using a pitot tube. The thermal oxidizer inlet gas flow rate was measured by DMAT facility personnel utilizing the installed flow monitor.

In order to calculate the emission concentrations on a dry basis, the moisture content of the inlet and exhaust gas streams was measured by 40 CFR Part 60, Appendix A, Method 4 regulations.

The removal efficiency of the thermal oxidizer was determined by calculating the mass rate of THC inlet and exhaust using the THC ppmvd concentrations (reported as propane) along with the measured gas flow rates using the following equations;

$$E_{i} = K_{2} \left(\sum_{j=1}^{n} C_{ij} M_{ij} \right) Q_{i}$$
$$E_{o} = K_{2} \left(\sum_{j=1}^{n} C_{oj} M_{oj} \right) Q_{o}$$

Where:

 $C_{ij},\,C_{oj}\!=\!$ Concentration of sample component of the gas stream at the inlet and exhaust of the control device, respectively, dry basis, parts per million by volume.

 $E_{\rm i},\,E_{\rm o}$ = Mass rate of THC at the inlet and exhaust of the control device, respectively, dry basis, kilogram per hour.

 M_{ij} , M_{oj} = Molecular weight of the sample component j of the gas stream at the inlet and exhaust of the control device, respectively, gram/gram-mole. (MW of 44.96 is used for THC as propane).

 $Q_i, Q_o =$ Flow rate of the gas stream at the inlet and exhaust of the control device, respectively, dry standard cubic feet per minute.

 K_2 = Constant, 2.494 x 10⁻⁶ (parts per million)⁻¹ (gram-mole per standard cubic meter) (kilogram/gram) minute/hour), where standard temperature (gram-mole per standard cubic meter) is 20 °C.

The percent reduction in THC was calculated using the following equation;

$$R = \frac{E_i - E_o}{E_i} (100)$$

Where: E_i R = Control efficiency of control device, percent. E_i = Mass rate of THC (minus methane and ethane) at the inlet to the control device, kilograms THC per hour. E_o = Mass rate of THC (minus methane and ethane) at the exhaust of the control device, kilograms THC per hour.

3.2 Description of Sampling Location

The main stack is 32 inches in diameter, exiting approximately 35 feet above grade and is located at the northwest end of the facility. The sample ports are at approximately 5 feet below the exit of the stack, and approximately 15 feet above the fan exhaust entrance to the stack.

Access to the stack, for all gaseous CEM reference method sampling, was through a shared sample line. A filtered stainless steel probe was used to extract the gas sample from the stack. A heated, 3/8 inch Teflon[®] line transported the sample from the point of extraction to the non-contact gas conditioning chiller system. The moisture was condensed and removed from the gas stream, while the pollutant passed through to the gaseous analyzers. Just prior to the entrance of the gas conditioner, a separate heated line was used to extract a slipstream from the main heated line that connected directly to the inlet of the THC CEM. The analyzers were located in a temperature-controlled sampling trailer to minimize thermal effects on the calibration of the instruments. Figure 1 is a schematic of the CEM sampling system.

Each reference method CEM was connected to an electronic datalogger for collection of data. Oneminute averages of each reference method CEM were recorded throughout the compliance test period. A copy of the test data recorded by the datalogger is provided in Appendix of this report.

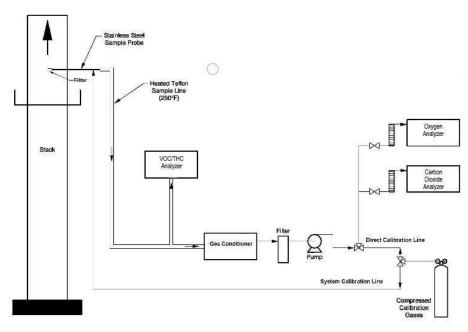


Figure 1. Schematic of THC Sampling System

3.3 Process Sampling

No process feed samples were acquired during the testing program. The plant data is located in Appendix A of this report.

3.4 Flow Characterization

3.4.1 Location of Traverse Points

To insure representative sampling of the velocity and volumetric flow rates, the cross section of the stack was divided into discreet sampling points according to the procedures described in 40 CFR 60, Appendix A, Method 1. The stack gas characteristics (i.e., flow, temp.) were measured at each of the traverse locations during each test run.

3.4.2 Velocity and Volumetric Flow Measurement

Velocity measurements were performed during each test run across each diameter of the stack to characterize the gas stream velocities and flow characteristics using the procedures outlined in 40 CFR, Part 60, Appendix A, Method 2, and Appendix B, Performance Specification 6. The velocity pressures were measured using an "S"-type pitot tube and a standard oil-filled inclined manometer.

3.4.3 Temperature Measurement

The temperature of the stack gas was recorded during each velocity traverse using a K-type thermocouple and dedicated digital temperature readout. The temperatures were recorded on the sampling data sheet for each traverse point location. The stack temperatures were arithmetically averaged and used to calculate the volumetric flow rates at standard and dry standard conditions.

3.4.4 Moisture Determination

The moisture content of the stack gas was determined using procedures outlined in 40 CFR 60, Appendix A, Reference Method 4. The Method 4 sampling was performed for every test run and a minimum of 21 standard cubic feet was collected for each moisture run. The moisture was determined for each sampling train by gravimetrically measuring the weight gain of the chilled impingers over the length of the sampling runs. Figure 2 is a schematic of the Method 4 sample train.

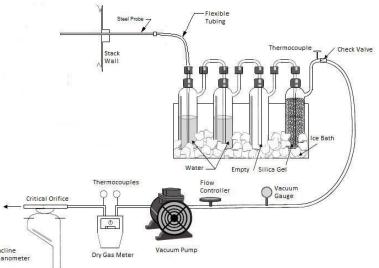


Figure 2. Schematic of Method 4 Sampling Train

3.5 Oxygen (O₂) Determination

The O_2 percent concentrations were sampled and determined using a Teledyne T-803 paramagnetic O_2 analyzer. The O_2 sampling conformed to procedures presented in 40 CFR 60, Appendix A, Method 3A.

3.6 Carbon Dioxide (CO2) Determination

The CO₂ concentrations were sampled and determined using a Teledyne T-803 dedicated nondispersive infrared (NDIR) analyzer. The CO₂ sampling conformed to procedures presented in 40 CFR 60, Appendix A, Method 3A.

4.0 EQUIPMENT CALIBRATION

Proper equipment calibration is essential in maintaining the desired data quality level. All calibrations of the equipment to be used in the stack sampling conformed to the guidelines outlined in the EPA quality assurance handbook, Quality Assurance Handbook for Air Pollution Measurement Systems, Volume III, Stationary Source Specific Methods (EPA600/477027a). The following sections give a synopsis of the calibration procedures for the main components of the stack sampling systems.

4.1 CEM Calibration Procedures and Correction Factor Calculations

The reference method analyzers were calibrated with EPA-approved RATA Class calibration gases prior to the beginning of the test series, and after every test run. The initial calibration error checks were performed at the beginning of the test run series in accordance with the specific reference method applicable to the analyzer. After the successful completion of the initial calibration error check, a system bias check was performed.

Zero and mid-point calibration bias checks were performed prior to the beginning of the test runs. The bias check is a comparison of instrument response to gas introduced into the analyzer with gases routed throughout the entire sampling system. The maximum allowable system bias is 5% of the high-level calibration gas value. After the bias check was performed, the analyzers were not adjusted during the tests, unless an analyzer failed the drift check. No analyzers failed the drift check.

For the THC CEM, EPA Method 25A does not require a direct calibration. Instead, only the system calibration is performed on the THC CEM.

After each test run a drift check was performed on the analyzers, in the event that an analyzer failed the drift check, the test run completed prior to the drift check would be invalidated. None of the analyzers failed the drift check, so it was not necessary to eliminate any test runs. The drift checks were performed on each analyzer by introducing the mid-range calibration gas and the zero nitrogen. The maximum allowable calibration drift is 3% of the high-level calibration gas value. Calibration drift was determined by comparing the before run and after run values.

4.2 Stack Gas Flow Equipment Calibration Procedures

4.2.1 Dry Gas Meters/Critical Orifice

The dry gas meter and critical orifice in the control box used during the testing were calibrated against a primary wet test meter before and after the test in order to ensure accurate measurements

of the sample gas volumes. The dry gas meter and critical orifice are normally housed as a set inside each control box and are calibrated as such.

The dry gas meter/critical orifice set was calibrated at preselected volume flow settings. For each of these flow rates, an accuracy ratio factor to the calibration standard (Y_i) was computed for the individual dry gas meter. A successful calibration for a particular dry gas meter would be achieved if each value of Y_i will be within 2 percent of the average value of Y_i ($Y_i = Y \pm 0.02Y$).

4.2.2 Thermocouples and Thermocouple Readouts

All thermocouples used during the stack sampling tests were calibrated to ensure accurate temperature measurements. All of the sensors utilized were type "K" thermocouples, which have a working range up to 2,500 °F. These sensors were used in the measurement of stack gas temperature and impinger temperature. The thermocouples were calibrated against an NIST traceable mercury-in-glass thermometer at multiple temperatures. In order to obtain the calibration data from each sensor, a single, recently calibrated thermocouple readout was used.

The thermocouple readouts used during the testing were calibrated using a thermocouple simulator. This calibration apparatus generates a voltage signal that mimics the signal an ideal "K" type thermocouple would exhibit at a particular temperature. The signal can be changed via a slide switch. The readouts were calibrated at preselected points across the range of the calibration device.

4.2.3 Barometer

The field barometer used during the tests was an NIST traceable electronic barometer. This barometer was calibrated at the factory and sealed, so no adjustments are required.

4.2.4 Analytical Balance

The field analytical balance was calibrated before the test with certified standard weights. The balance was adjusted for any deviation from the standard weights. In the field, periodic checks were made to insure data validity. This balance was used to measure the impinger weight changes due to moisture gain during the stack sampling (determination of stack moisture content).

4.2.5 Pitot Tubes

The S-type pitot tube used during the testing was calibrated by geometric consideration. The basis for the calibration is described in 40 CFR, Part 60, Appendix A, Method 2.

5.0 QUALITY ASSURANCE PROCEDURES

Quality assurance and quality control procedures were implemented throughout the sampling program. The reference test methods for the primary CEMs contain specific quality assurance and control requirements in the form of periodic calibration checks of the sampling system and the use of EPA approved RATA Class calibration gases. The calibration checks and system bias checks must be within strict allowable ranges in order for the instruments to pass ongoing calibrations. All the reference method CEMs were within their individual specific calibration and operating limits. All other test equipment (sample control boxes, dry gas meters, thermocouples, thermocouple readouts, pitot tubes) were calibrated in accordance with guidelines outlined in the EPA recommendations and requirements.

Field data sheets, emission monitor data sheets, calibration records and all calculations were checked and approved by CEC personnel experienced in performing these tests and acquiring the field data. Data and calculation procedures adhered to the CEC approved QA/QC guidelines for document and data review.

CEC recognizes the previously described reference methods to be very technical oriented and attempts to minimize all factors that can increase error by implementing its Quality Assurance Program into every segment of its testing activities.

Calculations were performed using verified Excel spreadsheets. An explanation of the nomenclature and calculations along with the complete test results are located in the Appendix of this report. Also appended are the calibration data and copies of the raw field data sheets. Analyzer interference data provided by the manufacturer is kept on file at CEC.

APPENDIX A

Process Data

Gregg, Todd

From:	TAYLOR_CATES@denso-diam.com
Sent:	Thursday, November 29, 2018 12:52 PM
To:	Gregg, Todd
Cc:	EDDIE_FRANKS@DENSO-diam.com
Subject:	Re: Fw: Process Data

Hi Todd,

I apologize for the delay. I believe I have all of the information that you need below.

Run Time	Avg. TO Temp (F)	Avg. Flow (cfm)
r1	1477	14989
r2	1482	15112
r2	1489	15045

Thanks!!!

DENSO

Mrs. Taylor Cates Specialist Safety, Health, and Environment DENSO Manufacturing Athens, TN INC. Tel: (423)-746-0000 ext. 7543 Internal: 5010-7543

"AT WORK OR AT PLAY; LET SAFETY LEAD THE WAY!"

 From:
 EDDIE FRANKS/DMTN

 To:
 TAYLOR CATES/DMTN@NDAM

 Cc:
 "Gregg, Todd" <tgregg@cecinc.com>

 Date:
 11/19/2018 11:48 AM

 Subject:
 Fw: Process Data

Hey Taylor Can you get with facilities and get Todd what he needs? Let me know if you need any help. Thanks, Eddie

Eddie Franks Manager Safety, Health and Environment DENSO MANUFACTURING ATHENS TENNESSEE, INC 2400 Denso Drive Athens, TN 37303 Tel: 423-746-0000 Ext. 7542 Cell: 901-652-8887

"AT WORK OR AT PLAY; LET SAFETY LEAD THE WAY"

CEM's Data

2018 Denso Athens Compliance Run 1

				Run 1	-					
	CEC Air Group	CEC Air Group	CEC Air Group	CEC Air Group CEC Air Group	Denso	Denso	CEC Air Group	CEC Air Group	CEC Air Group CEC Air Group CEC Air Group CEC Air Group	CEC Air Group
	THC in	THC out	THC in	THC out	Inlet Flow	Inlet Flow	Outlet Flow	THC in	THC out	RE
	(wymqq)	(wvmqq)	(pvmqq)	(phund)	(cfm)	(dscfm)	(dscfm)	(lbs/hour)	(Ibs/hour)	(%)
10/30/2018 10:20	544.44	55.09	549.85	55.72	14,989	14,840	8,464	56,45	3.26	94.22%
10/30/2018 10:21	507.52	52.08	512.56	52.68	14,989	14,840	8,464	52.62	3.08	94.14%
10/30/2018 10:22	482.95	37.98	487.75	38.42	14,989	14,840	8,464	50.07	2.25	95.51%
10/30/2018 10:23	493.69	35.72	498.59	36.13	14,989	14,840	8,464	51.19	2.12	95.87%
10/30/2018 10:24	497.77	35.91	502.72	36.32	14,989	14,840	8,464	51.61	2.13	95.88%
10/30/2018 10:25	501.19	37.19	506.17	37.62	14,989	14,840	8,464	51.96	2.20	95.76%
10/30/2018 10:26	499.38	38.31	504.35	38.75	14,989	14,840	8,464	51.78	2.27	95.62%
10/30/2018 10:27	507.53	39.63	512.57	40.09	14,989	14,840	8,464	52.62	2.35	95.54%
10/30/2018 10:28	500.68	41.98	505.66	42.46	14,989	14,840	8,464	51.91	2.49	95.21%
10/30/2018 10:29	492.08	43.63	496.97	44.13	14,989	14,840	8,464	51.02	2.58	94.94%
10/30/2018 10:30	499.06	46.14	504.02	46.67	14,989	14,840	8,464	51.74	2.73	94.72%
10/30/2018 10:31	475.72	46.61	480.45	47.15	14,989	14,840	8,464	49.32	2.76	94.40%
10/30/2018 10:32	494.35	49.19	499.26	49.76	14,989	14,840	8,464	51.26	2.91	94.32%
10/30/2018 10:33	505.35	51.1	510.37	51.69	14,989	14,840	8,464	52.40	3.03	94.22%
10/30/2018 10:34	492.18	53.15	497.07	53.76	14,989	14,840	8,464	51.03	3.15	93.83%
10/30/2018 10:35	485.32	47.88	490.15	48.43	14,989	14,840	8,464	50.32	2.84	94.36%
10/30/2018 10:36	473.41	45.21	478.11	45.73	14,989	14,840	8,464	49.08	2.68	94.54%
10/30/2018 10:37	498.56	42.22	503.52	42.71	14,989	14,840	8,464	51.69	2.50	95.16%
10/30/2018 10:38	477.47	40.35	482.22	40.81	14,989	14,840	8,464	49.51	2.39	95.17%
10/30/2018 10:39	488.54	38.34	493.39	38.78	14,989	14,840	8,464	50.65	2.27	95.52%
10/30/2018 10:40	503.05	38.37	508.05	38.81	14,989	14,840	8,464	52.16	2.27	95.64%
10/30/2018 10:41	518.06	38.05	523.21	38.49	14,989	14,840	8,464	53.71	2.25	95.80%
10/30/2018 10:42	533.73	37.7	539.04	38.13	14,989	14,840	8,464	55.34	2.23	95.97%
10/30/2018 10:43	527.56	38.26	532.80	38.70	14,989	14,840	8,464	54.70	2.27	95.86%
10/30/2018 10:44	517.82	38.52	522.97	38.96	14,989	14,840	8.464	53.69	2.28	95.75%
10/30/2018 10:45	528.33	38.48	533.58	38.92	14,989	14,840	8,464	54.78	2.28	95.84%
10/30/2018 10:46	511.38	39.15	516.46	39.60	14,989	14,840	8,464	53.02	2.32	95.63%
10/30/2018 10:47	534.16	39.58	539.47	40.04	14,989	14,840	8,464	55.38	2.34	95.77%
10/30/2018 10:48	522.31	39.55	527.51	40.01	14,989	14,840	8,464	54.16	2.34	95.67%
10/30/2018 10:49	528.22	40.49	533.46	40.96	14,989	14,840	8,464	54.77	2.40	95.62%
10/30/2018 10:50	526.13	41.44	531.36	41.92	14,989	14,840	8,464	54.55	2.45	95.50%
10/30/2018 10:51	514.78	41.5	519.90	41.98	14,989	14,840	8,464	53.37	2.46	95.39%
10/30/2018 10:52	507.63	41.31	512.68	41.79	14,989	14,840	8,464	52.63	2.45	95.35%
10/30/2018 10:53	502.23	41.29	507.22	41.77	14,989	14,840	8,464	52.07	2.45	95.30%
10/30/2018 10:54	508.56	41.5	513.62	41.98	14,989	14,840	8,464	52.73	2.46	95.34%
10/30/2018 10:55	489.47	41.93	494.33	42.41	14,989	14,840	8,464	50.75	2.48	95.11%
10/30/2018 10:56	489.72	41.9	494.58	42.38	14,989	14,840	8,464	50.78	2.48	95.11%
10/30/2018 10:57	500.16	43.36	505.13	43.86	14,989	14,840	8,464	51.86	2.57	95.05%

Compliance	
o Athens	Run 1
Dens	
2018	

	CEC Air Group	CEC Air Group	CEC Air Group	CEC Air Group CEC Air Group	Denso	Denso	CEC Air Group CEC Air Group CEC Air Group CEC Air Group	EC Air Group	CEC Air Group	CEC Air Group
	THC in	THC out	THC IN	THC out	Inlet Flow	Inlet Flow	Outlet Flow	THC in	THC out	RE
	(wwwdd)	(wwwd)	(phund)	(pnudd)	(cfm)	(dscfm)	(dscfm)	(Ibs/hour)	(Ibs/hour)	(%)
10/30/2018 10:58	502.58	45.09	507.57	45.61	14,989	14,840	8,464	52.11	2.67	94.87%
10/30/2018 10:59	512.30	47.26	517.39	47.80	14,989	14,840	8,464	53.12	2.80	94.73%
10/30/2018 11:00	487.14	48.6	491.98	49.16	14,989	14,840	8,464	50.51	2.88	94.30%
10/30/2018 11:01	474.02	49.78	478.73	50.35	14,989	14,840	8,464	49.15	2.95	94.00%
10/30/2018 11:02	474.88	50.88	479.60	51.47	14,989	14,840	8,464	49.24	3.01	93.88%
10/30/2018 11:03	480.84	51.98	485.62	52.58	14,989	14,840	8,464	49.86	3.08	93.82%
10/30/2018 11:04	469.03	52.11	473.69	52.71	14,989	14,840	8,464	48.63	3.09	93.65%
10/30/2018 11:05	471.34	52.06	476.03	52.66	14,989	14,840	8,464	48.87	3.08	93.69%
10/30/2018 11:06	487.39	54.14	492.23	54.76	14,989	14,840	8,464	50.53	3.21	93.65%
10/30/2018 11:07	476.55	55	481.29	55.63	14,989	14,840	8,464	49.41	3.26	93.41%
10/30/2018 11:08	463.61	55.91	468.22	56.55	14,989	14,840	8,464	48.07	3.31	93.11%
10/30/2018 11:09	491.42	57.21	496.30	57.87	14,989	14,840	8,464	50.95	3.39	93.35%
10/30/2018 11:10	473.64	59.82	478.34	60.51	14,989	14,840	8,464	49.11	3.54	92.79%
10/30/2018 11:11	494.86	61.72	499.77	62.43	14,989	14,840	8,464	51.31	3.66	92.88%
10/30/2018 11:12	486.45	65.6	491.28	66.36	14,989	14,840	8,464	50.44	3.89	92.30%
10/30/2018 11:13	491.76	69.27	496.65	70.07	14,989	14,840	8,464	50.99	4.10	91.95%
10/30/2018 11:14	480.50	69.76	485.27	70.56	14,989	14,840	8,464	49.82	4.13	91.71%
10/30/2018 11:15	476.31	72.1	481.05	72.93	14,989	14,840	8,464	49.39	4.27	91.35%
10/30/2018 11:16	474.66	75.75	479.38	76.62	14,989	14,840	8,464	49.21	4.49	90.88%
10/30/2018 11:17	478.99	78.18	483.75	79.08	14,989	14,840	8,464	49.66	4.63	90.68%
10/30/2018 11:18	483.14	78.57	487.94	79.47	14,989	14,840	8,464	50.09	4.65	90.71%
10/30/2018 11:19	483.27	81.06	488.08	81.99	14,989	14,840	8,464	50.11	4.80	90.42%
10/30/2018 11:20	475.73	83.23	480.46	84.19	14,989	14,840	8,464	49.33	4.93	90.01%
10/30/2018 11:21	468.30	84.88	472.95	85.86	14,989	14,840	8,464	48.55	5.03	89.65%
10/30/2018 11:22	469.72	84.17	474.39	85,14	14,989	14,840	8,464	48.70	4.99	89.76%
10/30/2018 11:23	467.96	83.36	472.61	84.32	14,989	14,840	8,464	48.52	4.94	89.82%
10/30/2018 11:24	459.81	81.93	464.38	82.87	14,989	14,840	8,464	47.67	4.85	89.82%
10/30/2018 11:25	440.89	80.97	445.27	81.90	14,989	14,840	8,464	45.71	4.80	89.51%
10/30/2018 11:26	452.36	78.42	456.85	79.32	14,989	14,840	8,464	46.90	4.64	90.10%
10/30/2018 11:27	455.49	76.82	460.02	77.70	14,989	14,840	8,464	47.23	4.55	90.37%
10/30/2018 11:28	437.65	60.95	442.00	61.65	14,989	14,840	8,464	45.38	3.61	92.04%
Averages	491.64	52 85	406 52	21 42	14 000	010 11				
))))))		00.30	70.004	00.40	14,303	14,840	8,464	50.97	3.13	93.79%

Compliance		
Athens	Run 2	
Denso		
2018		

	CEC Air Ground	CEC Air Group	CEC Air Group	CEC Air Ground CEC Air Ground						
				THO TH	Denso		CEC AIR Group CEC AIR Group CEC AIR Group CEC AIR Group	CEC AIr Group	CEC Air Group	CEC Air Group
					INIEL FIOW	Inlet Flow	Outlet Flow	THC in	THC out	RE
	(wnudd)	(wymqq)	(pnmdd)	(pnmdd)	(cfm)	(dscfm)	(dscfm)	(Ibs/hour)	(Ibs/hour)	(%)
10/30/2018 14:00	408.75	87.86	411.67	89.03	15,112	15,004	8,197	42.73	5.05	88.18%
10/30/2018 14:01	412.53	92.11	415.47	93.34	15,112	15,004	8,197	43.13	5.29	87.73%
10/30/2018 14:02	412.83	101.14	415.77	102.49	15,112	15,004	8,197	43.16	5.81	86.53%
10/30/2018 14:03	410.47	120.13	413.40	121.73	15,112	15,004	8,197	42.91	6.90	83.91%
10/30/2018 14:04	403.47	134.28	406.35	136.07	15,112	15,004	8,197	42.18	7.72	81.71%
10/30/2018 14:05	402.13	133.63	404.99	135.41	15,112	15,004	8,197	42.04	7.68	81.73%
10/30/2018 14:06	400.60	131.95	403.46	133.71	15,112	15,004	8,197	41.88	7.58	81.89%
10/30/2018 14:07	395.72	133.65	398.54	135.43	15,112	15,004	8,197	41.37	7.68	81.44%
10/30/2018 14:08	398.47	128.75	401.31	130.47	15,112	15,004	8,197	41.66	7.40	82.24%
10/30/2018 14:09	400.69	119.51	403.54	121.10	15,112	15,004	8,197	41.89	6.87	83.60%
10/30/2018 14:10	400.82	106.89	403.68	108.32	15,112	15,004	8,197	41.90	6.14	85.34%
10/30/2018 14:11	393.49	96.49	396.30	97.78	15,112	15,004	8,197	41.14	5.54	86.52%
10/30/2018 14:12	385.86	87.61	388.61	88.78	15,112	15,004	8,197	40.34	5.03	87.52%
10/30/2018 14:13	381.85	81.06	384.58	82.14	15,112	15,004	8,197	39.92	4.66	88.33%
10/30/2018 14:14	379.90	74.6	382.61	75.60	15,112	15,004	8,197	39.71	4.29	89.21%
10/30/2018 14:15	381.05	69.83	383.77	70.76	15,112	15,004	8,197	39.84	4.01	89.93%
10/30/2018 14:16	385.36	64.23	388.11	65.09	15,112	15,004	8,197	40.29	3.69	90.84%
10/30/2018 14:17	389.77	61.02	392.55	61.83	15,112	15,004	8,197	40.75	3.51	91.39%
10/30/2018 14:18	395.92	55.29	398.74	56.03	15,112	15,004	8,197	41.39	3.18	92.32%
10/30/2018 14:19	400.51	52.3	403.37	53.00	15,112	15,004	8,197	41.87	3.01	92.82%
10/30/2018 14:20	407.18	48.44	410.08	49.09	15,112	15,004	8,197	42.57	2.78	93.46%
10/30/2018 14:21	407.70	46.23	410.61	46.85	15,112	15,004	8,197	42.62	2.66	93.77%
10/30/2018 14:22	397.38	43.72	400.22	44.30	15,112	15,004	8,197	41.54	2.51	93.95%
10/30/2018 14:23	385.91	42.2	388.66	42.76	15,112	15,004	8,197	40.34	2.42	93.99%
10/30/2018 14:24	377.62	40.52	380.31	41.06	15,112	15,004	8,197	39.48	2.33	94.10%
10/30/2018 14:25	371.45	39.01	374.10	39.53	15,112	15,004	8,197	38.83	2.24	94.23%
10/30/2018 14:26	366.28	38.01	368.90	38.52	15,112	15,004	8,197	38.29	2.18	94.30%
10/30/2018 14:27	363.41	37.06	366.00	37.55	15,112	15,004	8,197	37.99	2.13	94.39%
10/30/2018 14:28	358.26	35.32	360.81	35.79	15,112	15,004	8,197	37.45	2.03	94.58%
10/30/2018 14:29	358.21	34.26	360.76	34.72	15,112	15,004	8,197	37.45	1.97	94.74%
10/30/2018 14:30	356.74	34.6	359.29	35.06	15,112	15,004	8,197	37.29	1.99	94.67%
10/30/2018 14:31	349.80	33.94	352.29	34.39	15,112	15,004	8,197	36.57	1.95	94.67%
10/30/2018 14:32	344.77	32.89	347.23	33.33	15,112	15,004	8,197	36.04	1.89	94.76%
10/30/2018 14:33	340.75	32.73	343.18	33.17	15,112	15,004	8,197	35.62	1.88	94.72%
10/30/2018 14:34	334.44	30.79	336.83	31.20	15,112	15,004	8,197	34.96	1.77	94.94%
10/30/2018 14:35	330.15	29.12	332.50	29.51	15,112	15,004	8,197	34.51	1.67	95.15%

Compliance	
Athens	Run 2
Denso	
2018	

	0 010	0 10 000			1					
	CEC AIL GROUP	CEC AIr Group	CEC Air Group	CEC Air Group CEC Air Group	Denso	Denso	CEC Air Group CEC Air Group CEC Air Group CEC Air Group	CEC Air Group	CEC Air Group	CEC Air Group
	THC in	THC out	THC in	THC out	Inlet Flow	Inlet Flow	Outlet Flow	THC in	THC out	RE
	(wnudd)	(wnudd)	(pnudd)	(pnudd)	(cfm)	(dscfm)	(dscfm)	(Ibs/hour)	(Ibs/hour)	(%)
10/30/2018 14:36	337.16	27.86	339.57	28.23	15,112	15,004	8,197	35.25	1.60	95.46%
10/30/2018 14:37	350.29	26.53	352.79	26.88	15,112	15,004	8,197	36.62	1.52	95.84%
10/30/2018 14:38	361.26	25.6	363.84	25.94	15,112	15,004	8,197	37.77	1.47	96.10%
10/30/2018 14:39	372.36	24.63	375.02	24.96	15,112	15,004	8,197	38.93	1.42	96.36%
10/30/2018 14:40	377.32	23.91	380.01	24.23	15,112	15,004	8,197	39.44	1.37	96.52%
10/30/2018 14:41	381.13	23.13	383.85	23.44	15,112	15,004	8,197	39.84	1.33	96.66%
10/30/2018 14:42	385.88	22.53	388.63	22.83	15,112	15,004	8,197	40,34	1.29	96.79%
10/30/2018 14:43	384.81	21.92	387.56	22.21	15,112	15,004	8,197	40.23	1.26	96.87%
10/30/2018 14:44	387.49	21.28	390.25	21.56	15,112	15,004	8,197	40.51	1.22	96.98%
10/30/2018 14:45	392.46	20.99	395.26	21.27	15,112	15,004	8,197	41.03	1.21	97.06%
10/30/2018 14:46	391.79	20.89	394.59	21.17	15,112	15,004	8,197	40.96	1.20	97.07%
10/30/2018 14:47	383.77	20.68	386.51	20.96	15,112	15,004	8,197	40.12	1.19	97.04%
10/30/2018 14:48	376.73	20.85	379.42	21.13	15,112	15,004	8,197	39.38	1.20	96.96%
10/30/2018 14:49	371.77	21.36	374.42	21.64	15,112	15,004	8,197	38.86	1.23	96.84%
10/30/2018 14:50	368.89	21.86	371.53	22.15	15,112	15,004	8,197	38.56	1.26	96.74%
10/30/2018 14:51	363.64	22.62	366.23	22.92	15,112	15,004	8,197	38.01	1.30	96.58%
10/30/2018 14:52	361.73	23.65	364.31	23.97	15,112	15,004	8,197	37.82	1.36	96.41%
10/30/2018 14:53	362.96	23.8	365.55	24.12	15,112	15,004	8,197	37.94	1.37	96.40%
10/30/2018 14:54	360.49	23.72	363.06	24.04	15,112	15,004	8,197	37.68	1.36	96.38%
10/30/2018 14:55	351.14	24.16	353.64	24.48	15,112	15,004	8,197	36.71	1.39	96.22%
10/30/2018 14:56	342.98	25.05	345.43	25.38	15,112	15,004	8,197	35.85	1.44	95.99%
10/30/2018 14:57	336.11	25.7	338.51	26.04	15,112	15,004	8,197	35.14	1.48	95.80%
10/30/2018 14:58	325.86	26.56	328.19	26.91	15,112	15,004	8,197	34.07	1.53	95.52%
10/30/2018 14:59	315.66	27.16	317.91	27.52	15,112	15,004	8,197	33.00	1.56	95.27%
Averages	375.57	51.63	378.25	52.32	15,112	15,004	8,197	39.26	2.97	92.62%

Compliance	
Athens	Run 3
Denso	
2018	

				Run 3	3					
	CEC Air Group	CEC Air Group	CEC Air Group	CEC Air Group CEC Air Group	Denso	Denso	CEC Air Group CEC Air Group CEC Air Group CEC Air Group	CEC Air Group	CEC Air Group	CEC Air Group
	THC in	THC out	THC in	THC out	Inlet Flow	Inlet Flow	Outlet Flow	THC in	THC out	RE
	(wnudd)	(wnudd)	(pnmdd)	(pnmdd)	(cfm)	(dscfm)	(dscfm)	(Ibs/hour)	(Ibs/hour)	(%)
10/30/2018 15:25	336.14	24.04	339.11	24.39	15,045	14,912	9,185	34.98	1.55	95.57%
10/30/2018 15:26	337.07	23.72	340.05	24.07	15,045	14,912	9,185	35.08	1.53	95.64%
10/30/2018 15:27	341.02	23.15	344.04	23.49	15,045	14,912	9,185	35.49	1.49	95.79%
10/30/2018 15:28	342.09	21.84	345.12	22.16	15,045	14,912	9,185	35.60	1.41	96.04%
10/30/2018 15:29	340.38	21.85	343.39	22.17	15,045	14,912	9,185	35.42	1.41	96.02%
10/30/2018 15:30	345.77	21.74	348.82	22.06	15,045	14,912	9,185	35.99	1.40	96.10%
10/30/2018 15:31	351.79	21.43	354.90	21.75	15,045	14,912	9,185	36.61	1.38	96.23%
10/30/2018 15:32	356.48	21.04	359.63	21.35	15,045	14,912	9,185	37.10	1.36	96.34%
10/30/2018 15:33	359.37	20.29	362.55	20.59	15,045	14,912	9,185	37.40	1.31	96.50%
10/30/2018 15:34	361.87	20.02	365.07	20.31	15,045	14,912	9,185	37.66	1.29	96.57%
10/30/2018 15:35	363.42	20.07	366.63	20.37	15,045	14,912	9,185	37.82	1.29	96.58%
10/30/2018 15:36	360.32	19.84	363.50	20.13	15,045	14,912	9,185	37.50	1.28	96.59%
10/30/2018 15:37	356.07	19.96	359.21	20.25	15,045	14,912	9,185	37.06	1.29	96.53%
10/30/2018 15:38	345.60	19.71	348.65	20.00	15,045	14,912	9,185	35.97	1.27	96.47%
10/30/2018 15:39	341.24	19.47	344.26	19.76	15,045	14,912	9,185	35.51	1.26	96.47%
10/30/2018 15:40	336.07	19.32	339.04	19.60	15,045	14,912	9,185	34.98	1.25	96.44%
10/30/2018 15:41	332.88	19.04	335.82	19.32	15,045	14,912	9,185	34.64	1.23	96.46%
10/30/2018 15:42	331.00	19.01	333.93	19.29	15,045	14,912	9,185	34.45	1.23	96.44%
10/30/2018 15:43	325.11	19.1	327.99	19.38	15,045	14,912	9,185	33.84	1.23	96.36%
10/30/2018 15:44	325.41	18.78	328.28	19.06	15,045	14,912	9,185	33.87	1.21	96.42%
10/30/2018 15:45	323.19	18.61	326.05	18.88	15,045	14,912	9,185	33.64	1.20	96.43%
10/30/2018 15:46	322.06	18.76	324.90	19.04	15,045	14,912	9,185	33.52	1.21	96.39%
10/30/2018 15:47	330.57	18.69	333.49	18.97	15,045	14,912	9,185	34.40	1.21	96.50%
10/30/2018 15:48	336.64	18.71	339.62	18.99	15,045	14,912	9,185	35.04	1.21	96.56%
10/30/2018 15:49	341.30	18.67	344.31	18.94	15,045	14,912	9,185	35.52	1.20	96.61%
10/30/2018 15:50	346.94	18.74	350.00	19.02	15,045	14,912	9,185	36.11	1.21	96.65%
10/30/2018 15:51	346.48	18.62	349.54	18.89	15,045	14,912	9,185	36.06	1.20	96.67%
10/30/2018 15:52	349.74	18.48	352.83	18.75	15,045	14,912	9,185	36.40	1.19	96.73%
10/30/2018 15:53	348.61	18.61	351.69	18.88	15,045	14,912	9,185	36.28	1.20	96.69%
10/30/2018 15:54	346.89	18.31	349.95	18.58	15,045	14,912	9,185	36.10	1.18	96.73%
10/30/2018 15:55	342.69	18.37	345.72	18.64	15,045	14,912	9,185	35.67	1.18	96.68%
10/30/2018 15:56	338.81	18.46	341.80	18.73	15.045	14,912	9,185	35.26	1.19	96.62%
10/30/2018 15:57	333.75	18.53	336.69	18.80	15,045	14,912	9,185	34.73	1.19	96.56%
10/30/2018 15:58	330.44	18.37	333.36	18.64	15,045	14,912	9,185	34.39	1.18	96.56%
10/30/2018 15:59	327.74	18.29	330.64	18.56	15,045	14,912	9,185	34.11	1.18	96.54%
10/30/2018 16:00	322.52	18.33	325.37	18.60	15,045	14,912	9,185	33,57	1.18	96.48%

Denso Athens Compliance	Run 3
2018 De	

		Company of Control of the Control of States and States of States o								
	CEC Air Group	CEC Air Group	CEC Air Group	CEC Air Group CEC Air Group	Denso	Denso	CEC Air Group CEC Air Group CEC Air Group CEC Air Group	CEC Air Group	CEC Air Group	CEC Air Group
	THC in	THC out	THC in	THC out	Inlet Flow	Inlet Flow	Outlet Flow	THC in	THC out	RE
	(wnmqq)	(wvmqq)	(pnudd)	(pnudd)	(cfm)	(dscfm)	(dscfm)	(Ibs/hour)	(Ibs/hour)	(%)
10/30/2018 16:01	316.90	18.23	319.70	18.50	15,045	14,912	9,185	32.98	1.18	96.44%
10/30/2018 16:02	314.20	18.56	316.98	18.83	15,045	14,912	9,185	32.70	1.20	96.34%
10/30/2018 16:03	312.20	18.88	314.96	19.16	15,045	14,912	9,185	32.49	1.22	96.25%
10/30/2018 16:04	310.80	18.81	313.54	19.09	15,045	14,912	9,185	32.35	1.21	96.25%
10/30/2018 16:05	309.48	18.47	312.21	18.74	15,045	14,912	9,185	32.21	1.19	96.30%
10/30/2018 16:06	308.31	18.73	311.03	19.01	15,045	14,912	9,185	32.09	1.21	96.24%
10/30/2018 16:07	304.19	18.22	306.87	18.49	15,045	14,912	9,185	31.66	1.17	96.29%
10/30/2018 16:08	303.66	18.44	306.34	18.71	15,045	14,912	9,185	31.60	1.19	96.24%
10/30/2018 16:09	302.17	18.65	304.84	18.92	15,045	14,912	9,185	31.45	1.20	96.18%
10/30/2018 16:10	301.17	18.38	303.83	18.65	15,045	14,912	9,185	31.34	1.19	96.22%
10/30/2018 16:11	301.17	18.18	303.83	18.45	15,045	14,912	9,185	31.34	1.17	96.26%
10/30/2018 16:12	302.00	18.25	304.67	18.52	15,045	14,912	9,185	31.43	1.18	96.26%
10/30/2018 16:13	308.72	18.07	311.44	18.34	15,045	14,912	9,185	32.13	1.17	96.37%
10/30/2018 16:14	312.34	17.98	315.10	18.24	15,045	14,912	9,185	32.51	1.16	96.43%
10/30/2018 16:15	314.98	18.32	317.76	18.59	15,045	14,912	9,185	32.78	1.18	96.40%
10/30/2018 16:16	315.59	18.77	318.38	19.05	15,045	14,912	9,185	32.84	1.21	96.32%
10/30/2018 16:17	317.35	18.47	320.15	18.74	15,045	14,912	9,185	33.03	1.19	96.39%
10/30/2018 16:18	318.93	18.36	321.74	18.63	15,045	14,912	9,185	33.19	1.18	96.43%
10/30/2018 16:19	318.80	18.23	321.62	18.50	15,045	14,912	9,185	33.18	1.18	96.46%
10/30/2018 16:20	319.29	18.24	322.11	18.51	15,045	14,912	9,185	33.23	1.18	96.46%
10/30/2018 16:21	318.56	18.37	321.38	18.64	15,045	14,912	9,185	33.15	1.18	96.43%
10/30/2018 16:22	319.93	18.34	322.75	18.61	15,045	14,912	9,185	33.30	1.18	96.45%
10/30/2018 16:23	327.03	18.45	329.92	18.72	15,045	14,912	9,185	34.04	1.19	96.50%
10/30/2018 16:24	332.75	18.36	335.69	18.63	15,045	14,912	9,185	34.63	1.18	96.58%
Averages	329.80	19.20	332.71	19.48	15,045	14,912	9,185	34.32	1.24	96.39%

CEM Calibrations

CEM CALIBRATIONS

Denso Athens	184-566	October 30, 2018	Run 1	10:20 AM	11:28 AM	
PROJECT NAME	PROJECT NUMBER	DATE	RUN NUMBER	START TIME	STOP TIME	

ANALYZER	SPAN
THC	975
THC	50

CALIBRA ION ENCORSTATEM BIAS CHECKGASCAL. GASNAMLYSECALCALPRETETSYSTEM BIAS CHECKNUMBER(% or PPM)(% or			and inco										
Gas CAL.GASCAL.GAS MALYZERANALYZER CAL.GASCAL RESPONSECAL.GAS RESPONSEANALYZER RESPONSECAL RESPONSECAL ERCOR RESPONSEICAL ERCOR RESPONSEISCAL ERCOR RESPONSEISCAL ERCOR RESPONSEISCAL ERCOR RESPONSEISCAL ERCOR RESPONSEISCAL ERCOR RESPONSEISCAL ERCOR RESPONSEISCAL ERCOR RESNOJISCAL ERCOR RESNOJ<			CALIBRA	I ION ERROR			SYS	STEM BIAS C	THECK				
CYLINDER VALUE RESPONSE ERROR SYSTEM SYSTEM SYS. BIAS DRIFT CHECK OK? BIAS OK? NUMBER (% or PPM) (% or PPM) (% or PPM) (% SPAN) RESP. (% SPAN) (% SPAN) (YES/NO) (YES/NO) na 0.00 -0.03 0.00 1.24 -0.13 2.73 (% SPAN) (YES/NO) (YES/NO) (YES/NO) na 0.00 -0.03 0.00 1.24 -0.13 2.73 (% SPAN) (YES/NO) (YES/NO) (YES/NO) EB0065494 233.70 227.15 0.67 1.24 -0.13 2.73 (YES/NO) (YES/NO) (YES/NO) C689356 560.70 227.15 0.67 489.43 0.28 -0.16 YES YES YES YES/NO) YES/NO) C689356 560.70 0.71 0.72 489.43 0.28 -0.16 YES		GAS	CAL. GAS	ANALYZER	CAL	PRE	ETEST		POST TEST		IS CAL ERROR	IS POSTEST	IS SYSTEM
Na 0.00 0.03 0.124 0.13 273 0.04 0.05 0.15 0		CYLINDER	VALUE (% or PPM)	RESPONSE (% or PPM)	ERROR (% SPAN)	SYSTEM RESP	_	SYSTEM	SYS. BIAS	DRIFT (%, SPAN)	CHECK OK?	BIAS OK?	DRIFT OK?
EB0065494 233.70 227.15 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.66 0.65 0.66 0.65 0.66 0.66 0.66 0.66 0.66 0.66 0.66 0.66 0.66 0.66 0.66 0.66 0.66 0.66 0.66 0.66 0.66 0.66 $0.$	THC zero	n/a	0.00	-0.03	0.00	1.24	-0.13	2.73	-0.28	-0.15	YFS	VES	(TES/NU)
CC89356 500.70 494.52 0.63 489.43 0.52 494.31 0.02 -0.50 YES YES <th>THC low</th> <td>EB0065494</td> <td>233.70</td> <td>227.15</td> <td>0.67</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>2</td>	THC low	EB0065494	233.70	227.15	0.67								2
EB0065408 97500 973.31 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.11 0.11 0.11 0.11 0.11 0.11 0.15 0.26 0.26 0.28 0.26 0.26 0.26 0.28 0.26	THC mid	CC89356	500.70	494.52	0.63	489.43	0.52	494.31	0.02	-0.50	YES	VEC	VEC
n/a 0.00 0.03 0.06 0.38 -0.70 0.81 -1.56 -0.86 YES	THC hi	EB0065408	975.00	973.31	0.17						0		2
XC032387 10.02 9.98 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.01	THC zero	n/a	0.00	0.03	-0.06	0.38	-0.70	0.81	-1.56	-0.86	YFS	VES	VES
XC021249 25.10 25.13 -0.06 25.20 -0.14 25.18 -0.10 0.04 YES YES CC400426 50.09 50.15 -0.12 -0	THC low	XC032387	10.02	9.98	0.08						0	2	0
CC400426 50.09 50.15 -0.12 -0.12	THC mid	XC021249	25.10	25.13	-0.06	25.20	-0.14	25.18	-0.10	0.04	YES	YES	YES
	THC hi	CC400426	50.09	50.15	-0.12								

Calibration error = ((cal. gas value - analyzer resp) / analyzer span) * 100: allowable error ± 2 %, ± 5 % for THC

System Bias = ((analyzer resp - system resp) / analyzer span) * 100: allowable error $\pm 5\%$

Drift = ((pretest sys resp - post test sys resp) / analyzer span) * 100: allowable error ± 3 %

Sys Bias (pre and post) must be performed on each run: To determine Drift. Use zero gas and either mid or hi cal gas, choose cal gas closest to measured stack concentration.

Drift must be performed every hour on THC

Calibration Error is performed only at start, unless allowable error parameters are exceeded.

CEM CALIBRATIONS

PRUJECI NAME	Denso Athens
PROJECT NUMBER	184-566
DATE	October 30, 2018
RUN NUMBER	Run 2
START TIME	2:00 PM
STOP TIME	2:59 PM

ANAL YZER	SPAN
THC	501
THC	50

		CALIBRA	CALIBRATION ERROR			SYS	SYSTEM BIAS CHECK	HECK					
	GAS	CAL. GAS	ANALYZER	CAL	PRE	PRETEST		POST TEST		TIS CAL ERROR	IS PRETEST	IS POSTEST	IS SYSTEM
	CYLINDER NUMBER	VALUE (% or PPM)	RESPONSE (% or PPM)	ERROR (% SPAN)	SYSTEM RESP.	SYS. BIAS (% SPAN)	SYSTEM RESP.	SYS. BIAS (% SPAN)	DRIFT (% SPAN)	CHECK OK?	BIAS OK?	BIAS OK?	DRIFT OK?
THC zero	n/a	0.00	-0.03	0.01	2.73	-0.55	2.61	-0.53	0.02	YES	YES	YES	VES
THC low	CC400426	50.09	50.15	-0.01								2	2
THC mid	EB0065494	233.70	227.15	1.31	233.33	-1.23	223.53	0.72	1.96	YES	YES	VEC	VEC
THC hi	CC89356	500.70	494.52	1.23							2	2	-
THC zero	n/a	0.00	0.03	-0.06	0.81	-1.56	-0.20	0.46	2.02	YES	YES	VEC	VEC
THC low	XC032387	10.02	9.98	0.08					and do a set		2	2	
THC mid	XC021249	25.10	25.13	-0.06	25.18	-0.10	24.96	0.34	0.44	YES	YES	YES	VES
THC hi	CC400426	50.09	50.15	-0.12								2	100

Calibration error = ((cal. gas value - analyzer resp) / analyzer span) * 100: allowable error ±2%, ±5% for THC

System Bias = ((analyzer resp - system resp) / analyzer span) * 100: allowable error ± 5 %

Drift = ((pretest sys resp - post test sys resp) / analyzer span) * 100: allowable error ± 3 %

Sys Bias (pre and post) must be performed on each run: To determine Drift. Use zero gas and either mid or hi cal gas, choose cal gas closest to measured stack concentration.

Drift must be performed every hour on THC

Calibration Error is performed only at start, unless allowable error parameters are exceeded.

CEM CALIBRATIONS

PROJECT NAME	Denso Athens
PROJECT NUMBER	184-566
DATE	October 30, 2018
RUN NUMBER	Run 3
START TIME	3:25 PM
STOP TIME	4:24 PM

NALYZER	SPAN
HC	501
HC	50

		CALIBRA'	CALIBRATION ERROR			SYS	SYSTEM BIAS CHECK	HECK					
	GAS	CAL. GAS	ANALYZER	CAL	PRE	PRETEST		POST TEST		TIS CAL ERROR	IS PRETEST	IS POSTEST	IS SYSTEM
	CYLINDER NUMBER	VALUE (% or PPM)	RESPONSE (% or PPM)	ERROR (% SPAN)	SYSTEM RESP.	SYS. BIAS (% SPAN)	SYSTEM	SYS. BIAS	DRIFT	CHECK OK?	BIAS OK?	BIAS OK?	DRIFT OK?
THC zero	n/a	00.00	-0.03	0.01	2.61	-0.53	2.06	-0.42	0.11	VES	VES	VES	VEC
THC low	CC400426	50.09	50.15	-0.01						2	2	2	
THC mid	EB0065494	233.70	227.15	1.31	223.53	0.72	219.61	151	0.78	VEC	VEC	VEC	, LTC
THC hi	CC89356	500.70	494.52	1.23					2.5	2	2	123	100
THC zero	n/a	0.00	0.03	-0.06	-0.20	0.46	-1.03	2.12	1 66	YES	VEC	VEC	SIN
THC low	XC032387	10.02	9.98	0.08						2	2	2	IES
THC mid	XC021249	25.10	25.13	-0.06	24.96	0.34	24.59	1.08	0.74	YES	YES	VEC	VEC
THC hi	CC400426	50.09	50.15	-0.12						01	2	2	IEO

Calibration error = ((cal. gas value - analyzer resp) / analyzer span) * 100: allowable error ±2%, ±5% for THC

System Bias = ((analyzer resp - system resp) / analyzer span) * 100: allowable error ± 5 %

Drift = ((pretest sys resp - post test sys resp) / analyzer span) \star 100: allowable error ± 3 %

Sys Bias (pre and post) must be performed on each run: To determine Drift. Use zero gas and either mid or hi cal gas, choose cal gas closest to measured stack concentration.

Drift must be performed every hour on THC

Calibration Error is performed only at start, unless allowable error parameters are exceeded.

Method 25A Calibration Inlet Linearity Check

	Cal. Gas Value	Analyzer Response			
High check	975.00	973.31			
Zero check	0.00	-0.03			
Slope	0.998297				
y-Intercept	-0.03			Cal Gas	
				Value	5%
Predicted	233.272		TRUE	233.70	11.685
	499.818			500.70	25.035
Analyzer	227.15				
Response	494.52				
difference	6.1221				
	5.2975				
Cal ok?	Yes				
	Yes				

Method 25A Calibration Outlet Linearity Check

	Cal. Gas Value	Analyzer Response			
High check	50.09	50.15			
Zero check	0	0.03			
Slope	1.000599				
y-Intercept	0.03			Cal Gas Value	5%
Predicted	25.145		TRUE	25.10	1.255
	10.056			10.02	0.501
Analyzer	25.13				
Response	9.98				
difference	0.0150				
	0.0760				
Cal ok?	Yes Yes				

Velocity Traverse Test Data

VELOCITY TRAVERSE CALCULATION SHEET

	Client :	Denso	Athens	Test I.D.	: Run 1	Console ID:	#2	
Pro	ject Number :	184	-566	Date	: 10/30/218	Console ∆H@:	and the second	
	Source :	South R	TO Outlet	Test Team	TC, RR	and call and	1.0067	
		-		-		Pitot Tube ID:	PT-4-01	
						-		
	INPUT PARAM	METERS ack Diameter:	22.00	inchos		M	DISTURE CALCULATI	ONS
Bar	ometric Pressur			inches in, Hg		Volume of Water Col	lected	
		atic Pressure:	0.11	in. H ₂ O		Vwstd = (VI ₀)(0.0470		
	0	Percent CO2:	1.5	%		Vwstd = (11.2) * (0.04		
	Ave Pitot Tube Coe	g. Percent O2:	19.8	%		Vwstd = 0.53 f	ť	0.527184
		mple Volume :	0.840	Ft ³				
			44.100	FL		Vmstd = 17.64*Vm*	<u>red, Standard Condition</u> Y*(Pb+(ΔH / 13.6))/(Tm I.160) * (1.0067) * I17(2	
	CALCULAT		5.59	ft²		Vmstd = 45.422 ft	ť	45.27332814
		tack area, (A _s) the stack, (P _s)	29.88			Mainture Contract		
		g. Percent N2	78.7	in Hg %		Moisture Content Bwo = Vwstd/(Vmstd	+ \/wetd)	
		5. 1 0.00m HZ		- 1975 		Bwo = (0.53) / (45.27		
	Im	pinger Weight	S]		Bwo = 0.012		0.011510439
	Initial	Final	Net Gain]				
	777.1 709.9	779.3 710.8	2.2	-		VE	LOCITY CALCULATIC	INS
	600.6	601.0	0.3	1		Molecular Weight of t	he Dry Gas Stream	
	868.9	876.6	7.7	1			.32)(%O ₂) + (.28)(%N ₂)	
	2956.5	2967.7	11.2]			0.32)*(19.80) + (0.28)*(
Point No.	Delta P	√∆P	ΔH	Stack Temp (F)	DGM Temp (F)	Md = 29.03 Ib	/lbmol	29.032
1	0.28	0.5292	1.50	68	50	Molecular Weight of S	Stack Gas	
2	0.29	0.5385		92	54	Ms = (Md)(1 - Bwo) +		
3	0.28	0.5292		138 154	58 60	Ms = (29.03) * (1-0.01 Ms = 28.91 lb		20.04
5	0.24	0.5292		87	62	IVIS - 20.91 ID	/lbmol	28.91
6	0.29	0.5385		74	64	Velocity of Stack Gas		
7	0.29	0.5385		69			(ΔP) ^{0.5} * [(Ts+460) / Ps	
8	0.29	0.5385		68 77			l) * (0.5200) * sqrt {[(55) /min	5.04) / (29.88) / (28.91)]} 1796.001422
10	0.28	0.5292		91		100.0		1730.001422
11	0.28	0.5292		119		Total Flow of Stack Ga	as	
12 13	0.25	0.5000		137 115		Qa = As * Vs	2.01	
14	0.24	0.5099		88		Qa = (5.5850) * (1,796 Qa = 10,030.8 A		10030.75574
15	0.26	0.5099		77				
16 17	0.26	0.5099		73		Qs = Qa * 528 / Ts * P		
17		n/a n/a				그렇게 그렇게 망가지 않는 것이 많이	8 / 555.0) * (29.88 / 29.9 CFM	92) 9528.761736
19		n/a				20 0,020.0 0	ST. 111	0020.101100
20		n/a				Qstd = Qs * (1 - Bwo)		
21 22		n/a n/a				Qstd = (9,528.8) * (1 -		0440 004505
22		n/a				Qstd = 9,419.1 D	SURM	9419.081505
24		n/a						
verage	0.2706	0.5200	1.50	95.4	58.0			1686.481478
				VELOCITY TRA	VERSE TEST RESU	JLTS		
	Stack Gas Tem	perature (°F)	95			Stack Velocity (ft/mir	n) 1.7	96.0
		ar 80.35						85.226.03

Stack Gas Temperature (°F)	95	Stack Velocity (ft/min)	1,796.0
Moisture Content (% Vol.)	1.15%	Gas Flow Rate (ACFM)	10,031
CO2 (% Vol.)	1.5	Gas Flow Rate (SCFM)	9,529
O2 (% Vol.)	19.8	Gas Flow Rate (DSCFM)	9,419

VELOCITY TRAVERSE CALCULATION SHEET

	Client :	Denso	Athens	Test I.D. :	Run 2	Console ID:	#2	
Proj	ject Number :	184	-566	Date:	10/30/218	Console AH@:	1.7556	
		South R		Test Team:		Console Y:		
					- of the	Pitot Tube ID:	PT-4-01	
							11401	
20	INPUT PARAM					MOIST	URE CALCULATIONS	
Baro	St metric Pressur	ack Diameter:		inches			12 ⁻	
Daio		atic Pressure:		in, Hg in. H₂O		Volume of Water Collecte Vwstd = (VI ₀)(0.04707)	20	
		Percent CO2:		%		Vwstd = (10.1) * (0.04707	7)	
		. Percent O2:		%		Vwstd = 0.48 ft ³		0.475407
	Pitot Tube Coe	effiecent, (C _p):	0.840					
	M4 Sar	mple Volume :	34.714	Ft ³		Volume of Gas Metered,		
						Vmstd = 17.64*Vm*Y*(P		
	CALCULATI					Vmstd = (17.64) * (34.714 Vmstd = 35.275 ft ³	4) * (1.0067) * 117(29.87 +	
		ack area, (A _a)	5.59	ft ²		vmsta = 35.275 n		35.15897893
		the stack, (Ps)		in Hg		Moisture Content		
		g. Percent N2		%		Bwo = Vwstd/(Vmstd + V	wstd)	
		-	52 3030 000			Bwo = (0.48) / (35.16 + 0.		
	Im	pinger Weight	s			Bwo = 0.013		0.013341243
H	Initial	Final	Net Gain]				
H	779.3 710.8	783.1 711.7	3.8	-		VELO	CITY CALCULATIONS	
ŀ	601.0	601.2	0.2	1		Molecular Weight of the D	rv Gas Stream	
	876.6	881.8	5.2]		Md = (.44)(%CO ₂) + (.32)		
L	2967.7	2977.8	10.1]		Md = (0.44)*(1.70) + (0.32)
		1.0				Md = 29.06 lb/lbn	lor	29.06
oint No.	Delta P	√∆P	ΔH	Stack Temp (F) DO				
2	0.19 0.20	0.4359	1.50	95 97	7 72	Molecular Weight of Stack	10 X 11	
3	0.19	0.4359		125	74	Ms = (Md)(1 - Bwo) + 18(8 Ms = (29.06) * (1-0.013) +		
4	0.16	0.4000		155	76	Ms = 28.91 lb/lbm		28.91
5	0.15	0.3873		134	78			
7	0.17	0.4123		98 90	79	<u>Velocity of Stack Gas</u> Vs = 85.49 * 60 * Cp * (∆F	0.5 * [(Te+460) / De / Me)	0.5
8	0.16	0.4000		85		Vs = 85.49 * 60 *(0.84) * (
9	0.16	0.4000		85		Vs = 1,461.5 ft/min	2월 11일 - 2월 20일 - 2월 20일 전 2월 20일 2월 20일 12일 20일 20일 20일 20일 20일 20일 20일 20일 20일 2	1461.477366
10	0.19	0.4359		107				
11 12	0.17 0.15	0.4123 0.3873		121 135		<u>Total Flow of Stack Gas</u> Qa = As * Vs		
13	0.17	0.4123		102		Qa = (5.5850) * (1,461.5)		
14	0.19	0.4359		92		Qa = 8,162.4 ACFN	1	8162.42254
15 16	0.20	0.4472		88				
17	0.21	0.4583 n/a		85		Qs = Qa * 528 / Ts * Ps / 2 Qs = (8,162.4) * (528 / 565		
16		n/a				Qs = 7,610.8 SCFN		7610.80864
19		n/a						
20 21		n/a n/a				Qstd = Qs * (1 - Bwo)	12)	
22		n/a n/a				Qstd = (7,610.8) * (1 - 0.0 Qstd = 7,509.3 DSCF		7509.270992
23		n/a						
24		n/a						
erage	0.1763	0.4192	1.50	105.9	64.3			1344.530933
								1044.000800
				VELOCITY TRAVE	RSE TEST RES	ULTS		
5	Stack Gas Tem	perature (°F)	106			Stack Velocity (ft/min)	1,461.5	
	Malakana Ora	tent (% Vol.)	1.33%			Gas Flow Rate (ACFM)	8,162	

CO₂ (% Vol.) 1.7

O₂ (% Vol.) 19.7

Stack Velocity (ft/min)1,461.5Gas Flow Rate (ACFM)8,162Gas Flow Rate (SCFM)7,611Gas Flow Rate (DSCFM)7,509

VELOCITY TRAVERSE CALCULATION SHEET

	Client :	Denso	Athens	Test I.D.	Run 3	Console ID:	#2	
Pro	ject Number :	184-	-566	Date	10/30/218	Console ∆H@:	1.7556	
	Source :	South RT	O Outlet	Test Team	TC, RR	Console Y:	1.0067	
						Pitot Tube ID:	PT-4-01	
	INPUT PARAM		00.00			MOL	STURE CALCULATION	<u>s</u>
Bar	Sta ometric Pressure	ack Diameter: (Pb) in Ho	32.00 29.87	inches in, Hg		Volume of Water Colleg	stad	
Dur		atic Pressure:	-0.05	in. H ₂ O		Vwstd = (VI ₀)(0.04707)		
		Percent CO2:	1.3	%		Vwstd = (10.9) * (0.047		
		. Percent O2:	20.3	%		Vwstd = 0.51 ft ³		0.513063
	Pitot Tube Coe	effiecent, (Cp):	0.840					
	M4 San	nple Volume :	34.733	Ft ³		Volume of Gas Metered	I, Standard Conditions	
		A					(Pb+(AH / 13.6))/(Tm + 4	159.6)
						Vmstd = (17.64) * (34.7	33) * (1.0067) * 117(29.8	7 + (1.50 / 13.6)) / (5
	CALCULATE					Vmstd = 34.450 ft ³		34.33716083
		ack area, (A _s)	5.59	ft ²				
		he stack, (P _s)	29.87	in Hg		Moisture Content		
	Ave	g. Percent N2	78.4	%		Bwo = Vwstd/(Vmstd +		
	Im	ninger Meinht		7		Bwo = (0.51) / (34.34 +	0.51)	
	Initial	pinger Weights	the second se	-		Bwo = 0.015		0.014721943
	783.1	Final 785.2	Net Gain 2.1	-		VEL	OCITY CALCULATIONS	
	711.7	712.8	1.1	1		VLL	CONT CALCOLATION	2
	601.2	602.4	1.2	1		Molecular Weight of the	Dry Gas Stream	
	881.8	888.3	6.5]		Md = (.44)(%CO ₂) + (.3)		
	2977.8	2988.7	10.9]			32)*(20.30) + (0.28)*(78	.40)
		1-1		1		Md = 29.02 lb/ll	bmol	29.02
oint No.	Delta P	√∆P	ΔH		DGM Temp (F)			
1	0.21	0.4583	1.50	88	75	Molecular Weight of Sta		
2	0.24	0.4899		104	77	Ms = (Md)(1 - Bwo) + 18	2015년 1월 2017년 2016년 1월 2016년 1월 2016년 1월 2016년 1월 2017년 1월 2017년 1월 2017년 1월 2017년 1월 2017년 1월 2017년 1월 2017년 1월 2017년 1월 2	
4	0.25	0.5190		133 150	77 78	Ms = (29.02) * (1-0.015) Ms = 28.86 b/li) + (18) ⁻ (0.015) omol	28.86
5	0.24	0.4899		127	78	Wi3 - 20.00 ID/I	Sinor	20.00
6	0.27	0.5196		102	78	Velocity of Stack Gas		
7	0.29	0.5385		97		Vs = 85.49 * 60 * Cp * (4	∆P) ^{0.5} * [(Ts+460) / Ps /	Ms] ^{0.5}
8	0.30	0.5477		92		Vs = 85.49 * 60 *(0.84)		8) / (29.87) / (28.86)]
9	0.19	0.4359		99		Vs = 1,761.4 ft/m	in	1761.401344
10 11	0.23	0.4796 0.5099		107 141		Total Flow of Stack Gas		
12	0.24	0.4899		160		Qa = As * Vs		
13	0.24	0.4899		133		Qa = (5.5850) * (1,761.4	4)	
14	0.27	0.5196		114		Qa = 9,837.5 ACI	22/23/02	9837.512618
15	0.26	0.5099		101				
16 17	0.26	0.5099		98		Qs = Qa * 528 / Ts * Ps		
1/		n/a n/a				Qs = (9,837.5) * (528 / 5 Qs = 9,017.6 SCI		9017.589038
19		n/a				ws = 3,017.0 SU		9017.069030
20		n/a				Qstd = Qs * (1 - Bwo)		
21		n/a				Qstd = (9,017.6) * (1 - 0	.015)	
22		n/a				Qstd = 8,884.8 DS0	CFM	8884.832609
23		n/a						
24		n/a						
erage	0.2513	0.5005	1,50	115.4	77.2			1590.8245
								1000.0240
24 Average	0.2513				005 1.50 115.4	005 1.50 115.4 77.2		005 1.50 115.4 77.2
		perature (°F)	115	VELOCITY IRA	WERSE IEST RES	Stack Velocity (ft/min)	1,761	

Stack Gas Temperature (°F)	115	Stack Velocity (ft/min)	1,761.4
Moisture Content (% Vol.)	1.47%	Gas Flow Rate (ACFM)	9,838
CO ₂ (% Vol.)	1.3	Gas Flow Rate (SCFM)	9,018
O ₂ (% Vol.)	20.3	Gas Flow Rate (DSCFM)	8,885

GAS COMPOSITION TEST

Test Location	Denso Athens
Test Date:	10/30/2018
Project Number	184-566
Test Number	R1 Inlet

Note: Manual input only data marked in RED INPUT PARAMETERS

Volume of water Collected, VI _o (ml)	9.6 ml
Volume measured by dry gas meter (Vm), ft ³	42.85 ft ³
Delta H, in. H ₂ O	1.642 in. H ₂ O
Gamma	1.028
Barometric Pressure (Pb), in. Hg.	29.87 in. Hg
Temperature of the meter box (Tm), °F	58.00 °F
Percent CO ₂	0.9 %
Percent O ₂	20.8 %
Percent CO	0.0 %
Percent N ₂	78.3 %
Average Stack Temperature (T _s), °F	na °F

SAMPLING CALCULATIONS

Volume of Water Collected	
Vwstd = (VI0)(0.04707)	
Vwstd = (9.6) * (0.04707)	
Vwstd = 0.45 ft ³	0.451872

Moisture Content

Bwo = Vwstd/(Vmstd + Vwstd) Bwo = 0.45 / (45.02 + 0.45) Bwo = 0.010 0.009938394

 $\label{eq:model} \begin{array}{l} \underline{\mbox{Molecular Weight of the Dry Gas Stream}} \\ \mbox{Md} = (.44)(\% CO2) + (.32)(\% O2) + (.28)(\% CO + \% N2) \\ \mbox{Md} = (0.44)^*(0.90) + (0.32)^*(20.80) + (0.28)^*(78.30) \\ \mbox{Md} = 28.98 \quad \mbox{lb/lbmol} \qquad 28.976 \\ \end{array}$

Molecular Weight of Stack Gas

Ms = (Md)(1-Bwo) + 18(Bwo) Ms = (28.98) * (1-0.010) + (18) * (0.010) Ms = 28.87 lb/lbmol 28.87

	Impinger Weights		
	Initial	Final	Net Gain
	772.4	772.9	0.5
	741.6	742.4	0.8
	604.8	605.5	0.7
	866.8	874.4	7.6
Total	2985.6	2995.2	9.6

GAS COMPOSITION TEST RESULTS

Vol. Sampled at STP (ft ³)	45.02
Stack Gas Temperature (°F)	na
Moisture Content (% Vol)	0.99%
CO ₂ Percent	0.9
O ₂ Percent	20.8
CO Percent	0.0

GAS COMPOSITION TEST

Test Location	Denso Athens
Test Date:	10/30/2018
Project Number	184-566
Test Number	R2 Inlet

Note: Manual input only data marked in RED INPUT PARAMETERS

Volume of water Collected, VI _o (mI)	5.5 ml
Volume measured by dry gas meter (Vm), ft ³	33.77 ft ³
Delta H, in. H ₂ O	1.642 in. H ₂ O
Gamma	1.028
Barometric Pressure (Pb), in. Hg.	29.87 in. Hg
Temperature of the meter box (Tm), °F	50.17 °F
Percent CO ₂	0.9 %
Percent O ₂	20.8 %
Percent CO	0.0 %
Percent N ₂	78.3 %
Average Stack Temperature (T _s), ^o F	na °F

SAMPLING CALCULATIONS

Volume of Water Collected	
Vwstd = (VI0)(0.04707)	
Vwstd = (5.5) * (0.04707)	
Vwstd = 0.26 ft ³	0.258885

Moisture Content

Bwo = Vwstd/(Vmstd + Vwstd) Bwo = 0.26 / (36.02 + 0.26) Bwo = 0.007 0.007135376

 $\label{eq:model} \begin{array}{l} \hline \mbox{Molecular Weight of the Dry Gas Stream} \\ \mbox{Md} = (.44)(\% CO2) + (.32)(\% O2) + (.28)(\% CO + \% N2) \\ \mbox{Md} = (0.44)^*(0.90) + (0.32)^*(20.80) + (0.28)^*(78.30) \\ \mbox{Md} = 28.98 \quad \mbox{lb/lbmol} \qquad 28.976 \\ \end{array}$

Molecular Weight of Stack Gas

Ms = (Md)(1-Bwo) + 18(Bwo) Ms = (28.98) * (1-0.007) + (18) * (0.007) Ms = 28.90 lb/lbmol 28.90

	Impinger Weights		
	Initial	Final	Net Gain
	772.9	772.6	-0.3
	742.4	742.2	-0.2
	605.5	605.8	0.3
	874.4	880.1	5.7
Total	2995.2	3000.7	5.5

GAS COMPOSITION TEST RESULTS

Vol. Sampled at STP (ft ³)	36.02
Stack Gas Temperature (°F)	na
Moisture Content (% Vol)	0.71%
CO ₂ Percent	0.9
O ₂ Percent	20.8
CO Percent	0.0

GAS COMPOSITION TEST

Test Location	Denso Athens
Test Date:	10/30/2018
Project Number	184-566
Test Number	R3 Inlet

Note: Manual input only data marked in RED INPUT PARAMETERS

Volume of water Collected, VIo (ml)	6.6 ml
Volume measured by dry gas meter (Vm), ft ³	34.18 ft ³
Delta H, in. H ₂ O	1.642 in. H ₂ O
Gamma	1.028
Barometric Pressure (Pb), in. Hg.	29.87 in. Hg
Temperature of the meter box (Tm), °F	73.67 °F
Percent CO ₂	1.0 %
Percent O ₂	20.8 %
Percent CO	0.0 %
Percent N ₂	78.2 %
Average Stack Temperature (Ts), °F	na °F

SAMPLING CALCULATIONS

Volume of Water Collected	
Vwstd = (VI0)(0.04707)	
Vwstd = (6.6) * (0.04707)	
Vwstd = 0.31 ft ³	0.310662

Volume of Gas Metered, Standard Conditions

Vmstd = 17.64*V	*Y*(Pb+(∆H / 13.6))/(Tm + 459.6)	
Vmstd = ((17.65	* (34.18) * (29.87 + (1.6424/13.6)) * (1.0278) / (533.27))
Vmstd = 34.87	t ³ 34.85259023	

Moisture Content

Bwo = Vwstd/(Vmstd + Vwstd)	
Bwo = 0.31 / (34.85 + 0.31)	
Bwo = 0.009	0.008834848

 $\label{eq:model} \begin{array}{l} \underline{\mbox{Molecular Weight of the Dry Gas Stream}} \\ \mbox{Md} = (.44)(\% CO2) + (.32)(\% O2) + (.28)(\% CO + \% N2) \\ \mbox{Md} = (0.44)^*(1.00) + (0.32)^*(20.80) + (0.28)^*(78.20) \\ \mbox{Md} = 28.99 \quad \mbox{Ib/Ibmol} \qquad 28.992 \end{array}$

Molecular Weight of Stack Gas

Ms = (Md)(1-Bwo) + 18(Bwo) Ms = (28.99) * (1-0.009) + (18) * (0.009) Ms = 28.89 lb/lbmol 28.89

	Impinger Weights				
	Initial	Final	Net Gain		
	772.6	771.7	-0.9		
	742.2	742.6	0.4		
	605.8	606.7	0.9		
	880.1	886.3	6.2		
Total	3000.7	3007.3	6.6		

GAS COMPOSITION TEST RESULTS

Vol. Sampled at STP (ft ³)	34.85
Stack Gas Temperature (°F)	na
Moisture Content (% Vol)	0.88%
CO ₂ Percent	1.0
O ₂ Percent	20.8
CO Percent	0.0

Project Name: _	Denso Athens	Tes
Project No.:	184-556	Loc
Date:	10/30/2018	Perso
-	1 1	

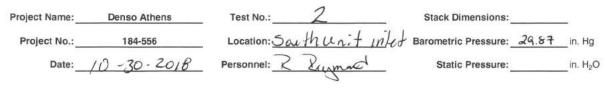
st No.: / onnel: <u>Reynmed</u>

Stack Dimensions: N ation: <u>Inlet</u> Barometric Pressure: 29,87 in. Hg Static Pressure: ______ in. H₂O south

M2 Test Time :

Start : _____ Stop : _____

VELC	CITY TRAVER	RSE	
TRAVERSE POINT	VELOCITY PRESSURE (ΔP)	STACK TEMP.	Ir
1			
2			
3			
4			
5			
6			
7			
8			
9			
10			10
11			10
12			10
13			1
14			1
15			1
16			$\overline{1}$
17			
18			
19			
20			
21			N
22			
23		2	
24			
Average			


IMPINGER WEIGHTS					
Impinger	Initial Wt.	Final Wt.	Total		
1	772.4	772.9			
2	7466	742.4			
3	1,04.8	1005.5			
4	866.8	874.4			
Total		* \			

PITOT	LEAK CHE	<u>Inlet</u> (K (> 3")
INITIAL	(+) /53	"(-) /> 3'
FINAL	(+)	(-)
TRAIN LE	AK CHECK (ft ³ @ in, Hg.)
INITIAL	0.0	@15"
FINAL	0.0	@ 7"

MOISTURE TRAIN					
SAMPLI	NG TIME Sample	DRY GAS METER	DGM TEMP.	LAST IMPINGER TEMP.	TRAIN VACUUM
1027	0	604.262	48	36	1.5
1037	D	612.82	54	38)	1.5
1047	20	620.18	59	41	1.5
1057	30	626.47	61	42	1.5
1107	40	633.12	62	44	1.5
1117	50	640.12	64	46	1.5
1127	(op	647,063	l		
. /	Q				
		8 E			

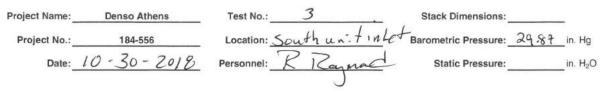
M4 Sample Train I.D. : _ / 02%: <u>20.8</u> со2%: <u>9</u> Control Console I.D.: _ / ____ ΔH@: <u>/, (6424</u> Y: <u>/, 0778</u> Pitot Tube Type: _____ S____ I.D. No. Manometer Type: Oil Incl. I.D. No.: Thermometer Type: K I.D. No.:

M2 Test Time :

ъ г

Start : _____ Stop : _____

VELOCITY TRAVERSE				
TRAVERSE POINT	VELOCITY PRESSURE (\DeltaP)	STACK TEMP.		
1				
2				
3				
4				
5				
6				
7				
8				
9				
10				
11				
12				
13				
14				
15				
16				
17				
18				
19				
20				
21				
22				
23				
24				
Average				


IMPINGER WEIGHTS				
Impinger	Initial Wt.	Final Wt.	Total	
1	772.9	772.6		
2	742.4	742.2		
3	605.5	405.8		
4	874.4	880.1		
Total				

PITOT	LEAK CH	ECK (> 3")
INITIAL	(+)	(-)
FINAL	(+)	(-)
TRAIN LE	EAK CHECK	(ft ³ @ in, Hg.)
INITIAL	0.0	@151
FINAL	0.0	@ 10 °

MOISTURE TRAIN					
SAMPLII	NG TIME Sample	DRY GAS METER	DGM TEMP.	LAST IMPINGER TEMP.	TRAIN VACUUM
1400	0	647.329	67	45	1.5
1410	10	653.04	69	45	1.5
1420	20	658.64	7(49	1.5
1430	30	664.24	73	53	1.5
1440	40	669.21	73	54	1.5
1450	50	675.52	74	55	1.5
1500	60	681.101			

M4 Sample Train I.D. :	2	02%:	20.8	CO2%:	.9
Control Console I.D.:	/	∆H@:	1.6424	Y:	1.0278
Pitot Tube Type:	S	I.D. No.:	AT4-02	_ Coefficient:	-84
Manometer Type: _	Oil Incl.	I.D. No.:	_/	_	
Thermometer Type:	к	I.D. No.:	774-0	2-	

M2 Test Time :

. .

Start : _____

____ Stop : _____

VELOCITY TRAVERSE				
TRAVERSE POINT	VELOCITY PRESSURE (ΔP)	STACK TEMP.		
1				
2				
3				
4				
5				
6				
7				
8				
9				
10				
11				
12				
13				
14				
15				
16				
17				
18				
19				
20				
21				
22				
23				
24				
Average				

IMPINGER WEIGHTS				
Impinger	Initial Wt.	Final Wt.	Total	
1	772.6	771.7		
2	742.2	742.6		
3	605.8	606.7		
4	880.1	886.3		
Total				

PITOT	LEAK CHE	CK (> 3")
INITIAL	(+)	(-)
FINAL	(+)	(-)
TRAIN LE	AK CHECK	(ft ³ @ in, Hg.)
INITIAL	0.0	@/5'
FINAL	0.0	@ 8 ''

	MOISTURE TRAIN						
SAMPLII	NG TIME Sample	DRY GAS METER	DGM TEMP.	LAST IMPINGER TEMP.	TRAIN VACUUM		
1525	0	681.505	59	59	1.5		
1535	10	687,11	72	47	1.5		
1545	20	692.76	74	48	1.5		
1555	30	698.49	75	50	1.5		
1605	40	704.18	76	_50	1.5		
1615	50	709.92	76	49	1.5		
1625	60	715.686					

M4 Sample Train I.D. : _	3	02%:	20.8	co2%: 1, O
Control Console I.D.:	1	ΔH@:	1.62124	Y: 1,0278
Pitot Tube Type:	S	I.D. No.:	Co	pefficient:
Manometer Type: _	Oil Incl.	I.D. No.:		
Thermometer Type:	К	I.D. No.:		

Project Name: ____ Denso Athens ____ Test No.: _/ Stack Dimensions: _____ Project No.: 184-556 Location: Outlet Barometric Pressure: 29.57 in. Hg Date: 10 - 30 - 2018 Personnel: _____ Static Pressure: + 11 in. H₂0

M2 Test Time : Start : 1040 Stop : 1046

VELC	CITY TRAVE	RSE	
TRAVERSE POINT	VELOCITY PRESSURE (\DeltaP)	STACK TEMP.	
1	.28	1091	
2	. 29	1 to	12
3	. 28	138	
4	. 24	154	
5	. 28	87	
6	. 29	74	
7	.29	69	[
8	. 29	68	
9	. 26	77	
10	. 28	91	
11	. 28	119	
12	.25	137	
13	. 24	115	
14	, 26	88	
15	.26	77	
16	. 26	73	
17			Ľ
18			
19			
20			
21			
22			
23			
24			
Average			

IMPINGER WEIGHTS					
Impinger	Initial Wt.	Final Wt.	Total		
1	777.1	779.3			
2	709.9	7,0.8			
3	600.6	601.0			
4	868.9	876.4			
Total					

PITOT	LEAK CHEC	K (> 3")
INITIAL	(+) />3"	(-)
FINAL	(+)/23"	(-)
TRAIN LE	AK CHECK (ft	³ @ in, Hg.
INITIAL	0.0	° /5'
FINAL	0.0	@ 1. "

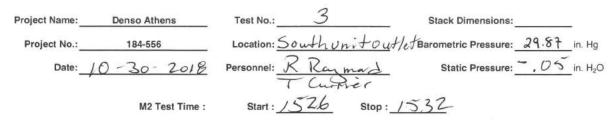
South

	MOISTURE TRAIN						
SAMPLI	NG TIME Sample	DRY GAS METER	DGM TEMP.	LAST IMPINGER TEMP.	TRAIN VACUUM		
1027	0	499.389	50	40	1.5		
10.37	10	508.15	54	39	1.5		
1047	20	514.98	58	43	1.5		
1057	30	522.20	60	45	1.5		
1107	40	529.31	62	47	1.5		
1117	50	536.47	64	48	1.5		
1127	60	543.549					

M4 Sample Train I.D. : 1 02%: 19.8% co2%: 1.5% Control Console I.D.: 2 AH@: 1.7556 Y: 1.0067 Pitot Tube Type: S I.D. No.: <u>PT 4-01</u> Coefficient: <u>184</u> Manometer Type: Oil Incl. I.D. No.: / Thermometer Type: K I.D. No.: PT 4-01

Project Name:	Denso Athens	Test No.: 2		Stack Dimensions:	
Project No.:	184-556	Location: South	instout/et	Barometric Pressure: 29.87	in. Hg
Date:	10-30-2018	Personnel: R Pw	mont	Static Pressure: 4 -/	_in. H₂O
		I Curm	her		
	M2 Test Time :	Start : 1359	Stop : 14	104	

VELC	CITY TRAVE	RSE
TRAVERSE POINT	VELOCITY PRESSURE (ΔP)	STACK TEMP.
1	.19	95
2	.20	97
3	.19	125
4	.16	155
5	.15	134
6	.17	98
7	16	90
8	,16	85
9	.14	005
10	.19	107
11	.17	121
12	115	135
13	17	102
14	.19	92
15	.20	88
16	.21	85
17		
18		
19		
20		
21		
22		
23		
24		
Average		


IMPINGER WEIGHTS					
Impinger	Initial Wt.	Final Wt.	Total		
1	779	783.1			
2	710.8	711.7			
3	6010	601.2			
4	601,0 876.6	881.8			
Total					

PITOT	LEAK CHE	ECK (> 3")
INITIAL	(+)	(-)
FINAL	(+)	(-)
TRAIN LE	AK CHECK	(ft ³ @ in, Hg.)
INITIAL	0.0	° 15
FINAL	00	@ 7n

	MOISTURE TRAIN						
SAMPLI	NG TIME Sample	DRY GAS METER	DGM TEMP.	LAST IMPINGER TEMP.	TRAIN VACUUM		
1400	0	543.825	71	50	1.5		
1410	10	549.74	72	46	1.5		
1420	20	555.47	74	50	1.5		
1430	30	581.23	76	52	1.5		
1440	40	586.98	78	53	1.5		
1450	50	572.74	79	54	1.5		
1500	60	578,539		·			

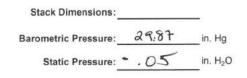
M4 Sample Train I.D. : <u>2</u> 02%: <u>19.7%</u> co2%: <u>1.7%</u> Control Console I.D.: 2 AH@: 1.7556 Y: 1.0067 Manometer Type: Oil Incl. I.D. No.: PT4-0) Thermometer Type: K I.D. No.: /

VELO	OCITY TRAVE	RSE
TRAVERSE POINT	VELOCITY PRESSURE (ΔP)	STACK TEMP.
1	.21	88
2	.24	104
3	.27	133
4	.25	150
5	.24	127
6	.27	102
7	,29	97
8	.30	92
9	.19	99
10	.23	107
11	.26	141
12	,24	160
13	,24	133
14	.27	114
15	.26	101
16	.26	98
17		
18		
19		
20		
21		
22		
23		
24		
Average		

	IMPINGER	WEIGHTS	
Impinger	Initial Wt.	Final Wt.	Total
1	783.1	785.2	
2	711.7	712.8	
3	601.2	602.4	
4	881.8	888.3	
Total			

PITOT	LEAK CHE	CK (> 3")
INITIAL	(+)	(-)
FINAL	(+)	(-)
TRAIN LE	AK CHECK (ft ³ @ in, Hg.)
INITIAL	0,0	° 15'
FINAL	0.0	e B'

		MOISTURE T	RAIN		
SAMPLII	NG TIME Sample	DRY GAS METER	DGM TEMP.	LAST IMPINGER TEMP.	TRAIN VACUUM
1525	0	578.824	75	56	1.5
1535	10	582 ,81	77	48	1.5
1545	20	590.62	77	49	1.5
/555	30	596.38	78	51	1.5
1605	40	602.08	78	52	1.5
1615	50	607.83	78	53	1.5
1625	60	613.552			


M4 Sample Train I.D. : _	3	02%:	20.3%	co2%: 1.3%
Control Console I.D.:	2	ΔH@:	1,7556	Y: 1.0067
Pitot Tube Type:	S	I.D. No.:	P7-4-01 co	efficient: <u>, 84</u>
Manometer Type: _	Oil Incl.	I.D. No.:	_2	
Thermometer Type:	к	I.D. No.:	P+4-01	

VELOCITY TRAVERSE DATA SHEET

Project Name:	Denso Athens	Test No.: Flow #4
Project No.:	184-556	Location: South unit outlet
Date:	10-30-2018	Personnel: R Raymand
	M2 Test Time :	Start: 1621 Stop: 1626 1 Curres

VELOCITY TRAVERSE VELOCITY CYCLONIC TRAVERSE STACK PRESSURE POINT TEMPERATURE FLOW CHECK (**AP**) 94 ,27 1 .32 2 102 .31 114 3 . 27 136 4 .27 1 140 117 .29 2 101 3 32 .33 94 4 1 ,23 103 2 ,27 102 29 ,12 3 .28 13/ 4 140 1 .27 ,28 2 124 109 .28 3 .28 4 101 Average

02%:_____

CO2%:

	PITOT LEAK CHECK (> 3")		
INITIAL	(+)	(-)	
FINAL	(+)	(-)	

Pitot I.D. No.: PT 4 - 0/ T/C I.D. No .: PT4 - U/

T/C Readout I.D. No.:

Response Time

RESPONSE TIME TEST

Date of Test:	October 30, 2018
Facility / Location	Denso Athens
Analyzer Type:	THC Outlet
Span Gas Concentration:	233.7
Analyzer Span Setting:	1000

UPSCALE RESPONSE			
	Start	95% Response	Time (sec)
1	0.0	222.0	36.5
2	0.0	222.0	36.0
3	0.0	222.0	36.3
rage Upscal	le Response		36.3

DOWNSCALE RESPONSE			
	Start	95% Response	Time (sec)
1	222.0	11.7	35.2
2	222.0	11.7	35.3
3	222.0	11.7	35.5
erage Downs	scale Response		35.3

 UPSCALE RESPONSE
 = Time required to reach 95% of stable reading shifting from stable zero to stack gas.

 DOWNSCALE RESPONSE
 = Time required to reach 95% of stable reading shifting from stable high-level cal to stack gas.

 RESPONSE TIME
 = The longer of the two mean times.

RESPONSE TIME TEST

Date of Test:	October 30, 2018
Facility / Location	Denso Athens
Analyzer Type:	THC Inlet
Span Gas Concentration:	500.7
Analyzer Span Setting:	1000

UPSCALE RESPONSE			
	Start	95% Response	Time (sec)
1	0.0	475.7	32.4
2	0.0	475.7	32.6
3	0.0	475.7	32.1
rage Upsca	le Response		32.4

DOWNSCALE RESPONSE						
	Start	95% Response	Time (sec)			
1	475.7	25.0	32.9			
2	475.7	25.0	32.6			
3	475.7	25.0	32.7			
rage Down	scale Response		32.7			

UPSCALE RESPONSE	 Time required to reach 95% of stable reading shifting from stable zero to stack gas.
DOWNSCALE RESPONSE	= Time required to reach 95% of stable reading shifting from stable high-level cal to stack gas.
RESPONSE TIME	= The longer of the two mean times.

Project Field Notes

Project Field Notes

Prepared By	T. Gregs	Date 10 / 30/	د Checked By	Date/ /
Project	Denso Athe	NS	Project Number	
Subject	THE Callo	rations		Sheet of Sheets
	6 1			
Out	tet			EB0065494 - 233.7
	Time	THC out	THCIN	CC89356 - 500,7
Zero	735	0.03		EB0065408 - 975.0
Hogh	738	21,02		X:00 32387 - 10,02
mid	741	25.13		xco 21249 - 25.10
low	744	9.98		CC400426 - 50.09
Zero	747		-0.03	
High	753		973.31	
Mig	156		494.52	
100	802		227,15	
System	n Bias			
	Tine	THC out	THCIJ	
Zeno	546		1.24	
mid	850		486.66 489.43	
Zero	657	0.38		
mid	900	25.20		
RID	1020 start	130 00		
			a short period	1020 - 1021
		THC out	THEIN	artlet
Zero nil	1135	0.81		liverozation chede
mi	1139	25.18		1143/207.3
Zero	1150		2,73	
mit	1155		494.31	
Recalib	orate outlet	- +0 0-500		
	Time	THCout		
	1311	0.47		
	1314	500.27		
mid	1317	233.33		
	1320	49.19		

Project Field Notes

Prepared By	T. Grogs	Date 10 / 30/	۲۶ Checked By			C)ate	/ /
Project	De	asso Athens	Project Number					
Subject	THC	Calibrations		Sheet	2	of	2	Sheet
R2 @	1400-14	459					-	
	Time	THC out	THEIN					
Zero	1502	- 0.20					4	
THC	1505	48.95						
THE	1509	24.96			57			
THC	1514		2.61					
THC	1519		223,53					
					-			
R3 @	1525-16	24					-	
	Time		THEIN					
Zero	1630		2.06					
TAC	1433		219.61					
THC	1637	- 1.03						
THC		47.68						
THC	1644							
14					-			
							-	
								1
						-	-	
								-
						1		
					-			

APPENDIX B

Equipment Calibrations

THERMOCOUPLE READOUT CALIBRATION DATA FORM (FOR K-TYPE THERMOCOUPLES)

Control Box / Thermocouple Reado	ut Number: Box 2	Calibrated By:	R.Raymond
Ambient Temperature:	72 °F	Date:	9/17/2018
Omega Engineering Calibrator	Model No. 3307T-K	Serial #'s	9508079

Primary Standards Directly Traceable to the National Institute of Standards and Technology (NIST).

Reference ^a Source Temperature, (°F)	Test Thermometer Temperature, (°F)	Temperature Difference, %
0	1	0.22
200	201	0.15
400	398	0.23
600	600	0.00
1000	1000	0.00
1200	1198	0.12

Are all the Thermocouple Readout calibration points within calibration standard of <= to 1.5 %?

Yes

(Ref. Temp., oF + 460) - (Test Therm. Temp., oF + 460) * 100 <= 1.5 % Ref. Temp., oF + 460
 Calibrator Signature:
 Date:
 9.17.2018

 Approval Signature:
 Minhy Monorry
 Date:
 9-17-2013

DRY GAS METER CALIBRATION SPREADSHEET

CC	CONTROL BOX ID: E		x 2	CALIBRATED BY:		R. Raymond
CALIBRATION STANDARD:		Standard		AMBIENT TEMPERATURE (F):		72
CALIBRATION STANDARD ID:		543	569	AMBIENT PRESSURE (In Hg):		28.84
DATE CALIBRATED:		9/17/	2018	Wet Te	st Meter	1.00
			GAS VOLUME			
Setting Control Console (delta H)	Gas Volume Metered (liters) Standard	Gas Volume Metered (liters) Standard Ending Reading	Gas Volume Corrected (ft3) Vw		Gas Volume DGM (ft3) Control Console Ending Reading	and the second s
0.5	120000	120150	5.297	467.076	472.35	5.274
1.0	120150	120300	5.297	472.35	477.635	5.285
2.0	120300	120600	10.594	477.635	488.272	10.637
3.0	120600	120900	10.594	488.272	498.932	10.660
			TEMPERATURE		100.002	10.000
Calibrator Starting Temperature (C)	Calibrator Ending Temperature (C)	Calibrator Average Temperature Tw (F)	DGM Starting Temperature (F)	DGM Ending Temperature (F)	DO Aver Tempe Td	rage erature
24.0	24.2	77.8	80	82	81	in the second
24.2	24.3	78.1	82	84	83	.0
24.3	24.4	78.3	84	87	85	.5
24.4	24.5	78.5	87	90	88	.5
Time (min)	Gam			elta		
13.16	(Y 1.00		the second s	@ 133		
9.14	1.00					
13.05	1.00			1.7448		
10.44	1.00			926		
10.11	Avg Y		Avg Delta H@			
	1.0067		1.7556			
Tolerances	0.9867 1.0267		1.5556 1.9556			

Y = Ratio of reading of wet test meter to dry test meter; tolerance for individual values +/- 0.02 from average.

Delta H @ = Orfice pressure differential that equates to 0.75 cfm of air @ 68 degrees F and 29.92 inches of mercury, in.H2O: tolerance for individual values +/- 0.20 from average.

Is Unit Within Calibration Tolerances?

YES

Michael Morrow Calibrator: Approved by:

Date: 9-17-2018 Date: 9-17-2013

DRY GAS METER CALIBRATION SPREADSHEET

CONTROL BOX ID: BO		x 2	CALIBR	CALIBRATED BY:		
CALIBRATION STANDARD:		Star	ndard	AMBIENT TEM	AMBIENT TEMPERATURE (F):	
CALIBRATION STANDARD ID:		543	3569	AMBIENT PRESSURE (In Hg):		28.69
DATE CALIBRATED:		11/1/	/2018	Wet Te	st Meter	1.00
			GAS VOLUME			
Setting	Gas Volume	Gas Volume	Gas Volume	Gas Volume	Gas Volume	Gas Volume
Control Console	Metered (liters)	Metered (liters)	Corrected	DGM (ft3)	DGM (ft3)	DGM (ft3)
(delta H)	Standard	Standard	(ft3)	Control Console	Control Console	
	Starting Reading	Ending Reading	Vw		Ending Reading	
0.5	124600	124750	5.297	624.542	629.836	5.294
1.0	124750	124900	5.297	629.836	635.137	5.301
2.0	124900	125200	10.594	635.137	645.788	10.651
3.0	125200	125500	10.594	645.788	656 472	10.684
			TEMPERATURE			
Calibrator	Calibrator	Calibrator	DGM	DGM	DG	M
Starting	Ending	Average	Starting	Ending	Average	
Temperature	Temperature	Temperature	Temperature	Temperature	Temperature	
(C)	(C)	Tw (F)	(F)	(F)	Td (F)	
22.8	22.9	75.4	74	75	74	.5
22.9	22 9	75.5	75	77	76.	.0
22.9	22.8	75.4	77	81	79.	.0
22.8	22.8	75.3	81	82	81.	5
Time	Gam					
the second second			De			
(min)	(Y	Station of the local division in which the local division in which the local division is not the local division in the local divisio	H			
13.22	0.99		1.84			
9.19	0.99		1.77			
12.53 10.39	0.99		1.64			
10.39	0.99 Avg Y		1.68 Avg Delta H@	72		
	0.9967		1.7390			
Tolerances	0.9767		1.5390			
i vierances	1.0167		1.9390			

Y = Ratio of reading of wet test meter to dry test meter; tolerance for individual values +/- 0.02 from average.

Delta H @ = Orfice pressure differential that equates to 0.75 cfm of air @ 68 degrees F and 29.92 inches of mercury, in.H2O: tolerance for individual values +/- 0.20 from average.

10

Is Unit Within Calibration Tolerances?

Calibrator:	QZ-	20
	111	1
Approved by:	Lodd 1.	Sugar

C

Date: 11-1-2018

Date: 11/1 /2018

YES

THERMOCOUPLE READOUT CALIBRATION DATA FORM (FOR K-TYPE THERMOCOUPLES)

Control Box / Thermocouple Readout N	Number:	Box 1	Calibrated By:	R.Raymond
Ambient Temperature:		70 °F	Date:	11/1/2018
Omega Engineering Calibrator	Model No.	3307T-K	Serial #'s	9508079

Primary Standards Directly Traceable to the National Institute of Standards and Technology (NIST).

Reference ^a Source Temperature, ([°] F)	Test Thermometer Temperature, (°F)	Temperature Difference, %
0	-2	0.43
200	198	0.30
400	394	0.70
600	597	0.28
1000	999	0.07
1200	1197	0.18

Are all the Thermocouple Readout calibration points within calibration standard of <= to 1.5 %?

Yes

(Ref. Temp., oF + 460) - (Test Therm. Temp., oF + 460) * 100 <= 1.5 % Ref. Temp., oF + 460 Calibrator Signature: Date: 11/1/2018 Which Mon Approval Signature: Date: 18

DRY GAS METER CALIBRATION SPREADSHEET

CONTROL BOX ID:		Bo	ox 1	CALIBRATED BY:		R Raymond
CALIBRATION STANDARD		Star	ndard	AMBIENT TEMPERATURE (F):		70
CALIBRATION STANDARD ID:		543	543569		SSURE (In Hg):	28.72
DATE CALIBRATED:		11/1/	2018	Wet Te	st Meter	1.00
			GAS VOLUME			
Setting	Gas Volume	Gas Volume	Gas Volume	Gas Volume	Gas Volume	Gas Volume
Control Console	Metered (liters)	Metered (liters)	Corrected	DGM (ft3)	DGM (ft3)	DGM (ft3)
(delta H)	Standard	Standard	(ft3)	1 1 1	Control Console	
	Starting Reading	Ending Reading	Vw		Ending Reading	
0.5	123700	123850	5.297	735.332	740.621	5.289
1.0	123850	124000	5.297	740.621	745.914	5.293
2.0	124000	124300	10.594	745 914	756.552	10.638
3.0	124300	124600	10.594	756.552	767.239	10.687
			TEMPERATURE			
Calibrator	Calibrator	Calibrator	DGM	DGM	DGM	
Starting	Ending	Average	Starting	Ending	Average	
Temperature	Temperature	Temperature	Temperature	Temperature	Temperature	
(C)	(C)	Tw (F)	(F)	(F)	Td (F)	
21.9	22	71.5	71	72	71	.5
22.0	22 1	71.7	72	74	73	.0
22.1	22.2	71.9	74	77	75.	5
22.2	22.2	72.0	77	80	78.	5
		C	ALCULATIONS			
Time	Gam	ma	De	Ita		the second second
(min)	(Y)	H	0		
13.17	1.00	03	1.8	132		
9.20	1.00	07	1.76	558		
13.07	0.99	76	1.77	48		
10.37	0.99	59	1.66	571		
	Avg Y		Avg Delta H@			
	0.9986		1.7552			
	0.9786		1.5552			
Tolerances	1,0186		1.9552			

Y = Ratio of reading of wet test meter to dry test meter; tolerance for individual values +/- 0.02 from average.

Delta H @ = Orfice pressure differential that equates to 0.75 cfm of air @ 68 degrees F and 29.92 inches of mercury, in.H2O: tolerance for individual values +/- 0.20 from average.

Is Unit Within Calibration Tolerances?

YES

Michal Marver Calibrator:

Approved by:

Date: 11/1/2018 Date: 11/1/18

THERMOCOUPLE READOUT CALIBRATION DATA FORM (FOR K-TYPE THERMOCOUPLES)

Control Box / Thermocouple Readou	it Number:	1	Calibrated By:	TC
Ambient Temperature:	[71 [°] F	Date:	7/10/2018
Omega Engineering Calibrator	Model No. [22	Serial #'s	9508079

Primary Standards Directly Traceable t National Institute of Standards and Technology (NIST)

Reference ^a Source Temperature, (°F)	Test Thermometer Temperature, (°F)	Temperature Difference, %
Ó	0	0.00
200	200	0.00
400	396	0.47
600	599	0.09
1000	1000	0.00
1200	1198	0.12

Are all the Thermocouple Readout calibration points within calibration standard of <= to 1.5 %?

Yes

(Ref. Temp., oF + 460) - (Test Therm. Temp., oF + 460) Ref. Temp., oF + 460 * 100 <= 1.5 % Calibrator Signature: 12 AC _____ Date: 7/10/2018 Approval Signature: Mich. M. M. Date: 7/10/19 Calibrator Signature:

DRY GAS METER CALIBRATION SPREADSHEET

CONTROL BOX ID:			1		CALIBRATED BY:		
CALIBRATION STANDARD:		Stan	Standard		AMBIENT TEMPERATURE (F):		
CALIBRATION	STANDARD ID:	543	569	AMBIENT PRE	SSURE (In Hg):	30.14	
DAT	E CALIBRATED:	7/10/	2018	Wet Te	st Meter	1.00	
			GAS VOLUME				
Setting	Gas Volume	Gas Volume	Gas Volume	Gas Volume	Gas Volume	Gas Volume	
Control Console	Metered (liters)	Metered (liters)	Corrected	DGM (ft3)	DGM (ft3)	DGM (ft3)	
(delta H)	Standard	Standard	(ft3)	Control Console	Control Console	Control Conso	
	Starting Reading	Ending Reading	Vw	Starting Reading	Ending Reading	Vd	
0.5	116610	116760	5.297	329.178	334.329	5.151	
1.0	115850	116005	5.474	302.945	308.24	5.295	
2.0	116005	116305	10.594	308.24	318.575	10.335	
3.0	116305	116610	10.771	318.575	329.178	10.603	
			TEMPERATURE	I			
Calibrator	Calibrator	Calibrator	DGM	DGM	DC	ЭM	
Starting	Ending	Average	Starting	Ending	Ave	rage	
Temperature	Temperature	Temperature	Temperature	Temperature	Tempe	erature	
(C)	(C)	Tw (F)			Td (F)		
22.8	22.9	73.1	77	76	76	1.5	
22.8	22.8	73.0	70	73	71	.5	
22.8	22.8	73.0	73	79	76	1.0	
22.8	22.7	73.0	79	83	81	.0	
Time	Gan	nma	D	elta			
(min)			H@				
the second se		Contra and Contractor State State	300				
9.22				952	fails and		
Statement of the local division in the local			1/2/2		Steel 1		
13.07	1.0258		1.6971				
10.41	Avg Y	237	Avg Delta H@	+/+			
	1.0278		1.6424				
	1.0078		1.4424				
Tolerances	1.0478		1.8424				

Y = Ratio of reading of wet test moter to dry test meter; tolerance for individual values +/- 0.02 from average.

Delta H @ = Orfice pressure differential that equates to 0.75 cfm of air @ 68 degrees F and 29.92 inches of mercury, in.H2O: tolerance for individual values +/- 0.20 from average.

Is Unit Within Calibration Tolerances?

YES

Calibrator:

Mich Maying Date: 7/10/13 Approved by:

	PITOT TUBE/F	PROBE # 8	1350 PT 4-	01
Di-ten 2	Parameter	Value	Allowable Range	Check
	Assembly Level?	yes	Yes	ок
Tap Shiring T	Ports Damaged?	по	No	ок
HE MORE TRESS BE OPENING HEAD OF THE POLICY IN THE SAME	α1	0	-10° < α1 < +10°	ок
$(\mathbf{\hat{\mathbf{v}}})$	α2	0	-10° < α2 < +10°	ок
	11	0	-5° < b1 < +5°	ок
	1	1	-5° < β2 < +5°	ок
	γ	1		
81 BORNER INDEATING (SURL POSTO)	0	0		
	Z = A tan γ	0.000	Z ≤ .125"	ок
	W = A tan θ	0.000	W <u>≤</u> .031"	ок
	Dt	0.375	.188" to .375"	ок
	A/2Dt	1.210667	$1.05 \leq P_A/D_t \leq 1.5$	ок
	A	0.908	$2.1D_t \le A \le 3D_t$	ок

Type S Pitot Tube Inspection Form

Certification

....

I certify that pitot tube/probe number 8350 meets or exceeds all specifications, criteria and/or applicable design features and is hereby assigned a pitot tube certification factor of 0.84. See 40 CFR Pt. 60, App. A, EPA Method 2.

Certified by:

ens 9.5-18 4

Personnel (Signature/Date)

Calibration Gas Certificates

CERTIFICATE OF ANALYSIS Grade of Product: EPA Protocol

Part Number: Cylinder Number: Laboratory: PGVP Number: Gas Code:

E02AI99E15A1224 EB0065494 ASG - Chicago - IL B12015 PPN, BALA

Reference Number: 54-124483488-1 Cylinder Volume: Cylinder Pressure: Valve Outlet: Certification Date: Expiration Date: Apr 06, 2023

146.2 CF

590

2015 PSIG

Apr 06. 2015

Airgas Specialty Gases

12722 South Wentworth Avenue Chicago, IL 60628 (773) 785-3000 Fax: (773) 785-1928 Airgas.com

Certification performed in accordance with "EPA Traceability Protocol for Assay and Certification of Gaseous Calibration Standards (May 2012)" document EPA 600/R-12/531, using the assay procedures listed. Analytical Methodology does not require correction for analytical interference. This cylinder has a total analytical uncertainty as stated below with a confidence level of 95%. There are no significant impurities which affect the use of this calibration mixture. All concentrations are on a volume/volume basis unless otherwise noted

			ANALYTICAL RESU	ULTS	
Component	Requested Concentra		l Protoc entration Method		Assay Dates
PROPANE AIR	225.0 PPM Balance	233.7 F	PPM G1	+/- 0.7% NIST Trace	eable 04/06/2015
		CA	LIBRATION STAN	DARDS	
Туре	Lot ID	Cylinder No	Concentration	Uncertainty	Expiration Date
NTRM	08061116	CC262367	249.1 PPM PROPANE/A	IR +/- 0.6%	Jun 22, 2018
			NALYTICAL EQUIP		
Instrument/M	lake/Model	Anal	ytical Principle	Last Multipoint C	alibration
	HR0801332	FTIR		Mar 08, 2015	

Triad Data Available Upon Request

Allow He rain

Approved for Release

Page 1 of 54-124483488-1

Airgas Specialty Gases Airgas USA, LLC 12722 S. Wentworth Ave. Chicago, IL 60628 Airgas.com

CERTIFICATE OF ANALYSIS

Grade of Product: EPA Protocol

Part Number: Cylinder Number: Laboratory: PGVP Number: Gas Code:

E02A199E15A0332 CC89356 124 - Chicago - IL B12017 PPN, BALA

Reference Number: 54-124625632-1 Cylinder Volume: Cylinder Pressure: Valve Outlet: Certification Date: Expiration Date: Jun 23, 2025

146.3 CF 2015 PSIG 590 Jun 23, 2017

Certification performed in accordance with "EPA Traceability Protocol for Assay and Certification of Gaseous Calibration Standards (May 2012)" document EPA 600/R-12/531, using the assay procedures listed. Analytical Methodology does not require correction for analytical interference. This cylinder has a total analytical uncertainty as stated below with a confidence level of 95%. There are no significant impurities which affect the use of this calibration mixture. All concentrations are on a

Component	Requested	Actua	I	CAL RESULTS	Total Relative	Assay Dates
oomponent	Concentrati	on Conce	oncentration Method		Uncertainty	Contraction of the local division of the loc
PROPANE	500.0 PPM Balance	500.7 F	PPM	G1	+/- 0.7% NIST Traceable	e 06/23/201
Гуре	Lot ID	CA Cylinder No	LIBRATI(Concent	ON STANDAR ration	Uncertainty	Expiration Date
NTRM	10060532	CC281503	495.3 PPN	PROPANE/AIR	+/- 0.5%	Jan 06, 2022
				L EQUIPME	NT Last Multipoint Calib	oration
motrumont/R	lake/Model	Anal	lytical Princip	lie	Last manaperint e ante	The second se

Triad Data Available Upon Request

Approved for Release

Page 1 of 54-124625632-1

CERTIFICATE OF ANALYSIS Grade of Product: EPA Protocol

Part Number: Cylinder Number: Laboratory: PGVP Number: Gas Code:

E02AI99E15A1484 EB0065408 ASG - Chicago - IL B12015 PPN.BALA

Reference Number: 54-124483485-1 Cylinder Volume: 146.3 CF Cylinder Pressure: 2015 PSIG Valve Outlet: 590 Certification Date: Expiration Date: Apr 06, 2023

Apr 06, 2015

Certification performed in accordance with "EPA Traceability Protocol for Assay and Certification of Gaseous Calibration Standards (May 2012)" document EPA 600/R-12/531, using the assay procedures listed. Analytical Methodology does not require correction for analytical interference. This cylinder has a total analytical uncertainty as stated below with a confidence level of 95%. There are no significant impurities which affect the use of this calibration mixture. All concentrations are on a volume/volume basis unless otherwise noted.

Do Not Use This Cylinder below 100 psig. i.e. 0.7 megapascals

			ANALYTIC	AL RESULTS		
Component	Reques Concer		Actual Concentration	Protocol Method	Total Relative Uncertainty	Assay Dates
PROPANE AIR	950.0 PF Balance		975.0 PPM	G1	+/- 0.8% NIST Traceable	04/06/2015
Туре	Lot ID	Cylinder No		N STANDARI)S Uncertainty	Expiration Date
NTRM	11060908	CC343401	1000.3 PPM PR	OPANE/NITROGEN	+/- 0.7%	Mar 04, 2017
			ANALYTICA	L EQUIPMEN	Т	
Instrument/	Make/Model		Analytical Principle	e	Last Multipoint Calibr	ation
	Contraction of the second s	and the second sec	and the second se		Mar 08, 2015	

Triad Data Available Upon Request

Airgas Specialty Gases Airgas USA, LLC 12722 S. Wentworth Ave. Chicago, IL 60628 Airgas.com

CERTIFICATE OF ANALYSIS Grade of Product: EPA Protocol

Part Number: Cylinder Number: Laboratory: PGVP Number: Gas Code:

E02AI99E15A1734 XC032387B 124 - Chicago - IL B12017 PPN, BALA

C

Reference Number: 54-124614982-2 Cylinder Volume: Cylinder Pressure: Valve Outlet: 590 Certification Date:

146.2 CF 2015 PSIG May 05, 2017

Expiration Date: May 05, 2025

Certification performed in accordance with "EPA Traceability Protocol for Assay and Certification of Gaseous Calibration Standards (May 2012)" document EPA 600/R-12/531, using the assay procedures listed. Analytical Methodology does not require correction for analytical interference. This cylinder has a total analytical uncertainty as stated below with a confidence level of 95%. There are no significant impurities which affect the use of this calibration mixture. All concentrations are on a volume/volume basis unless otherwise noted.

o Not Use This C	ylinder below 100 j	psig. i.e. 0.7	megapascals.
	1	ouig, 1.0. 0.1	mogupuovaio.

			ANALYTIC	AL RESULT	S	
Component	Requested Concentra		l Intration	Protocol Method	Total Relative Uncertainty	Assay Dates
PROPANE 10.00 PPM AIR Balance		10.02 F	10.02 PPM G1		+/- 0.7% NIST Trace	eable 05/05/2017
Туре	Lot ID	CA Cylinder No	LIBRATIO	N STANDAR	DS Uncertainty	Expiration Date
NTRM	10061440	CC316745	the second s	ROPANE/AIR	+/- 0.6%	Jun 29, 2022
				L EQUIPME	NT	
Instrument/Make/Model A		Anal	Analytical Principle		Last Multipoint Calibration	
Nicolet 6700 AH	6700 AHR0801332 FTIR			Apr 21, 2017		

Triad Data Available Upon Request

Approved for Release

Page 1 of 54-124614982-2

CERTIFICATE OF ANALYSIS **Grade of Product: EPA Protocol**

Part Number: Cylinder Number: Laboratory: PGVP Number: Gas Code:

E02AI99E15A0557 XC021249B 124 - Chicago - IL B12017 PPN, BALA

Reference Number: 54-124626508-1 Cylinder Volume: Cylinder Pressure: Valve Outlet: 590 Certification Date:

146.2 CF 2015 PSIG Jul 05, 2017

Expiration Date: Jul 05, 2025

Certification performed in accordance with "EPA Traceability Protocol for Assay and Certification of Gaseous Calibration Standards (May 2012)" document EPA 600/R-12/531, using the assay procedures listed. Analytical Methodology does not require correction for analytical interference. This cylinder has a total analytical uncertainty as stated below with a confidence level of 95%. There are no significant impurities which affect the use of this calibration mixture. All concentrations are on a volume/volume basis unless otherwise noted.

Do Not Use This Cylinder below 100 psig, i.e. 0.7 megapascals

			ANALYTIC	CAL RESULTS	S	
Component	Requested Concentra		l entration	Protocol Method	Total Relative Uncertainty	Assay Dates
PROPANE AIR	25.00 PPM Balance	25.10	PPM	G1	+/- 0.8% NIST Traceable	07/05/2017
Tune	L at ID		LIBRATIC	N STANDAR	Uncertainty	Expiration Date
Type NTRM	Lot ID 16061113	Cylinder No EB0081680	NAMES OF TAXABLE PARTY.	PROPANE/AIR	+/- 0.4%	Jul 26, 2022
		A	NALYTICA	L EQUIPME	NT	
Instrument/N	lake/Model	Anal	lytical Principl	e	Last Multipoint Calib	ration
Nicolet 6700 Al	licolet 6700 AHR0801332 FTIR			Jun 21, 2017		

Triad Data Available Upon Request

Approved for Release

Page 1 of 54-124626508-1

Airgas USA, LLC 12722 S. Wentworth Ave. Chicago, IL 60628 Airgas.com

CERTIFICATE OF ANALYSIS Grade of Product: EPA Protocol

Part Number: Cylinder Number: Laboratory: PGVP Number: Gas Code:

E02AI99E15A0456 CC400426 124 - Chicago - IL B12017 PPN, BALA

Reference Number: 54-124626503-1 Cylinder Volume: 146.2 CF Cylinder Pressure: 2015 PSIG Valve Outlet: 590 Jun 30, 2017 Certification Date:

Expiration Date: Jun 30, 2025

Certification performed in accordance with "EPA Traceability Protocol for Assay and Certification of Gaseous Calibration Standards (May 2012)" document EPA 600/R-12/531, using the assay procedures listed. Analytical Methodology does not require correction for analytical interference. This cylinder has a total analytical uncertainty as stated below with a confidence level of 95%. There are no significant Impurities which affect the use of this calibration mixture. All concentrations are on a volume/volume basis unless otherwise noted.

Do Not Use This Cylinder below 100 psig, i.e. 0.7 megapascals

			ANALYTIC	AL RESULT	S	
Component	Requested Concentra		al entration	Protocol Method	Total Relative Uncertainty	Assay Dates
PROPANE AIR	50.00 PPM Balance	50.09	PPM	G1	+/- 0.8% NIST Tracea	ble 06/30/2017
-	1.415	CONTRACTOR AND A CONTRACT OF A CONTRACT		N STANDAR	LDS Uncertainty	Expiration Date
Type NTRM	Lot ID 16061113	Cylinder No EB0081680	and the second division of the second divisio	PROPANE/AIR	+/- 0.4%	Jul 26, 2022
		A	NALYTICA	L EQUIPME	NT	
Instrument/M	lake/Model		lytical Principl	-	Last Multipoint Cal	libration
Nicolet 6700 AH	-P0901332	FTIR			Jun 21, 2017	

Triad Data Available Upon Request

Approved for Release

American Association for Laboratory Accreditation

Accredited Air Emission Testing Body

A2LA has accredited

CIVIL AND ENVIRONMENTAL CONSULTANTS,

INC. (CEC)

In recognition of the successful completion of the joint A2LA and Stack Testing Accreditation Council (STAC) evaluation process, this laboratory is accredited to perform testing activities in compliance with ASTM D7036:2004 - Standard Practice for Competence of Air Emission Testing Bodies.

Presented this 20th day of December 2017.

President and CEO For the Accreditation Council Certificate Number 3913.01 Valid to November 30, 2019

This accreditation program is not included under the A2LA ILAC Mutual Recognition Arrangement.