Fว

February 23, 2022

Mr. Lew Hoffman
TDEC-Division of Water Resources
Memphis Environmental Field Office
8383 Wolf Lake Drive
Bartlett, TN 38133

Subject: SR Clarksville II

Hydrologic Determination Request Montgomery County, Tennessee

Mr. Hoffman:

A subsidiary of Silicon Ranch Corporation (SRC), SR Clarksville, LLC intends to develop a site within the city limits of Clarksville, Tennessee as a photovoltaic (PV) solar power generating facility. The SR Clarksville II site ("Project Site") includes approximately 140 acres bordered by I-24 to the west, Rossview Road to the north, and the Red River to the south, in Clarksville, Montgomery County, TN (Appendix A, Figures 1 and 2). On behalf of its subsidiary SR Clarksville, LLC, SRC has authorized HDR Engineering, Inc. (HDR) as its agent to submit the enclosed Hydrologic Determination (HD) request for written approval from the Tennessee Department of Environmental Conservation (TDEC) regarding the extent of Wet Weather Conveyance (WWC) features within the Project Site.

	Requestor/Applicant	Consultant/Requestor	Current Property Owners
Name	Emma Tillitski	Benjamin Burdette, WPIT, QHP	City of Clarksville
Affiliation	SR Bolivar, LLC	HDR	n/a
Mailing Address	$2222^{\text {nd }}$ Avenue South Suite 1900 Nashville, TN, 37201	440 S. Church Street Suite 1200 Charlotte, NC 28202	Clarksville, TN
Phone Number	615-577-4617	$704-249-3619$	931-648-6138
Parcel ID:	n/a	n/a	n/a

Project Location: City of Clarksville, TN
Basin: Red River (Hydrologic Unit Code [HUC] (051302060708)
Nearest City: Clarksville
County: Montgomery County
Center Decimal Degree Coordinates of Project Area: 36.547306°, -87.237242°
USGS Quadrangle Name: Clarksville, TN (1957) (1":24,000'-scale)

Project Site Description

Prior to undertaking fieldwork, HDR scientists conducted a desktop review of the Project Site utilizing a number of resources including U.S. Geological Survey (USGS) topographic maps (Appendix A, Figure 2), aerial imagery (Appendix A, Figure 3), United States Department of Agriculture (USDA) Natural Resources Conservation Service (NRCS) Soil Survey (Appendix A, Figure 4), the USGS National Hydrography Dataset (NHD), U.S. Fish and Wildlife Service (USFWS) National Wetland Inventory (NWI), Federal Emergency Management Act (FEMA) floodplains (AppendixA, Figure 5), and 12-digit HUC watershed areas (Appendix A, Figure 6). All figures are attached in Appendix A.

According to the USDA NRCS Soil Survey of Montgomery County, TN, 10 different soil types were identified within the Project Site (AppendixA, Figure 4). There are no hydric soils present within the Project Site according to the NRCS National Hydric Soils List for Montgomery County (NRCS 2017).

Review of the USFWS NWI depicts one pond within the Project Site (Appendix A, Figure 5). Review of the USGS NHD depicts an unnamed tributary (UNT) that crosses the northwest corner of the Project Site and flows south where it flows into Red River west of the Project Site (Appendix A, Figure 5). According to FEMA floodplain data, approximately 87\% of the Project Site is classified as FEMA Flood Zone X. Zone X is defined as a moderate- to low-risk area of minimal flood hazard due to areas being outside the special flood hazard area and higher than an elevation of the 0.2 percent annual chance flood. Approximately 13% of the Project Site is classified as FEMA Flood Zone AE, which is an area that will be inundated by the flood event having a 1-percent chance of being equaled or exceeded in any given year (Appendix A, Figure 5). The 1-percent annual chance flood is also referred to as the base flood or 100-year flood.

Based on aerial imagery and the field investigation, the Project Site consists of cultivated cropland with small areas of developed open space, forested and herbaceous wetlands, Red River and its associated tributaries, and mixed deciduous forest (see Appendix A, Figure 3). Dominant woody species consist of black walnut (Juglans nigra), southern red oak (Quercus falcata), red oak species (Quercus sp.), American sycamore (Platanus occidentalis), black gum (Nyssa sylvatica), shagbark hickory (Carya ovata), mockernut hickory (Carya tomentosa), eastern red cedar (Juniperus virginiana), sugar maple (Acer saccharum), common hackberry (Celtis occidentalis), and honey locust (Gleditsia triacanthos) in the canopy layer. The understory is composed primarily of black gum, black walnut, pawpaw (Asimina triloba), eastern red cedar, and Chinese privet (Ligustrum sinense). Common herbaceous and vine species include wingstem (Verbesina altemifolia), greenbriar (Smilax rotundifolia), poison ivy (Toxicodendron radicans), and a sedge species (Carex sp.).

Jurisdictional Delineation and Hydrological Determination

On November 2, 2021 HDR environmental scientists Lyranda Thiem, Tennessee Qualified Hydrologic Professional in Training (TN-QHP-IT), and Amanda Mills reviewed the Project Site for jurisdictional waters of the U.S. under Section 404 of the Clean Water Act. Jurisdictional waters of the U.S. were delineated according to the methodology and guidance described in the USACE 1987 Wetland Delineation Manual, USACE 2008 Rapanos Guidance, and the 2012 USACE Eastern Mountains and Piedmont Regional Supplement (Version 2.0). Streams were classified utilizing the methodology and guidance provided in the Regulatory Guidance Letter (RGL) 05-05 and the Tennessee Department of Environment and Conservation (TDEC) Division of Water Pollution Control Guidance for Making Hydrologic Determinations (Version 1.4) (TDEC 2011) for the identification and classifications of streams. Potential jurisdictional waters of the U.S. were flagged in the field and mapped using a Trimble® Geo7X GPS unit capable of submeter accuracy and post-processed utilizing Trimble® GPS Pathfinder Office software. Attached to this submittal are Preliminary Jurisdictional Determination Request forms (Appendix B), completed USACE Wetland Determination Data Forms, Hydrologic Determination Field Data Forms (Appendix C), as well as representative photographs of on-site waters (Appendix D).

Results

The results of the on-site field investigation conducted by HDR indicate that there are four (4) jurisdictional stream channels, six (6) jurisdictional wetland, and sixteen (16) non-jurisdictional WWCs located within the Project Site (Appendix A, Figure 7).

The on-site surface waters drain to Red River in the Red River watershed (HUC 051302060708). The on-site surface waters are classified for Domestic Water Supply, Industrial Water Supply, Fish and Aquatic Life, Recreation, Livestock Watering and Wildlife, Navigation, and Irrigation uses as designated by the TDEC Division of Water Resources Water Pollution Control. ${ }^{1}$

Wetland Waters

There are six wetlands located within the Project Site, two forested wetlands and four emergent wetlands. On-site wetland waters total approximately 1.66 acres (Appendix A, Figure 7). A summary of on-site wetland waters are summarized in Table 1.

[^0]Table 1. Summary of on-site wetland waters within the Project Site

Feature Name	Coordinates (decimal degrees)	Type of Aquatic Resource	Cowardin Classification ${ }^{1}$	Estimated Amount of Aquatic Resource in Review Area (acres)
Wetland Waters				
Wetland 1	$\begin{aligned} & 36.543018 / \\ & -87.232402 \end{aligned}$	non section 10 , non 404 - wetland	PEM	0.06
Wetland 2	$\begin{aligned} & 36.542459 / \\ & -87.232402 \end{aligned}$	non section 10 wetland	PEM	0.02
Wetland 3	$\begin{aligned} & 36.541966 / \\ & -87.235623 \end{aligned}$	non section 10 wetland	PEM	0.09
Wetland 4	$\begin{aligned} & 36.542869 / \\ & -87.235246 \end{aligned}$	non section 10 wetland	PFO	0.81
Wetland 5	$\begin{aligned} & 36.545315 / \\ & -87.236027 \end{aligned}$	non section 10wetland	PFO	0.12
Wetland 6	$\begin{aligned} & 36.549137 / \\ & -87.239230 \end{aligned}$	non section 10wetland	PEM	0.51
Total Wetland Waters:				1.66 ac.

PFO = Palustrine forested

Jurisdictional Streams

There are four jurisdictional streams located within the Project Site totaling approximately 2,422 linear feet (0.05 acres) (Appendix A, Figure 7). A summary of on-site non-wetland waters are summarized in Table 2.
Table 1. Summary of on-site non-wetland waters in Project Site

Feature Name	Starting Coordinates (decimal degrees)	Ending Coordinates (decimal degrees)	Type of Aquatic Resource	Cowardin Classification¹	Estimated Amount of Aquatic Resource in Review Area
Non-Wetland Waters			R		

[^1]
Wet Weather Conveyances (Non-Jurisdictional)

There are sixteen non-jurisdictional WWCs located within the Project Site totaling approximately 4,114 linear feet (0.094 acres) (Appendix A, Figure 7). A summary of on-site WWCs are summarized in Table 3.

Table 3. Summary of on-site Wet Weather Conveyances

Feature Name	Start Coordinates (decimal degrees)	End Coordinates (decimal degrees)	Estimated Amount of WWC in Review Area (If or ac.)
WWC 1	$\begin{aligned} & 36.545409 / \\ & -87.233668 \end{aligned}$	$\begin{gathered} 36.544429 / \\ -87.233351 \end{gathered}$	Length: 349 Width: 2 Area: < 0.01
WWC 2	$\begin{aligned} & 36.542429 / \\ & -87.232644 \end{aligned}$	$\begin{gathered} 36.542116 / \\ -87.232668 \end{gathered}$	Length: 125 Width: 3 Area: 0.002
WWC 3	$\begin{aligned} & 36.542077 / \\ & -87.235888 \end{aligned}$	$\begin{gathered} 36.541998 / \\ -87.236108 \end{gathered}$	Length: 39 Width: 2 Area: 0.0009
WWC 4	$\begin{aligned} & 36.543233 / \\ & -87.236376 \end{aligned}$	$\begin{array}{r} 36.542939 / \\ -87.236205 \end{array}$	Length: 106 Width: 2 Area: 0.002
WWC 5	$\begin{aligned} & 36.543155 / \\ & -87.235864 \end{aligned}$	$\begin{gathered} 36.542978 / \\ -87.235815 \end{gathered}$	Length: 83 Width: 2 Area: 0.002
WWC 6	$\begin{aligned} & 36.542919 / \\ & -87.235644 \end{aligned}$	$\begin{aligned} & 36.543233 / \\ & -87.235669 \end{aligned}$	Length: 132 Width: 1 Area: 0.003
WWC 7	$\begin{aligned} & 36.546741 / \\ & -87.234205 \end{aligned}$	$\begin{aligned} & 36.546565 / \\ & -87.234595 \end{aligned}$	Length: 167 Width: 3 Area: 0.004
WWC 8	$\begin{aligned} & 36.547368 / \\ & -87.234083 \end{aligned}$	$\begin{aligned} & 36.546428 / \\ & -87.234864 \end{aligned}$	Length: 414 Width: 5 Area: 0.009
WWC 9	$\begin{aligned} & 36.546957 / \\ & -87.235913 \end{aligned}$	$\begin{gathered} 36.546761 / \\ -87.235815 \end{gathered}$	Length: 100 Width: 5 Area: 0.002
WWC 10	$\begin{aligned} & 36.547898 / \\ & -87.236254 \end{aligned}$	$\begin{aligned} & 36.546937 / । \\ & -87.236035 \end{aligned}$	Length: 423 Width: 8 Area: 0.001
WWC 11	$\begin{aligned} & 36.548486 / \\ & -87.237669 \end{aligned}$	$\begin{gathered} 36.547898 / \\ -87.236254 \end{gathered}$	Length: 513 Width: 4 Area: 0.012
WWC 12	$\begin{aligned} & 35.260454 / \\ & -89.018287 \end{aligned}$	$\begin{gathered} 35.260692 / \\ -89.018228 \end{gathered}$	Length: 596 Width: 8 Area: 0.014

Feature Name	Start Coordinates (decimal degrees)	End Coordinates (decimal degrees)	Estimated Amount of WWC in Review Area (If or ac.)
WWC 13	$\begin{aligned} & 36.548995 / \\ & -87.242036 \end{aligned}$	$\begin{gathered} 36.549465 / \\ -87.243646 \end{gathered}$	Length: 527 Width: 3 Area: 0.012
WWC 14	$\begin{gathered} 36.550034 / \\ -87.241816 \end{gathered}$	$\begin{aligned} & 36.549348 / \\ & -87.242499 \end{aligned}$	Length: 327 Width: 1 Area: 0.008
WWC 15	$\begin{aligned} & 36.549955 / \\ & -87.243744 \end{aligned}$	$\begin{gathered} 36.549955 / \\ -87.243963 \end{gathered}$	Length: 97 Width: 1 Area: 0.002
WWC 16	$\begin{aligned} & 36.552229 / \\ & -87.243500 \end{aligned}$	$\begin{aligned} & 36.552072 / \\ & -87.243890 \end{aligned}$	Length: 116 Width: 10 Area: 0.003
Total Wet Weather Conveyances:			Length: 4,114 If Area: 0.094 ac

On behalf of SRC, HDR is hereby requesting a HD verification for WWCs within the Project Site. Should you have any questions or require additional information following your review of the enclosed materials, please me at (615)-507-9167 or lyranda.thiem@hdrinc.com.

Sincerely,
HDR Inc,

Lyeanda Thiem
Lyranda Thiem- QHP-IT
Environmental Scientist

Ben Burdette- QHP 1204-TN21 Environmental Scientist

Appendices: Appendix A: Figures

Figure 1. Project Location
Figure 2. USGS Topographic Quadrangles
Figure 3. Aerial Imagery
Figure 4. NRCS Soils Survey of Montgomery County, TN
Figure 5. USGS NHD, USFWS NWI, and FEMA Floodplains
Figure 6. HUC 12 Watershed
Figure 7. Jurisdictional Delineation Map
Appendix B: Data Forms and Normal Weather Conditions USACE Wetland Determination Data Forms Hydrologic Determination Data Sheets Normal Weather Conditions
Appendix C: Site Photographs
cc: Emma Tillitski, Silicon Ranch Corporation

F?

Appendix A

Figures

ト?

Name: SR Clarksville II
Applicant: Silicon Ranch Corporation
Location: Clarksville, TN
Date: $2 / 18 / 2022$

ト)

Fっ?

Appendix B
 Data Forms and Normal Weather Conditions

WETLAND DETERMINATION DATA SHEET - Eastern Mountains and Piedmont Region

SUMMARY OF FINDINGS - Attach site map showing sampling point locations, transects, important features, etc.

HYDROLOGY

Describe Recorded Data (stream gauge, monitoring well, aerial photos, previous inspections), if available:

Remarks:
Wetland hydrology is not present

VEGETATION (Four Strata) - Use scientific names of plants.

Remarks: (Include photo numbers here or on a separate sheet.)
**Species indicator status range OBL-UPL. Assigned FACU status for wetland/upland determination.

WETLAND DETERMINATION DATA SHEET - Eastern Mountains and Piedmont Region

SUMMARY OF FINDINGS - Attach site map showing sampling point locations, transects, important features, etc.

HYDROLOGY

Describe Recorded Data (stream gauge, monitoring well, aerial photos, previous inspections), if available:

Remarks:
Wetland hydrology is present.

VEGETATION (Four Strata) - Use scientific names of plants.

Remarks: (Include photo numbers here or on a separate sheet.)
**Species indicator status range OBL-UPL. Assigned FACW status for wetland/upland determination.

WETLAND DETERMINATION DATA SHEET - Eastern Mountains and Piedmont Region

SUMMARY OF FINDINGS - Attach site map showing sampling point locations, transects, important features, etc.

Hydrophytic Vegetation Present?		$\begin{array}{ll} \text { No } & X \\ \text { No } & X \\ \text { No } & X \end{array}$	Is the Sampled Area within a Wetland?	Yes	No X	
Hydric Soil Present?	Yes					
Wetland Hydrology Present?	Yes					
Remarks: Upland datapoint upslope of wetland wetland 1 located within a corn field.						

HYDROLOGY

Describe Recorded Data (stream gauge, monitoring well, aerial photos, previous inspections), if available:

Remarks:
Wetland hydrology is not present

VEGETATION (Four Strata) - Use scientific names of plants.

Remarks: (Include photo numbers here or on a separate sheet.)
**Species indicator status range OBL-UPL. Assigned FACU status for wetland/upland determination.

WETLAND DETERMINATION DATA SHEET - Eastern Mountains and Piedmont Region

SUMMARY OF FINDINGS - Attach site map showing sampling point locations, transects, important features, etc.

HYDROLOGY

Describe Recorded Data (stream gauge, monitoring well, aerial photos, previous inspections), if available:

Remarks:
Wetland hydrology is present.

VEGETATION (Four Strata) - Use scientific names of plants.

Remarks: (Include photo numbers here or on a separate sheet.)

WETLAND DETERMINATION DATA SHEET - Eastern Mountains and Piedmont Region

SUMMARY OF FINDINGS - Attach site map showing sampling point locations, transects, important features, etc.

HYDROLOGY

Describe Recorded Data (stream gauge, monitoring well, aerial photos, previous inspections), if available:

Remarks:
Wetland hydrology is present.

VEGETATION (Four Strata) - Use scientific names of plants.

[^2]

WETLAND DETERMINATION DATA SHEET - Eastern Mountains and Piedmont Region

SUMMARY OF FINDINGS - Attach site map showing sampling point locations, transects, important features, etc.

HYDROLOGY

Describe Recorded Data (stream gauge, monitoring well, aerial photos, previous inspections), if available:

Remarks:
Wetland hydrology is not present

VEGETATION (Four Strata) - Use scientific names of plants.

Remarks: (Include photo numbers here or on a separate sheet.)
**Species indicator status range OBL-UPL. Assigned FAC status for wetland/upland determination.

SOIL

WETLAND DETERMINATION DATA SHEET - Eastern Mountains and Piedmont Region

SUMMARY OF FINDINGS - Attach site map showing sampling point locations, transects, important features, etc.

Hydrophytic Vegetation Present?	Yes X		Is the Sampled Area		
Hydric Soil Present?	Yes X	No	within a Wetland?	Yes X	No
Wetland Hydrology Present?	Yes X	No			
Remarks: PFO Wetland located near an agricultural field.					

HYDROLOGY

Describe Recorded Data (stream gauge, monitoring well, aerial photos, previous inspections), if available:

Remarks:
Wetland hydrology is present.

VEGETATION (Four Strata) - Use scientific names of plants.

Remarks: (Include photo numbers here or on a separate sheet.)
Wetland vegetation is present.

WETLAND DETERMINATION DATA SHEET - Eastern Mountains and Piedmont Region

SUMMARY OF FINDINGS - Attach site map showing sampling point locations, transects, important features, etc.

HYDROLOGY

Describe Recorded Data (stream gauge, monitoring well, aerial photos, previous inspections), if available:

Remarks:
Wetland hydrology is present.

VEGETATION (Four Strata) - Use scientific names of plants.

Remarks: (Include photo numbers here or on a separate sheet.)

WETLAND DETERMINATION DATA SHEET - Eastern Mountains and Piedmont Region

SUMMARY OF FINDINGS - Attach site map showing sampling point locations, transects, important features, etc.

Hydrophytic Vegetation Present? Hydric Soil Present? Wetland Hydrology Present?			Is the Sampled Area within a Wetland?	Yes	No X	
	Yes					
	Yes					
Remarks: Upland datapoint upslope of wetland 5 located within a corn field.						

HYDROLOGY

Describe Recorded Data (stream gauge, monitoring well, aerial photos, previous inspections), if available:

Remarks:
Wetland hydrology is not present

VEGETATION (Four Strata) - Use scientific names of plants.

Remarks: (Include photo numbers here or on a separate sheet.)
**Species indicator status range OBL-UPL. Assigned FAC status for wetland/upland determination.

SOIL

WETLAND DETERMINATION DATA SHEET - Eastern Mountains and Piedmont Region

SUMMARY OF FINDINGS - Attach site map showing sampling point locations, transects, important features, etc.

Hydrophytic Vegetation Present?		$\begin{array}{ll} \text { No } & X \\ \text { No } & X \\ \text { No } & X \end{array}$	Is the Sampled Area within a Wetland?	Yes	No X	
Hydric Soil Present?	Yes					
Wetland Hydrology Present?	Yes					
Remarks: Upland datapoint upslope of wetland wetland 5 located within a corn field.						

HYDROLOGY

Describe Recorded Data (stream gauge, monitoring well, aerial photos, previous inspections), if available:

Remarks:
Wetland hydrology is not present

VEGETATION (Four Strata) - Use scientific names of plants.

Remarks: (Include photo numbers here or on a separate sheet.)
**Species indicator status range OBL-UPL. Assigned FACU status for wetland/upland determination.

WETLAND DETERMINATION DATA SHEET - Eastern Mountains and Piedmont Region

SUMMARY OF FINDINGS - Attach site map showing sampling point locations, transects, important features, etc.

HYDROLOGY

Describe Recorded Data (stream gauge, monitoring well, aerial photos, previous inspections), if available:

Remarks:
Wetland hydrology is present.

VEGETATION (Four Strata) - Use scientific names of plants.

Remarks: (Include photo numbers here or on a separate sheet.)
Wetland vegetation is present in small amounts due to being within a highly disturbed corn field.

WETLAND DETERMINATION DATA SHEET - Eastern Mountains and Piedmont Region

SUMMARY OF FINDINGS - Attach site map showing sampling point locations, transects, important features, etc.

Hydrophytic Vegetation Present? Hydric Soil Present? Wetland Hydrology Present?			Is the Sampled Area within a Wetland?	Yes	No X	
	Yes					
	Yes					
Remarks: Upland datapoint upslope of wetland 6 located within a corn field.						

HYDROLOGY

Describe Recorded Data (stream gauge, monitoring well, aerial photos, previous inspections), if available:

Remarks:
Wetland hydrology is not present

Hydrologic Determination Field Data Sheet

Tennessee Division of Water Pollution Control, Version 1.5

NOTE: If any Primary Indicators 1-9 = "Yes", then no further investigation is necessary. However,
assessors may choose to score secondary indicators as supporting evidence.
In the absence of a primary indicator, or other definitive evidence, complete the secondary indicator table on page 2 of this sheet, and provide score below.

Guidance for the interpretation and scoring of both the primary \& secondary indicators is provided in TDECWPC Guidance For Making Hydrologic Determinations, Version 1.5

Overall Hydrologic Determination = Stream
 Secondary Indicator Score (if applicable) = 19.5

Justification / Notes:

This is an intermittent stream with appromitelly $4-6 \mathrm{ft}$ bank width and 6 inches to 3 feet bank height that runs downsloped starting near an agricultural corn field and running down through a forested area. No water was observed in the channel at the time of the survey.

Secondary Field Indicator Evaluation

A. Geomorphology (Subtotal = 12)	Absent	Weak	Moderate	Strong
1. Continuous bed and bank	0	1	2	3
2. Sinuous channel	0	1	2	3
3. In-channel structure: riffle-pool sequences	0	1	2	3
4. Sorting of soil textures or other substrate	0	1	2	3
5. Active/relic floodplain	0	0.5	1	1.5
6. Depositional bars or benches	0	1	2	3
7. Braided channel	0	1	2	3
8. Recent alluvial deposits	0	0.5	1	1.5
9. Natural levees	0	1	2	3
10. Headcuts	0	1	2	3
11. Grade controls	0	0.5	1	1.5
12. Natural valley or drainageway	0	0.5	1	1.5
13. At least second order channel on existing USGS or NRCS map	No $=0$		$Y \mathrm{es}=3$	

B. Hydrology (Subtotal $=2.5$)	Absent	Weak	Moderate	Strong
14. Subsurface flow/discharge into channel	0	1	2	3
15. Water in channel and >48 hours since sig. rain	0	1	2	3
16. Leaf litter in channel (January - September)	1.5	1	0.5	0
17. Sediment on plants or on debris	0	0.5	1	1.5
18. Organic debris lines or piles (wrack lines)	0	0.5	1	. 5
19. Hydric soils in channel bed or sides of channel	No = 0		$\mathrm{Yes}=1.5$	

C. Biology (Subtotal = 5)	Absent	Weak	Moderate	Strong
20. Fibrous roots in channel bed 1	3	(2)	1	0
21. Rooted plants in the thalweg 1	3		1	0
22. Crayfish in stream (exclude in floodplain)	0	1	2	3
23. Bivalves/mussels	0	1	2	3
24. Amphibians	0	0.5	1	1.5
25. Macrobenthos (record type \& abundance)	0	1	2	3
26. Filamentous algae; periphyton	0	1	2	3
27. Iron oxidizing bacteria/fungus	0	0.5	1	1.5
28.Wetland plants in channel bed 2	0	0.5	1	1.5

${ }_{1}$ Focus is on the presence of terrestrial plants.
2 Focus is on the presence of aquatic or wetland plants.
Total Points $=\underline{19.5}$
Under Normal Conditions, Watercourse is a Wet Weather
Conveyance if Secondary Indicator Score < 19 points

Notes:

Some gravel was sorting from the cobble. Lots of larger headcuts occured throughout the stream as well.
\qquad

Hydrologic Determination Field Data Sheet

Tennessee Division of Water Pollution Control, Version 1.5

Primary Field Indicators Observed

Primary Indicators	NO	YES
1. Hydrologic feature exists solely due to a process discharge	\checkmark	WWC
2. Defined bed and bank absent, vegetation composed of upland and FACU species	\checkmark	WWC
3. Watercourse dry anytime during February through April 15th, under normal precipitation / groundwater conditions	NA	WWC
4. Daily flow and precipitation records showing feature only flows in direct response to rainfall	NA	WWC
5. Presence of multiple populations of obligate lotic organisms with ≥ 2 month aquatic phase	\checkmark	Stream
6. Presence of fish (except Gambusia)	\checkmark	Stream
7. Presence of naturally occurring ground water table connection	\checkmark	Stream
8. Flowing water in channel and 7 days since last precip >0.1" in local watershed	\checkmark	Stream
9. Evidence watercourse has been used as a supply of drinking water	\checkmark	Stream

NOTE: If any Primary Indicators $1-9=$ "Yes", then no further investigation is necessary. However,
assessors may choose to score secondary indicators as supporting evidence.
In the absence of a primary indicator, or other definitive evidence, complete the secondary indicator table on page 2 of this sheet, and provide score below.

Guidance for the interpretation and scoring of both the primary \& secondary indicators is provided in TDECWPC Guidance For Making Hydrologic Determinations, Version 1.5

Overall Hydrologic Determination = Stream
 Secondary Indicator Score (if applicable) $=42$

Justification / Notes :

This a section of the Red River. The bank width ranges from 15 feet to over 30 feet. Bank height ranges from 6 to about 10 feet. Water depth in the channel was not measured at the time of the survey. Substrate within the river consisted of mud, silt, gravel, and some cobble.

Secondary Field Indicator Evaluation

A. Geomorphology (Subtotal $=22$)	Absent	Weak	Moderate	Strong
1. Continuous bed and bank	0	1	2	3
2. Sinuous channel	0	1	2	3
3. In-channel structure: riffle-pool sequences	0	1	2	3
4. Sorting of soil textures or other substrate	0	1	2	3
5. Active/relic floodplain	0	0.5	1	1.5
6. Depositional bars or benches	0	1	2	3
7. Braided channel	0	1	2	3
8. Recent alluvial deposits	0	0.5	1	1.5
9. Natural levees	0	1	2	3
10. Headcuts	0	1	2	3
11. Grade controls	0	0.5	1	1.5
12. Natural valley or drainageway	0	0.5	1	1.5
13. At least second order channel on existing USGS or NRCS map	$\mathrm{No}=0$		Yes $=3$	

B. Hydrology (Subtotal = 9	Absent	Weak	Moderate	Strong
14. Subsurface flow/discharge into channel	0	1	2	3
15. Water in channel and >48 hours since sig. rain	0	1	2	3
16. Leaf litter in channel (January - September)	1.5	1	0.5	0
17. Sediment on plants or on debris	0	0.5	1	1.5
18. Organic debris lines or piles (wrack lines)	0	0.5	Yes $=1.5$	
19. Hydric soils in channel bed or sides of channel	No = 0			

C. Biology (Subtotal = 11)	Absent	Weak	Moderate	Strong
20. Fibrous roots in channel bed 1	3)	2	1	0
21. Rooted plants in the thalweg 1	3		1	0
22. Crayfish in stream (exclude in floodplain)	0	1	(2)	3
23. Bivalves/mussels	0	1	2	3
24. Amphibians	0	0.5	1	1.5
25. Macrobenthos (record type \& abundance)	0	1	2	3
26. Filamentous algae; periphyton	0	1	2	3
27. Iron oxidizing bacteria/fungus	0	0.5	1	1.5
28.Wetland plants in channel bed 2	0	0.5	1	1.5

${ }_{1}$ Focus is on the presence of terrestrial plants.
2 Focus is on the presence of aquatic or wetland plants.

```
Total Points \(=\underline{42}\)
Under Normal Conditions, Watercourse is a Wet Weather
Conveyance if Secondary Indicator Score < 19 points
```


Notes:

Hydrologic Determination Field Data Sheet

Tennessee Division of Water Pollution Control, Version 1.5

NOTE: If any Primary Indicators $1-9=$ "Yes", then no further investigation is necessary. However, assessors may choose to score secondary indicators as supporting evidence.

In the absence of a primary indicator, or other definitive evidence, complete the secondary indicator table on page 2 of this sheet, and provide score below.

Guidance for the interpretation and scoring of both the primary \& secondary indicators is provided in TDEC-

the stream. The stream has lost of cobble and gravel sorting from eachother. The intermittent stream

Overałlitlydrivelegim(Bletermination = Stream
 Secondary Indicator Score (if applicable) $=27.5$

Justification / Notes:

This is a UNT to the Red River. Only a portion of the head of the stream starts in the project area.
Bank width ranged from 4 to 6 feet. Bank height ranged from 1 to 3 feet. Water depth in the channel at the time of of the survey ranged from 6 inches to 1 foot. Water was flowing at a moderate speed.

Secondary Field Indicator Evaluation

A. Geomorphology (Subtotal $=14.5$	Absent	Weak	Moderate	Strong
1. Continuous bed and bank	0	1	2	3
2. Sinuous channel	0	1	2	3
3. In-channel structure: riffle-pool sequences	0	1	2	3
4. Sorting of soil textures or other substrate	0	1	2	3
5. Active/relic floodplain	0	0.5	T	1.5
6. Depositional bars or benches	0	1	2	3
7. Braided channel	0	1	2	3
8. Recent alluvial deposits	0	0.5	1	1.5
9. Natural levees	0	1	2	3
10. Headcuts	0	1	2	3
11. Grade controls	0	0.5	1	1.5
12. Natural valley or drainageway	0	0.5	1	1.5
13. At least second order channel on existing USGS or NRCS map	$\mathrm{No}=0$		Yes $=3$	

B. Hydrology (Subtotal $=6$)
Absent Weak Moderate Strong 14. Subsurface flow/discharge into channel 0 1 2 3 15. Water in channel and >48 hours since sig. rain 0 1 2 0 16. Leaf litter in channel (January - September) 1.5 1 0.5 0 17. Sediment on plants or on debris 0 0.5 1 1.5 18. Organic debris lines or piles (wrack lines) 0 0.5 1 1.5 19. Hydric soils in channel bed or sides of channel No $=0$ Yes $=1.5$

C. Biology (Subtotal = 7	Absent	Weak	Moderate	Strong
20. Fibrous roots in channel bed 1	$3)$	2	1	0
21. Rooted plants in the thalweg 1	3	2	1	0
22. Crayfish in stream (exclude in floodplain)	0	1	2	3
23. Bivalves/mussels	0	1	2	3
24. Amphibians	0	0.5	1	1.5
25. Macrobenthos (record type \& abundance)	0	1	2	3
26. Filamentous algae; periphyton	0	1	2	3
27. Iron oxidizing bacteria/fungus	0	0.5	1	1.5
28. Wetland plants in channel bed 2	0	0.5	1	1.5

${ }_{1}$ Focus is on the presence of terrestrial plants.
2 Focus is on the presence of aquatic or wetland plants.

Total Points $=\underline{27.5}$
Under Normal Conditions, Watercourse is a Wet Weather
Conveyance if Secondary Indicator Score < 19 points
Notes : The perennial stream starts off project where groundwater is coming out of hillside and starting the stream. The stream has lost of cobble and gravel sorting from eachother. The intermittent stream flows into this perennial.

Hydrologic Determination Field Data Sheet

Tennessee Division of Water Pollution Control, Version 1.5

NOTE: If any Primary Indicators $1-9=$ "Yes", then no further investigation is necessary. However,
assessors may choose to score secondary indicators as supporting evidence.
In the absence of a primary indicator, or other definitive evidence, complete the secondary indicator table on page 2 of this sheet, and provide score below.

Guidance for the interpretation and scoring of both the primary \& secondary indicators is provided in TDECWPC Guidance For Making Hydrologic Determinations, Version 1.5

Overall Hydrologic Determination = Stream
Secondary Indicator Score (if applicable) $=27$

Justification / Notes:

This is a UNT to the Red River. Only a portion of the head of the stream starts in the project area.
Bank width ranges from 2 to 5 feet. Bank height ranged from 2 to 4 feet. There was approximatley 1 foot of water in the channel at the time of the survey. The start of this stream was flowing out of a rock outcrop area.

Hydrologic Determination Field Data Sheet

Tennessee Division of Water Pollution Control, Version 1.5

NOTE: If any Primary Indicators $1-9=$ "Yes", then no further investigation is necessary. However, assessors may choose to score secondary indicators as supporting evidence.

In the absence of a primary indicator, or other definitive evidence, complete the secondary indicator table on page 2 of this sheet, and provide score below.

Guidance for the interpretation and scoring of both the primary \& secondary indicators is provided in TDECWPC Guidance For Making Hydrologic Determinations, Version 1.5

Overall Hydrologic Determination =WWC
Secondary Indicator Score (if applicable) $=12$

Justification / Notes :

This WWC flows within a forested region. Bed and Bank disappears near the start and near the ending of the WWC. Bank height ranged from 0 inches to 12inches. Bank widht ranged from 1 to 2 feet. No water was in the channel at the time of the survey.

Secondary Field Indicator Evaluation

A. Geomorphology (Subtotal $=7$)	Absent	Weak	Moderate	Strong
1. Continuous bed and bank	0	1	2	3
2. Sinuous channel	0	1	2	3
3. In-channel structure: riffle-pool sequences	0	1	2	3
4. Sorting of soil textures or other substrate	0	1	2	3
5. Active/relic floodplain	0	0.5	1	1.5
6. Depositional bars or benches	0	1	2	3
7. Braided channel	0	1	2	3
8. Recent alluvial deposits	0	0.5	1	1.5
9. Natural levees	0	1	2	3
10. Headcuts	0	1	2	3
11. Grade controls	0	0.5	1	1.5
12. Natural valley or drainageway	0	0.5	1	1.5
13. At least second order channel on existing USGS or NRCS map	No $=0$		$Y \mathrm{es}=3$	

B. Hydrology (Subtotal = 1	Absent	Weak	Moderate	Strong
14. Subsurface flow/discharge into channel	0	1	2	3
15. Water in channel and >48 hours since sig. rain	0	1	2	3
16. Leaf litter in channel (January - September)	1.5	1	0.5	0
17. Sediment on plants or on debris	0	0.5	1	1.5
18. Organic debris lines or piles (wrack lines)	0	0.5	1	1.5
19. Hydric soils in channel bed or sides of channel	$\mathrm{NO}=$		Yes $=1.5$	

C. Biology (Subtotal $=4 \quad$)	Absent	Weak	Moderate	Strong
20. Fibrous roots in channel bed 1	3	2	1	0
21. Rooted plants in the thalweg 1	3	2	1	0
22. Crayfish in stream (exclude in floodplain)	0	1	2	3
23. Bivalves/mussels	0	1	2	3
24. Amphibians	0	0.5	1	1.5
25. Macrobenthos (record type \& abundance)	0	1	2	3
26. Filamentous algae; periphyton	0	1	2	3
27. Iron oxidizing bacteria/fungus	0	0.5	1	1.5
28.Wetland plants in channel bed 2	0	0.5	1	1.5

${ }_{1}$ Focus is on the presence of terrestrial plants.
2 Focus is on the presence of aquatic or wetland plants.

```
Total Points \(=\underline{12}\)
Under Normal Conditions, Watercourse is a Wet Weather
Conveyance if Secondary Indicator Score < 19 points
```


Notes:

5) This WWC lies within the floodplain of the Red River. 21) Grass species were growing at the end and start of the channel.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Hydrologic Determination Field Data Sheet

Tennessee Division of Water Pollution Control, Version 1.5

NOTE: If any Primary Indicators $1-9=$ "Yes", then no further investigation is necessary. However,
assessors may choose to score secondary indicators as supporting evidence.
In the absence of a primary indicator, or other definitive evidence, complete the secondary indicator table on page 2 of this sheet, and provide score below.

Guidance for the interpretation and scoring of both the primary \& secondary indicators is provided in TDECWPC Guidance For Making Hydrologic Determinations, Version 1.5

Overall Hydrologic Determination = WWC
 Secondary Indicator Score (if applicable) $=13.5$

Justification / Notes:

This is a WWC that flows into the Red River, bank width ranges from 2 to 4 feet and bank height ranges from 6 inches to 5 feet. No water was in the channel at the time of the survey.

Secondary Field Indicator Evaluation

A. Geomorphology (Subtotal $=8.5$)	Absent	Weak	Moderate	Strong
1. Continuous bed and bank	0	1	2	3
2. Sinuous channel	0	1	2	3
3. In-channel structure: riffle-pool sequences	0	1	2	3
4. Sorting of soil textures or other substrate	0	1	2	3
5. Active/relic floodplain	0	0.5	1	(1.5)
6. Depositional bars or benches	0	1	2	3
7. Braided channel	0	1	2	3
8. Recent alluvial deposits	0	0.5	1	1.5
9. Natural levees	0	1	2	3
10. Headcuts	0	1	2	3
11. Grade controls	0	0.5	1	1.5
12. Natural valley or drainageway	0	0.5	1	1.5
13. At least second order channel on existing USGS or NRCS map	No $=0$		$Y \mathrm{es}=3$	

B. Hydrology (Subtotal = 1)	Absent	Weak	Moderate	Strong
14. Subsurface flow/discharge into channel	0	1	2	3
15. Water in channel and >48 hours since sig. rain	0	1	2	3
16. Leaf litter in channel (January - September)	1.5	1	0.5	0
17. Sediment on plants or on debris	0	0.5	1	1.5
18. Organic debris lines or piles (wrack lines)	0	0.5	1	1.5
19. Hydric soils in channel bed or sides of channel	$\mathrm{NO}=$		Yes $=1.5$	

C. Biology (Subtotal = 4)	Absent	Weak	Moderate	Strong
20. Fibrous roots in channel bed 1	3	2	1	0
21. Rooted plants in the thalweg 1	3	2	1	0
22. Crayfish in stream (exclude in floodplain)	0	1	2	3
23. Bivalves/mussels	0	1	2	3
24. Amphibians	0	0.5	1	1.5
25. Macrobenthos (record type \& abundance)	0	1	2	3
26. Filamentous algae; periphyton	0	1	2	3
27. Iron oxidizing bacteria/fungus	0	0.5	1	1.5
28.Wetland plants in channel bed 2	0	0.5	1	1.5

${ }_{1}$ Focus is on the presence of terrestrial plants.
2 Focus is on the presence of aquatic or wetland plants.

```
Total Points = 13.5
Under Normal Conditions, Watercourse is a Wet Weather
Conveyance if Secondary Indicator Score < 19 points
```


Notes:

Hydrologic Determination Field Data Sheet

Tennessee Division of Water Pollution Control, Version 1.5

NOTE: If any Primary Indicators $1-9=$ "Yes", then no further investigation is necessary. However, assessors may choose to score secondary indicators as supporting evidence.

In the absence of a primary indicator, or other definitive evidence, complete the secondary indicator table on page 2 of this sheet, and provide score below.

Guidance for the interpretation and scoring of both the primary \& secondary indicators is provided in TDECWPC Guidance For Making Hydrologic Determinations, Version 1.5

Overall Hydrologic Determination =WWC
Secondary Indicator Score (if applicable) $=12$

Justification / Notes :

This WWC flows into a UNT of the Red River. Bank width ranged from 1 to 2 feet. Bank height ranged from 6 inches to 1 foot. No water was found within the channel at the time of the survey. This WWC starts in an agricultural corn field before leading into a wooded area and into the UNT to the Red River.

Secondary Field Indicator Evaluation

A. Geomorphology (Subtotal $=8.5$)	Absent	Weak	Moderate	Strong
1. Continuous bed and bank	0	1	2	3
2. Sinuous channel	0	1	2	3
3. In-channel structure: riffle-pool sequences	0		2	3
4. Sorting of soil textures or other substrate	0	1	2	3
5. Active/relic floodplain	0	0.5	1	(1.5)
6. Depositional bars or benches	0	1	2	3
7. Braided channel	0	1	2	3
8. Recent alluvial deposits	0	0.5	1	1.5
9. Natural levees	0	1	2	
10. Headcuts	0	1	2	3
11. Grade controls	0	0.5	1	1.5
12. Natural valley or drainageway	0	0.5	1	1.5
13. At least second order channel on existing USGS or NRCS map	No $=0$		$Y \mathrm{es}=3$	

B. Hydrology (Subtotal = 1	Absent	Weak	Moderate	Strong
14. Subsurface flow/discharge into channel	0	1	2	3
15. Water in channel and >48 hours since sig. rain	0	1	2	3
16. Leaf litter in channel (January - September)	1.5	1	0.5	0
17. Sediment on plants or on debris	0	0.5	1	1.5
18. Organic debris lines or piles (wrack lines)	0	0.5	1	1.5
19. Hydric soils in channel bed or sides of channel	$\mathrm{NO}=$		Yes $=1.5$	

C. Biology (Subtotal = 3)	Absent	Weak	Moderate	Strong
20. Fibrous roots in channel bed 1	3	2	1	0
21. Rooted plants in the thalweg 1	3	2	1	0
22. Crayfish in stream (exclude in floodplain)	0	1	2	3
23. Bivalves/mussels	0	1	2	3
24. Amphibians	0	0.5	1	1.5
25. Macrobenthos (record type \& abundance)	0	1	2	3
26. Filamentous algae; periphyton	0	1	2	3
27. Iron oxidizing bacteria/fungus	0	0.5	1	1.5
28. Wetland plants in channel bed 2	0	0.5	1	1.5

${ }_{1}$ Focus is on the presence of terrestrial plants.
2 Focus is on the presence of aquatic or wetland plants.

```
Total Points \(=12\)
Under Normal Conditions, Watercourse is a Wet Weather
Conveyance if Secondary Indicator Score < 19 points
```

Notes: 5) this WWC lies within the Red River floodplain

Hydrologic Determination Field Data Sheet

Tennessee Division of Water Pollution Control, Version 1.5

NOTE: If any Primary Indicators 1-9 = "Yes", then no further investigation is necessary. However, assessors may choose to score secondary indicators as supporting evidence.

In the absence of a primary indicator, or other definitive evidence, complete the secondary indicator table on page 2 of this sheet, and provide score below.

Guidance for the interpretation and scoring of both the primary \& secondary indicators is provided in TDECWPC Guidance For Making Hydrologic Determinations, Version 1.5

Overall Hydrologic Determination $=$ WWC
 Secondary Indicator Score (if applicable) $=10.5$

Justification / Notes:

This wwc flows from the wooded hillside down into wetland 4. Bank height ranged from 6 inches to 1 foot. Bank width ranged from 1 to 2 feet. No water was onserved within the channel at the time of the survey.

Secondary Field Indicator Evaluation

A. Geomorphology (Subtotal $=8.5$)	Absent	Weak	Moderate	Strong
1. Continuous bed and bank	0	1	2	3
2. Sinuous channel	0	1	2	3
3. In-channel structure: riffle-pool sequences	0	1	2	3
4. Sorting of soil textures or other substrate	0	1	2	3
5. Active/relic floodplain	0	0.5	1	1.5
6. Depositional bars or benches	0	1	2	3
7. Braided channel	0	1	2	3
8. Recent alluvial deposits	0	0.5	1	1.5
9. Natural levees	0	1	2	3
10. Headcuts	0	1	2	3
11. Grade controls	0	0.5	1	1.5
12. Natural valley or drainageway	0	0.5	1	1.5
13. At least second order channel on existing USGS or NRCS map	No $=0$		$Y \mathrm{es}=3$	

B. Hydrology (Subtotal = 0)	Absent	Weak	Moderate	Strong
14. Subsurface flow/discharge into channel	0	1	2	3
15. Water in channel and >48 hours since sig. rain	0	1	2	3
16. Leaf litter in channel (January - September)	1.5	1	0.5	0
17. Sediment on plants or on debris	0	0.5	1	1.5
18. Organic debris lines or piles (wrack lines)	0	0.5	1	1.5
19. Hydric soils in channel bed or sides of channel	No =		Yes $=1.5$	

C. Biology (Subtotal = 2)	Absent	Weak	Moderate	Strong
20. Fibrous roots in channel bed 1	3	2	1	0
21. Rooted plants in the thalweg 1	3	$2)$	1	0
22. Crayfish in stream (exclude in floodplain)	0	1	2	3
23. Bivalves/mussels	0	1	2	3
24. Amphibians	0	0.5	1	1.5
25. Macrobenthos (record type \& abundance)	0	1	2	3
26. Filamentous algae; periphyton	0	1	2	3
27. Iron oxidizing bacteria/fungus	0	0.5	1	1.5
28.Wetland plants in channel bed 2	0	0.5	1	1.5

${ }_{1}$ Focus is on the presence of terrestrial plants.
2 Focus is on the presence of aquatic or wetland plants.
Total Points $=\underline{10.5}$
Under Normal Conditions, Watercourse is a Wet Weather
Conveyance if Secondary Indicator Score < 19 points
Notes:5) this WWC is within the Red River floodplain. 10) one large headcut starts this WWC and one smaller one occurs further down the channel.21). Grass species are growing throughout the stream channel
\qquad

Hydrologic Determination Field Data Sheet

Tennessee Division of Water Pollution Control, Version 1.5

NOTE: If any Primary Indicators $1-9=$ "Yes", then no further investigation is necessary. However, assessors may choose to score secondary indicators as supporting evidence.

In the absence of a primary indicator, or other definitive evidence, complete the secondary indicator table on page 2 of this sheet, and provide score below.

Guidance for the interpretation and scoring of both the primary \& secondary indicators is provided in TDECWPC Guidance For Making Hydrologic Determinations, Version 1.5

Overall Hydrologic Determination =WWC
 Secondary Indicator Score (if applicable) $=8$

Justification / Notes :

This wwc flows from the wooded hillside down into wetland 4. Bank height ranged from 6 inches to 1 foot. Bank width ranged from 1 to 2 feet. No water was onserved within the channel at the time of the survey.

Secondary Field Indicator Evaluation

A. Geomorphology (Subtotal = 6)	Absent	Weak	Moderate	Strong
1. Continuous bed and bank	0	1	2	3
2. Sinuous channel	0	1	2	3
3. In-channel structure: riffle-pool sequences	0	1	2	3
4. Sorting of soil textures or other substrate	0	1	2	3
5. Active/relic floodplain	0	0.5	1	(1.5)
6. Depositional bars or benches	0	1	2	3
7. Braided channel	0	1	2	3
8. Recent alluvial deposits	0	0.5	1	1.5
9. Natural levees	0	1	2	3
10. Headcuts	0	1	2	3
11. Grade controls	0	0.5	1	1.5
12. Natural valley or drainageway	0	0.5	$1 \quad 1.5$	
13. At least second order channel on existing USGS or NRCS map	$\mathrm{No}=0$		$Y \mathrm{es}=3$	

B. Hydrology (Subtotal $=0$	Absent	Weak	Moderate	Strong
14. Subsurface flow/discharge into channel	0	1	2	3
15. Water in channel and >48 hours since sig. rain	0	1	2	3
16. Leaf litter in channel (January - September)	1.5	1	0.5	0
17. Sediment on plants or on debris	0	0.5	1	1.5
18. Organic debris lines or piles (wrack lines)	0	0.5	1	1.5
19. Hydric soils in channel bed or sides of channel	$\mathrm{NO}=$		Yes $=1.5$	

C. Biology (Subtotal = 2)	Absent	Weak	Moderate	Strong
20. Fibrous roots in channel bed 1	3	2	1	0
21. Rooted plants in the thalweg 1	3	$2)$	1	0
22. Crayfish in stream (exclude in floodplain)	0	1	2	3
23. Bivalves/mussels	0	1	2	3
24. Amphibians	0	0.5	1	1.5
25. Macrobenthos (record type \& abundance)	0	1	2	3
26. Filamentous algae; periphyton	0	1	2	3
27. Iron oxidizing bacteria/fungus	0	0.5	1	1.5
28.Wetland plants in channel bed 2	0	0.5	1	1.5

${ }_{1}$ Focus is on the presence of terrestrial plants.
2 Focus is on the presence of aquatic or wetland plants.

```
Total Points \(=8\)
Under Normal Conditions, Watercourse is a Wet Weather
Conveyance if Secondary Indicator Score < 19 points
```

Notes:5) this WWC is within the Red River floodplain. 10) one smaller headcut starts this WWC 21). Grass species are growing throughout the stream channel
\qquad

Hydrologic Determination Field Data Sheet

Tennessee Division of Water Pollution Control, Version 1.5

NOTE: If any Primary Indicators $1-9=$ "Yes", then no further investigation is necessary. However, assessors may choose to score secondary indicators as supporting evidence.

In the absence of a primary indicator, or other definitive evidence, complete the secondary indicator table on page 2 of this sheet, and provide score below.

Guidance for the interpretation and scoring of both the primary \& secondary indicators is provided in TDECWPC Guidance For Making Hydrologic Determinations, Version 1.5

Overall Hydrologic Determination =WWC
 Secondary Indicator Score (if applicable) $=8$

Justification / Notes :

This wwc flows from the wooded hillside down into wetland 4. Bank height ranged from 6 inches to 1 foot. Bank width ranged from 1 to 2 feet. No water was onserved within the channel at the time of the survey.

Secondary Field Indicator Evaluation

A. Geomorphology (Subtotal = 6)	Absent	Weak	Moderate	Strong
1. Continuous bed and bank	0	1	2	3
2. Sinuous channel	0	1	2	3
3. In-channel structure: riffle-pool sequences	0	1	2	3
4. Sorting of soil textures or other substrate	0	1	2	3
5. Active/relic floodplain	0	0.5	1	(1.5)
6. Depositional bars or benches	0	1	2	3
7. Braided channel	0	1	2	3
8. Recent alluvial deposits	0	0.5	1	1.5
9. Natural levees	0	1	2	3
10. Headcuts	0	1	2	3
11. Grade controls	0	0.5	1	1.5
12. Natural valley or drainageway	0	0.5	$1 \quad 1.5$	
13. At least second order channel on existing USGS or NRCS map	$\mathrm{No}=0$		$Y \mathrm{es}=3$	

B. Hydrology (Subtotal $=0$	Absent	Weak	Moderate	Strong
14. Subsurface flow/discharge into channel	0	1	2	3
15. Water in channel and >48 hours since sig. rain	0	1	2	3
16. Leaf litter in channel (January - September)	1.5	1	0.5	0
17. Sediment on plants or on debris	0	0.5	1	1.5
18. Organic debris lines or piles (wrack lines)	0	0.5	1	1.5
19. Hydric soils in channel bed or sides of channel	$\mathrm{NO}=$		Yes $=1.5$	

C. Biology (Subtotal = 2)	Absent	Weak	Moderate	Strong
20. Fibrous roots in channel bed 1	3	2	1	0
21. Rooted plants in the thalweg 1	3	$2)$	1	0
22. Crayfish in stream (exclude in floodplain)	0	1	2	3
23. Bivalves/mussels	0	1	2	3
24. Amphibians	0	0.5	1	1.5
25. Macrobenthos (record type \& abundance)	0	1	2	3
26. Filamentous algae; periphyton	0	1	2	3
27. Iron oxidizing bacteria/fungus	0	0.5	1	1.5
28.Wetland plants in channel bed 2	0	0.5	1	1.5

${ }_{1}$ Focus is on the presence of terrestrial plants.
2 Focus is on the presence of aquatic or wetland plants.

```
Total Points \(=8\)
Under Normal Conditions, Watercourse is a Wet Weather
Conveyance if Secondary Indicator Score < 19 points
```

Notes:5) this WWC is within the Red River floodplain. 10) one smaller headcut starts this WWC 21). Grass species are growing throughout the stream channel
\qquad

Hydrologic Determination Field Data Sheet

Tennessee Division of Water Pollution Control, Version 1.5

NOTE: If any Primary Indicators 1-9 = "Yes", then no further investigation is necessary. However, assessors may choose to score secondary indicators as supporting evidence.

In the absence of a primary indicator, or other definitive evidence, complete the secondary indicator table on page 2 of this sheet, and provide score below.

Guidance for the interpretation and scoring of both the primary \& secondary indicators is provided in TDECWPC Guidance For Making Hydrologic Determinations, Version 1.5

Overall Hydrologic Determination =WWC
 Secondary Indicator Score (if applicable) $=5$

Justification / Notes:

This WWC flows from forested hillside down into WWC8 which then flows down into a sinkhole.
Bank height ranged from 0 inches to 1 foot. Bank width ranged from 1 to 2 feet. No water was in the channel at the time of the survey.

Secondary Field Indicator Evaluation

A. Geomorphology (Subtotal $=4$)	Absent	Weak	Moderate	Strong
1. Continuous bed and bank	0	1	2	3
2. Sinuous channel	0	1	2	3
3. In-channel structure: riffle-pool sequences	0	1	2	3
4. Sorting of soil textures or other substrate	0	1	2	3
5. Active/relic floodplain	0	0.5	1	1.5
6. Depositional bars or benches	0	1	2	3
7. Braided channel	0	1	2	3
8. Recent alluvial deposits	0	0.5	1	1.5
9. Natural levees	0	1	2	3
10. Headcuts	0	1	2	3
11. Grade controls	0	0.5	1	1.5
12. Natural valley or drainageway	0	0.5	1	1.5
13. At least second order channel on existing USGS or NRCS map	No $=0$		Yes $=3$	

B. Hydrology (Subtotal $=0$	Absent	Weak	Moderate	Strong
14. Subsurface flow/discharge into channel	0	1	2	3
15. Water in channel and >48 hours since sig. rain	0	1	2	3
16. Leaf litter in channel (January - September)	1.5	1	0.5	0
17. Sediment on plants or on debris	0	0.5	1	1.5
18. Organic debris lines or piles (wrack lines)	0	0.5	1	1.5
19. Hydric soils in channel bed or sides of channel	$\mathrm{NO}=$		Yes $=1.5$	

C. Biology (Subtotal = 1)	Absent	Weak	Moderate	Strong
20. Fibrous roots in channel bed 1	3	2	1	0
21. Rooted plants in the thalweg 1	3	2	1	0
22. Crayfish in stream (exclude in floodplain)	0	1	2	3
23. Bivalves/mussels	0	1	2	3
24. Amphibians	0	0.5	1	1.5
25. Macrobenthos (record type \& abundance)	0	1	2	3
26. Filamentous algae; periphyton	0	1	2	3
27. Iron oxidizing bacteria/fungus	0	0.5	1	1.5
28. Wetland plants in channel bed 2	0	0.5	1	1.5

${ }_{1}$ Focus is on the presence of terrestrial plants.
2 Focus is on the presence of aquatic or wetland plants.

```
Total Points \(=5\)
Under Normal Conditions, Watercourse is a Wet Weather
Conveyance if Secondary Indicator Score < 19 points
```


Notes:

Hydrologic Determination Field Data Sheet

Tennessee Division of Water Pollution Control, Version 1.5

NOTE: If any Primary Indicators 1-9 = "Yes", then no further investigation is necessary. However,
assessors may choose to score secondary indicators as supporting evidence.
In the absence of a primary indicator, or other definitive evidence, complete the secondary indicator table on page 2 of this sheet, and provide score below.

Guidance for the interpretation and scoring of both the primary \& secondary indicators is provided in TDECWPC Guidance For Making Hydrologic Determinations, Version 1.5

Overall Hydrologic Determination =WWC
Secondary Indicator Score (if applicable) $=8.5$

Justification / Notes:

This WWC flows from an agricultural corn field down through a decidous wooded area and finally ending up flowing into a sinkhole. Bank width ranged from 3 to 4 feet. Bank height ranged from 2 to 4 feet high. No water was observed within the channel at the time of the survey

Secondary Field Indicator Evaluation

A. Geomorphology (Subtotal $=6.5$)	Absent	Weak	Moderate	Strong
1. Continuous bed and bank	0	1	2	3
2. Sinuous channel	0	1	2	3
3. In-channel structure: riffle-pool sequences	0		2	3
4. Sorting of soil textures or other substrate	0	1	2	3
5. Active/relic floodplain	0	0.5	1	1.5
6. Depositional bars or benches	0	1	2	3
7. Braided channel	0	1	2	3
8. Recent alluvial deposits	0	0.5	1	1.5
9. Natural levees	0	1	2	3
10. Headcuts	0	1	$2)$	3
11. Grade controls	0	0.5	1	1.5
12. Natural valley or drainageway	0	0.5	1	1.5
13. At least second order channel on existing USGS or NRCS map	No = 0		Yes $=3$	

B. Hydrology (Subtotal $=0$	Absent	Weak	Moderate	Strong
14. Subsurface flow/discharge into channel	0	1	2	3
15. Water in channel and >48 hours since sig. rain	0	1	2	3
16. Leaf litter in channel (January - September)	1.5	1	0.5	0
17. Sediment on plants or on debris	0	0.5	1	1.5
18. Organic debris lines or piles (wrack lines)	0	0.5	1	1.5
19. Hydric soils in channel bed or sides of channel	$\mathrm{NO}=$		Yes $=1.5$	

C. Biology (Subtotal = 2)	Absent	Weak	Moderate	Strong
20. Fibrous roots in channel bed 1	3	2	1	0
21. Rooted plants in the thalweg 1	3	2	1	0
22. Crayfish in stream (exclude in floodplain)	0	1	2	3
23. Bivalves/mussels	0	1	2	3
24. Amphibians	0	0.5	1	1.5
25. Macrobenthos (record type \& abundance)	0	1	2	3
26. Filamentous algae; periphyton	0	1	2	3
27. Iron oxidizing bacteria/fungus	0	0.5	1	1.5
28.Wetland plants in channel bed 2	0	0.5	1	1.5

${ }_{1}$ Focus is on the presence of terrestrial plants.
2 Focus is on the presence of aquatic or wetland plants.

```
Total Points \(=8.5\)
Under Normal Conditions, Watercourse is a Wet Weather
Conveyance if Secondary Indicator Score < 19 points
```

Notes:21) some grass species were growing at the start and end of this channel.

Hydrologic Determination Field Data Sheet

Tennessee Division of Water Pollution Control, Version 1.5

NOTE: If any Primary Indicators 1-9 = "Yes", then no further investigation is necessary. However, assessors may choose to score secondary indicators as supporting evidence.

In the absence of a primary indicator, or other definitive evidence, complete the secondary indicator table on page 2 of this sheet, and provide score below.

Guidance for the interpretation and scoring of both the primary \& secondary indicators is provided in TDECWPC Guidance For Making Hydrologic Determinations, Version 1.5

Overall Hydrologic Determination =WWC
 Secondary Indicator Score (if applicable) $=6.5$

Justification / Notes:

This WWC is a erosional hillside feature. Bank height ranges from 6 inches to 12 inches. Bank width ranges from 1 to 2 feet. No water was found within the channel during the time of the survey

Secondary Field Indicator Evaluation

A. Geomorphology (Subtotal $=4.5$)	Absent	Weak	Moderate	Strong
1. Continuous bed and bank	0	1	2	3
2. Sinuous channel	0	1	2	3
3. In-channel structure: riffle-pool sequences	0	1	2	3
4. Sorting of soil textures or other substrate	0	1	2	3
5. Active/relic floodplain	0	0.5	1	1.5
6. Depositional bars or benches	0		2	3
7. Braided channel	0	1	2	3
8. Recent alluvial deposits	0	0.5	1	1.5
9. Natural levees	0	1	2	3
10. Headcuts	0	1	2	3
11. Grade controls	0	0.5	1	1.5
12. Natural valley or drainageway	0	0.5	1	1.5
13. At least second order channel on existing USGS or NRCS map	No $=0$		Yes $=3$	

B. Hydrology (Subtotal $=0$	Absent	Weak	Moderate	Strong
14. Subsurface flow/discharge into channel	0	1	2	3
15. Water in channel and >48 hours since sig. rain	0	1	2	3
16. Leaf litter in channel (January - September)	1.5	1	0.5	0
17. Sediment on plants or on debris	0	0.5	1	1.5
18. Organic debris lines or piles (wrack lines)	0	0.5	1	1.5
19. Hydric soils in channel bed or sides of channel	$\mathrm{NO}=$		Yes $=1.5$	

C. Biology (Subtotal = 2)	Absent	Weak	Moderate	Strong
20. Fibrous roots in channel bed 1	3	2	1	0
21. Rooted plants in the thalweg 1	3	$2)$	1	0
22. Crayfish in stream (exclude in floodplain)	0	1	2	3
23. Bivalves/mussels	0	1	2	3
24. Amphibians	0	0.5	1	1.5
25. Macrobenthos (record type \& abundance)	0	1	2	3
26. Filamentous algae; periphyton	0	1	2	3
27. Iron oxidizing bacteria/fungus	0	0.5	1	1.5
28. Wetland plants in channel bed 2	0	0.5	1	1.5

${ }_{1}$ Focus is on the presence of terrestrial plants.
2 Focus is on the presence of aquatic or wetland plants.

```
Total Points \(=\underline{6.5}\)
Under Normal Conditions, Watercourse is a Wet Weather
Conveyance if Secondary Indicator Score < 19 points
```

Notes:21) some grass species were growing at the start and end of this channel.

Hydrologic Determination Field Data Sheet

Tennessee Division of Water Pollution Control, Version 1.5

NOTE: If any Primary Indicators 1-9 = "Yes", then no further investigation is necessary. However, assessors may choose to score secondary indicators as supporting evidence.

In the absence of a primary indicator, or other definitive evidence, complete the secondary indicator table on page 2 of this sheet, and provide score below.

Guidance for the interpretation and scoring of both the primary \& secondary indicators is provided in TDECWPC Guidance For Making Hydrologic Determinations, Version 1.5

Overall Hydrologic Determination =WWC
 Secondary Indicator Score (if applicable) $=12.5$

Justification / Notes:

This WWC flows from agricultural corn field down through a wooded area and finally flows into a sinkhole. Bank height ranges from 4 to 6 feet. Bank width ranges from 6 to 8 feet wide. No water was withing the channel at the time of the survey.

Secondary Field Indicator Evaluation

A. Geomorphology (Subtotal $=7.5$)	Absent	Weak	Moderate	Strong
1. Continuous bed and bank	0	1	2	3
2. Sinuous channel	0	1	2	3
3. In-channel structure: riffle-pool sequences	0	1	2	3
4. Sorting of soil textures or other substrate	0	1	2	3
5. Active/relic floodplain	0	0.5	1	1.5
6. Depositional bars or benches	0	1	2	3
7. Braided channel	0	1	2	3
8. Recent alluvial deposits	0	0.5	1	1.5
9. Natural levees	0	1	2	3
10. Headcuts	0	1	$2)$	3
11. Grade controls	0	0.5	1	1.5
12. Natural valley or drainageway	0	0.5	1	1.5
13. At least second order channel on existing USGS or NRCS map	No $=0$		$Y \mathrm{es}=3$	

B. Hydrology (Subtotal =	Absent	Weak	Moderate	Strong
14. Subsurface flow/discharge into channel	0	1	2	3
15. Water in channel and >48 hours since sig. rain	0	1	2	3
16. Leaf litter in channel (January - September)	1.5	1	0.5	0
17. Sediment on plants or on debris	0	0.5	1	1.5
18. Organic debris lines or piles (wrack lines)	0	0.5	1	1.5
19. Hydric soils in channel bed or sides of channel	$\mathrm{NO}=$		Yes $=1.5$	

	Absent	Weak	Moderate	Strong
C. Biology (Subtotal $=4 \quad$)	3	2	1	0
20. Fibrous roots in channel bed 1	3	2	1	0
21. Rooted plants in the thalweg 1	0	1	2	3
22. Crayfish in stream (exclude in floodplain)	0	1	2	3
23. Bivalves/mussels	0	0.5	1	1.5
24. Amphibians	0	1	2	3
25. Macrobenthos (record type \& abundance)	0	1	2	3
26. Filamentous algae; periphyton	0	0.5	1	1.5
27. Iron oxidizing bacteria/fungus	0	0.5	1	1.5
28.Wetland plants in channel bed 2	0			

${ }_{1}$ Focus is on the presence of terrestrial plants.
2 Focus is on the presence of aquatic or wetland plants.
Total Points $=\underline{12.5}$
Under Normal Conditions, Watercourse is a Wet Weather
Conveyance if Secondary Indicator Score < 19 points
Notes: 4) sorting of gravel from silt.

Hydrologic Determination Field Data Sheet

Tennessee Division of Water Pollution Control, Version 1.5

Named Waterbody: WWC		Date/Time: 11/2/2021	
Assessors/Affiliation: HDR INC/ Lyranda Thiem		Project ID : SR Clarksville	
Site Name/Description: WWC 11, hillside erosional feature flows into WWC10 and then down into a sinkhole			
Site Location: located within a forested portion on the eastern part of the project area			
HUC (12 digit): Red River (Hydrologic Unit Code [HUC] (051302060708)		Lat/Long:	
Previous Rainfall (7-days) : In the previous seven days it rained 1.73 inches		36.548443/-87.237724	
Precipitation this Season vs. Normal : abnormally wet elevated average low abnormally dry unknown Source of recent \& seasonal precip data : ESRL and AHPS			
Watershed Size : 40,200 acres	County: Montgomery		
Soil Type(s) / Geology: Sengtown gravelly silt loam, 12 to 20 percent slopes		Source: ${ }^{\text {S }}$: Web Soil Surv	
Surrounding Land Use : Agricultural, forested, and residential/commerical			
Degree of historical alteration to natural channel morphology \& hydrology (circle one \& describe fully in Notes) Severe Moderate Slight Absent			
Primary Field Indicators Observed			
Primary Indicators		NO	YES
1. Hydrologic feature exists solely due to a process discharge			WWC
2. Defined bed and bank absent, vegetation composed of upland and FACU spea	and FACU species	\checkmark	WWC
3. Watercourse dry anytime during February through April 15th, under normal precipitation / groundwater conditions	under normal	NA	WWC
4. Daily flow and precipitation records showing feature only flows in direct resp to rainfall	in direct response	NA	WWC
5. Presence of multiple populations of obligate lotic organisms with ≥ 2 month aquatic phase	th ≥ 2 month	\checkmark	Stream
6. Presence of fish (except Gambusia)		\checkmark	Stream
7. Presence of naturally occurring ground water table connection		\checkmark	Stream
8. Flowing water in channel and 7 days since last precip >0.1 " in local watershed	local watershed	\checkmark	Stream
9. Evidence watercourse has been used as a supply of drinking water	water	\checkmark	Stream

NOTE: If any Primary Indicators 1-9 = "Yes", then no further investigation is necessary. However,
assessors may choose to score secondary indicators as supporting evidence.
In the absence of a primary indicator, or other definitive evidence, complete the secondary indicator table on page 2 of this sheet, and provide score below.

Guidance for the interpretation and scoring of both the primary \& secondary indicators is provided in TDECWPC Guidance For Making Hydrologic Determinations, Version 1.5

Overall Hydrologic Determination =WWC
 Secondary Indicator Score (if applicable) $=13.5$

Justification / Notes:

This WWC starts within an agricultural corn field and then flows into WWC10 which flows into a sinkhole. Bank height ranges from 4 to 6 feet. Bank width ranges from 6 to 8 feet wide. No water was withing the channel at the time of the survey.
Note: The start of the WWC has been used as a dumping site.

Secondary Field Indicator Evaluation

A. Geomorphology (Subtotal = 8)	Absent	Weak	Moderate	Strong
1. Continuous bed and bank	0	1	2	3
2. Sinuous channel	0	1	2	3
3. In-channel structure: riffle-pool sequences	0	1	2	3
4. Sorting of soil textures or other substrate	0	1	2	3
5. Active/relic floodplain	0	0.5	1	1.5
6. Depositional bars or benches	0	1	2	3
7. Braided channel	0	1	2	3
8. Recent alluvial deposits	0	0.5	1	1.5
9. Natural levees	0	1	2	3
10. Headcuts	0	1	$2)$	3
11. Grade controls	0	0.5	1	1.5
12. Natural valley or drainageway	0	0.5	1	1.5
13. At least second order channel on existing USGS or NRCS map	No $=0$		$Y \mathrm{es}=3$	

B. Hydrology (Subtotal =	Absent	Weak	Moderate	Strong
14. Subsurface flow/discharge into channel	0	1	2	3
15. Water in channel and >48 hours since sig. rain	0	1	2	3
16. Leaf litter in channel (January - September)	1.5	1	0.5	0
17. Sediment on plants or on debris	0	0.5	1	1.5
18. Organic debris lines or piles (wrack lines)	0	0.5	1	1.5
19. Hydric soils in channel bed or sides of channel	$\mathrm{NO}=$		Yes $=1.5$	

	Absent	Weak	Moderate	Strong
C. Biology (Subtotal = 4.5)	3	2	\square	1
20. Fibrous roots in channel bed 1	3	2	1	0
21. Rooted plants in the thalweg 1	0	1	2	3
22. Crayfish in stream (exclude in floodplain)	0	1	2	3
23. Bivalves/mussels	0	0.5	1	1.5
24. Amphibians	0	1	2	3
25. Macrobenthos (record type \& abundance)	0	1	2	3
26. Filamentous algae; periphyton	0	0.5	1	1.5
27. Iron oxidizing bacteria/fungus	0	0.5	1	1.5
28.Wetland plants in channel bed 2	0			

${ }_{1}$ Focus is on the presence of terrestrial plants.
2 Focus is on the presence of aquatic or wetland plants.

```
Total Points \(=\underline{13.5}\)
Under Normal Conditions, Watercourse is a Wet Weather
Conveyance if Secondary Indicator Score < 19 points
```

Notes: 4) sorting of gravel from silt.

Hydrologic Determination Field Data Sheet

Tennessee Division of Water Pollution Control, Version 1.5

NOTE: If any Primary Indicators 1-9 = "Yes", then no further investigation is necessary. However, assessors may choose to score secondary indicators as supporting evidence.

In the absence of a primary indicator, or other definitive evidence, complete the secondary indicator table on page 2 of this sheet, and provide score below.

Guidance for the interpretation and scoring of both the primary \& secondary indicators is provided in TDECWPC Guidance For Making Hydrologic Determinations, Version 1.5

Overall Hydrologic Determination =WWC
 Secondary Indicator Score (if applicable) $=15$

Justification / Notes:

This WWC starts at an agricultural corn field and flows down through mixed deciduous forest.
Bank height ranges from 4 to 6 feet. Bank width ranges from 3 to 5 feet wide. No water was withing the channel at the time of the survey.

Secondary Field Indicator Evaluation

A. Geomorphology (Subtotal = 11)	Absent	Weak	Moderate	Strong
1. Continuous bed and bank	0	1	2	3
2. Sinuous channel	0	1	2	3
3. In-channel structure: riffle-pool sequences	0	1	2	3
4. Sorting of soil textures or other substrate	0	1	2	3
5. Active/relic floodplain	0	0.5	1	1.5
6. Depositional bars or benches	0	1	2	3
7. Braided channel	0	1	2	3
8. Recent alluvial deposits	0	0.5	1	1.5
9. Natural levees	0	1	2	3
10. Headcuts	0	1	2	3
11. Grade controls	0	0.5	1	1.5
12. Natural valley or drainageway	0	0.5	1	1.5
13. At least second order channel on existing USGS or NRCS map	No $=0$		$Y \mathrm{es}=3$	

B. Hydrology (Subtotal =	Absent	Weak	Moderate	Strong
14. Subsurface flow/discharge into channel	0	1	2	3
15. Water in channel and >48 hours since sig. rain	0	1	2	3
16. Leaf litter in channel (January - September)	1.5	1	0.5	0
17. Sediment on plants or on debris	0	0.5	1	1.5
18. Organic debris lines or piles (wrack lines)	0	0.5	1	1.5
19. Hydric soils in channel bed or sides of channel	$\mathrm{NO}=$		Yes $=1.5$	

	Absent	Weak	Moderate	Strong
C. Biology (Subtotal $=4 \quad$)	3	2	1	0
20. Fibrous roots in channel bed 1	3	2	1	0
21. Rooted plants in the thalweg 1	0	1	2	3
22. Crayfish in stream (exclude in floodplain)	0	1	2	3
23. Bivalves/mussels	0	0.5	1	1.5
24. Amphibians	0	1	2	3
25. Macrobenthos (record type \& abundance)	0	1	2	3
26. Filamentous algae; periphyton	0	0.5	1	1.5
27. Iron oxidizing bacteria/fungus	0	0.5	1	1.5
28.Wetland plants in channel bed 2	0			

${ }_{1}$ Focus is on the presence of terrestrial plants.
2 Focus is on the presence of aquatic or wetland plants.

```
Total Points \(=15\)
Under Normal Conditions, Watercourse is a Wet Weather
Conveyance if Secondary Indicator Score < 19 points
```

Notes : 4) sorting of gravel from silt. Sections of this stream are heavily eroded.

Hydrologic Determination Field Data Sheet

Tennessee Division of Water Pollution Control, Version 1.5

NOTE: If any Primary Indicators 1-9 = "Yes", then no further investigation is necessary. However,
assessors may choose to score secondary indicators as supporting evidence.
In the absence of a primary indicator, or other definitive evidence, complete the secondary indicator table on page 2 of this sheet, and provide score below.

Guidance for the interpretation and scoring of both the primary \& secondary indicators is provided in TDECWPC Guidance For Making Hydrologic Determinations, Version 1.5

Overall Hydrologic Determination = WWC
 Secondary Indicator Score (if applicable) $=10.5$

Justification / Notes:

This WWC starts at an agricultural corn field and flows down through mixed deciduous forest.
Bank height ranges from 6 inches to 1 foot. Bank width ranges from 1 to 3 feet wide. No water was withing the channel at the time of the survey.
The second half of this stream has been altered to have a concrete bottom

Secondary Field Indicator Evaluation

A. Geomorphology (Subtotal $=7.5$)	Absent	Weak	Moderate	Strong
1. Continuous bed and bank	0	1	2	3
2. Sinuous channel	0	1	2	3
3. In-channel structure: riffle-pool sequences	0	1	2	3
4. Sorting of soil textures or other substrate	0	1	2	3
5. Active/relic floodplain	0	0.5	1	1.5
6. Depositional bars or benches	0	1	2	3
7. Braided channel	0	1	2	3
8. Recent alluvial deposits	0	0.5	1	1.5
9. Natural levees	0	1	2	3
10. Headcuts	0	1	2	3
11. Grade controls	0	0.5	1	1.5
12. Natural valley or drainageway	0	0.5	1	1.5
13. At least second order channel on existing USGS or NRCS map	No $=0$		$Y \mathrm{es}=3$	

B. Hydrology (Subtotal = 0)	Absent	Weak	Moderate	Strong
14. Subsurface flow/discharge into channel	0	1	2	3
15. Water in channel and >48 hours since sig. rain	0	1	2	3
16. Leaf litter in channel (January - September)	1.5	1	0.5	0
17. Sediment on plants or on debris	0	0.5	1	1.5
18. Organic debris lines or piles (wrack lines)	0	0.5	1	1.5
19. Hydric soils in channel bed or sides of channel	$\mathrm{NO}=$		Yes $=1.5$	

C. Biology (Subtotal = 3)	Absent	Weak	Moderate	Strong
20. Fibrous roots in channel bed 1	3	2	1	0
21. Rooted plants in the thalweg 1	3	2	1	0
22. Crayfish in stream (exclude in floodplain)	0	1	2	3
23. Bivalves/mussels	0	1	2	3
24. Amphibians	0	0.5	1	1.5
25. Macrobenthos (record type \& abundance)	0	1	2	3
26. Filamentous algae; periphyton	0	1	2	3
27. Iron oxidizing bacteria/fungus	0	0.5	1	1.5
28. Wetland plants in channel bed 2	0	0.5	1	1.5

${ }_{1}$ Focus is on the presence of terrestrial plants.
2 Focus is on the presence of aquatic or wetland plants.
Total Points $=\underline{10.5}$
Under Normal Conditions, Watercourse is a Wet Weather
Conveyance if Secondary Indicator Score < 19 points
Notes: 4) sorting of gravel from silt.

Hydrologic Determination Field Data Sheet

Tennessee Division of Water Pollution Control, Version 1.5

Named Waterbody:WWC		Date/Time: 11/2/2021	
Assessors/Affiliation: HDR INC/ Lyranda Thiem		Project ID: SR Clarksville	
Site Name/Description: WWC 14, eroisional feature within a corn field			
Site Location: located within a forested portion on the northern part of the project area			
HUC (12 digit): Red River (Hydrologic Unit Code [HUC] (051302060708)		Lat/Long:	
Previous Rainfall (7-days) : In the previous seven days it rained 1.73 inches		36.548930/-87.242115	
Precipitation this Season vs. Normal : abnormally wet elevated average Source of recent \& seasonal precip data : ESRL and AHPS	average low	low abnormally dry unknown	
Watershed Size : 40,200 acres		County: Montgomery	
Soil Type(s) / Geology : Sengtown gravelly silt loam, 12 to 20 percent slopes		Source: ${ }^{\text {SSD: Web Soil Surv }}$	
Surrounding Land Use : Agricultural, forested, and residential/commerical			
Degree of historical alteration to natural channel morphology \& hydrology (circle one \& describe fully in Notes) Severe Moderate \square Slight Absent			
Primary Field Indicators Observed			
Primary Indicators		NO	YES
1. Hydrologic feature exists solely due to a process discharge			WWC
2. Defined bed and bank absent, vegetation composed of upland and FACU spen	and FACU species	\checkmark	WWC
3. Watercourse dry anytime during February through April 15th, under normal precipitation / groundwater conditions	under normal	NA	WWC
4. Daily flow and precipitation records showing feature only flows in direct resp to rainfall	in direct response	NA	WWC
5. Presence of multiple populations of obligate lotic organisms with ≥ 2 month aquatic phase	th ≥ 2 month	\checkmark	Stream
6. Presence of fish (except Gambusia)		\checkmark	Stream
7. Presence of naturally occurring ground water table connection		\checkmark	Stream
8. Flowing water in channel and 7 days since last precip >0.1 " in local watershed	local watershed	\checkmark	Stream
9. Evidence watercourse has been used as a supply of drinking water	vater	\checkmark	Stream

NOTE: If any Primary Indicators 1-9 = "Yes", then no further investigation is necessary. However, assessors may choose to score secondary indicators as supporting evidence.

In the absence of a primary indicator, or other definitive evidence, complete the secondary indicator table on page 2 of this sheet, and provide score below.

Guidance for the interpretation and scoring of both the primary \& secondary indicators is provided in TDECWPC Guidance For Making Hydrologic Determinations, Version 1.5

Overall Hydrologic Determination =WWC
 Secondary Indicator Score (if applicable) $=9.5$

Justification / Notes:

This WWC is a corn field erosional feature and leads into WWC 13.
Bank height ranges from 6 inches to 1 foot. Bank width ranges from 1 to 2 feet wide. No water was withing the channel at the time of the survey.

Secondary Field Indicator Evaluation

A. Geomorphology (Subtotal $=6.5$)	Absent	Weak	Moderate	Strong
1. Continuous bed and bank	0	1	2	3
2. Sinuous channel	0	1	2	3
3. In-channel structure: riffle-pool sequences	0	1	2	3
4. Sorting of soil textures or other substrate	0	1	2	3
5. Active/relic floodplain	0	0.5	1	1.5
6. Depositional bars or benches	0	1	2	3
7. Braided channel	0	1	2	3
8. Recent alluvial deposits	0	0.5	1	1.5
9. Natural levees	0	1	2	3
10. Headcuts	0	1	2	3
11. Grade controls	0	0.5	1	1.5
12. Natural valley or drainageway	0	0.5	1	1.5
13. At least second order channel on existing USGS or NRCS map	No $=0$		$Y \mathrm{es}=3$	

B. Hydrology (Subtotal $=0$	Absent	Weak	Moderate	Strong
14. Subsurface flow/discharge into channel	0	1	2	3
15. Water in channel and >48 hours since sig. rain	0	1	2	3
16. Leaf litter in channel (January - September)	1.5	1	0.5	0
17. Sediment on plants or on debris	0	0.5	1	1.5
18. Organic debris lines or piles (wrack lines)	0	0.5	1	1.5
19. Hydric soils in channel bed or sides of channel	$\mathrm{NO}=$		Yes $=1.5$	

C. Biology (Subtotal = 3)	Absent	Weak	Moderate	Strong
20. Fibrous roots in channel bed 1	3	2	1	0
21. Rooted plants in the thalweg 1	3	2	1	0
22. Crayfish in stream (exclude in floodplain)	0	1	2	3
23. Bivalves/mussels	0	1	2	3
24. Amphibians	0	0.5	1	1.5
25. Macrobenthos (record type \& abundance)	0	1	2	3
26. Filamentous algae; periphyton	0	1	2	3
27. Iron oxidizing bacteria/fungus	0	0.5	1	1.5
28. Wetland plants in channel bed 2	0	0.5	1	1.5

${ }_{1}$ Focus is on the presence of terrestrial plants.
2 Focus is on the presence of aquatic or wetland plants.

```
Total Points \(=\underline{9.5}\)
Under Normal Conditions, Watercourse is a Wet Weather
Conveyance if Secondary Indicator Score < 19 points
```

Notes: 4) sorting of gravel from silt.

Hydrologic Determination Field Data Sheet

Tennessee Division of Water Pollution Control, Version 1.5

NOTE: If any Primary Indicators 1-9 = "Yes", then no further investigation is necessary. However, assessors may choose to score secondary indicators as supporting evidence.

In the absence of a primary indicator, or other definitive evidence, complete the secondary indicator table on page 2 of this sheet, and provide score below.

Guidance for the interpretation and scoring of both the primary \& secondary indicators is provided in TDECWPC Guidance For Making Hydrologic Determinations, Version 1.5

Overall Hydrologic Determination =WWC
 Secondary Indicator Score (if applicable) =

Justification / Notes:

This is an erosional WWC that flows within a forest.
Bank width ranged from 1 to 2 feet. No water was observed within the channel at the time of the survey.

Hydrologic Determination Field Data Sheet

Tennessee Division of Water Pollution Control, Version 1.5

| Named Waterbody:WWC | Date/Time: 11/2/2021 |
| :--- | :--- | :--- | :--- |
| Assessors/Affiliation:HDR INC/ Lyranda Thiem | Project ID: |
| SR Clarksville | |

NOTE: If any Primary Indicators $1-9=$ "Yes", then no further investigation is necessary. However, assessers may choose to score secondary indicators as supporting evidence.

In the absence of a primary indicator, or other definitive evidence, complete the secondary indicator table on page 2 of this sheet, and provide score below.

Guidance for the interpretation and scoring of both the primary \& secondary indicators is provided in TDECWPC Guidance For Making Hydrologic Determinations, Version 1.5

Overall Hydrologic Determination =WWC
 Secondary Indicator Score (if applicable) $=15.5$

Justification / Notes :

This is an erosional WWC that flows within a forest down into stream 4
Bank width ranged from 3 to 5 feet. Bank height ranges from 4 to 6 feet No water was observed within the channel at the time of the survey.

November 2021 Mobilization			
Criteria- values are in inches	1 st Month Prior October21	$2^{\text {nd }}$ Month prior September21	3 rd Month Prior August-21
Standard Deviation	1.56	1.97	2.02
Minus 1 Std. Deviation	1.26	1.22	1.28
Normal Precipitation	2.82	3.19	3.30
Plus 1 Std. Deviation	4.38	5.16	5.32
Actual Estimated Rainfall	6.0	3.0	8.0
Condition (elevated, low, average)	Elevated	Average	Elevated
Conditional Score	3	2	3
Weight	3	2	1
Product	9	4	3
		Sum=	16
Overall Wetness*			Elevated

F?

Appendix C

Photographs

Photograph 1- Stream 1 Intermittent, facing south and downstream.

Photograph 2- Stream 1 facing southwest and upstream.

Photograph 3- Stream 2 Red River, facing northeast and downstream.

Photograph 4- Stream 2 Red River, facing northeast and upstream.

Photograph 5- Stream 3 Perennial UNT to Red River, facing northeast and downstream.

Photograph 6- Stream 3 Perennial UNT to Red River facing southeast and upstream.

Photograph 7-Stream 4 Intermittent facing north and downstream.

Photograph 8- Stream 4 Intermittent facing southwest and upstream

Photograph 9- WWC 4, facing south and upstream.

Photograph 10-WWC 4, facing south and upstream.

Photograph 11-WWC 5, facing south and upstream.

Photograph 12- WWC 5, facing north and downstream.

Photograph 13- WWC 6, facing south and upstream.

Photograph 14- WWC 6, facing northeast and downstream.

Photograph 15- WWC 16, facing west and upstream.

Photograph 16- WWC 16, facing northeast and downstream.

Photograph 17- WWC 2, facing north and downstream.

Photograph 19- WWC 2, facing northwest and upstream.

Photograph 20- Wetland 1 PEM, facing east.

Photograph 21- Wetland 2 PEM southwest.

Photograph 22- Wetland 3 PEM, facing west.

Photograph 23- Wetland 4 PFO, facing east.

Photograph 24- Wetland 5 PFO, facing south.

Photograph 25- Wetland 6 PEM, facing east.

Photograph 26- Upland 1(DP1), facing north.

Photograph 27- Upland 2 (DP3), facing southwest.

Photograph 28- Upland 3 (DP6), facing southeast.

Photograph 29- Upland 4 (DP9), facing south.

Photograph 30- WWC 1, facing north and downstream.

Photograph 31-WWC 1, facing southeast and upstream.

Photograph 32- WWC 3, facing northwest and downstream.

Photograph 33- WWC 3, facing west and upstream.

Photograph 34- WWC 7, facing east and downstream.

Photograph 35- WWC 7, facing southwest and upstream.

Photograph 35- WWC 8, facing northeast and downstream.

Photograph 36- WWC 8, facing southwest and upstream.

Photograph 37- WWC 9, facing north and downstream.

Photograph 38-WWC 9, facing south and upstream.

Photograph 39- WWC 10, facing north and upstream.

Photograph 40-WWC 10, facing west and downstream.

Photograph 41- WWC 11, facing southeast and upstream.

Photograph 42- WWC 12, facing northwest and downstream.

Photograph 43- WWC 12, facing south and upstream.

Photograph 44- WWC 13, facing southeast and downstream.

Photograph 45-WWC 13, facing west and upstream.

Photograph 46-WWC 14, facing north and downstream.

Photograph 47- WWC 14, facing west and upstream.

Photograph 48- WWC 15, facing east and downstream.

East Elevation

Photograph 49- WWC 15, facing east and upstream.

[^0]: ${ }^{1}$ 0400-40-04 20160301.pdf (tnsosfiles.com)

[^1]: ${ }^{1}$ R4SB5 = Riverine, intermittent, mud streambed; R4SB3 = Riverine, intermittent, cobble, gravel streambed; R5UB1 = Riverine, unknown perennial, unconsolidated bottom; R1SB5= Mud, Unconsolidated Bottom, Tidal, Riverine

[^2]: Remarks: (Include photo numbers here or on a separate sheet.)

