Wade Murphy

From: Wade Murphy

Sent: Monday, October 30, 2023 2:25 PM

To:Gordon HolcombSubject:RE: Centerville PTL

Gordon, I'm fine with the changes for the PTL file. I'm going to leave the permit as drafted though since the edits don't change the results of the reasonable potential calculations which are only more conservative without these edits. This way the draft permit shows, with the more conservative interpretation, that no WQ based limits are required in the permit, and the PTLs show that, with the more liberal interpretation, that PTLs are the best we can offer via our current procedures.

Wade D. Murphy | E.I.

Division of Water Resources, Water-Based Systems Unit William R. Snodgrass TN Tower, 11th Fl 312 Rosa L. Parks Ave 37243 p. 615-532-0666 wade.murphy@tn.gov tn.gov/environment

Internal Customers: We value your feedback! Please complete our customer satisfaction survey.

External Customers: We value your feedback! Please complete our customer satisfaction survey.

From: Gordon Holcomb < Gordon. Holcomb@tn.gov>

Sent: Monday, October 30, 2023 2:01 PM **To:** Wade Murphy <Wade.Murphy@tn.gov>

Subject: Centerville PTL

Wade,

I've reviewed the Centerville PTL. While none of the limits changed, I do have a couple of comments. Both have Orange Highlighter on the 1Q10 Tab in the attached spreadsheet.

- Taking account of the relative drainage areas of the outfall and gauge increased the rounded 1Q10 value by 1 MGD
- 2. The background value for Lead was skewed upward quite a bit by 4 values in 2011 that had very high detection levels and also looked suspect because one of them had a result of 0.74 ug/l with a MDL of 32 ug/l. Taking those 4 points out reduced the average from 1.9 to 0.7 ug/l as the background average.

If these changes look good, then I'll get these to Adam so that they can get send out soon. Gordon

Gordon Holcomb | Pretreatment
Division of Water Resources
William R. Snodgrass Tennessee Tower, 11th Floor
312 Rosa L. Parks Avenue
Nashville, TN 37243
p. 615-339-9956
Gordon.Holcomb@tn.gov

2019 WQC

WATER QUALITY CALCULATIONS FOR METALS AND OTHER TOXIC SUBSTANCES WATER QUALITY BASED EFFLUENT CALCULATIONS OUTFALL 001

FACILITY: Centerville

PERMIT #: TN024937

DATE: 09/26/23

CALC BY: WDM

regulated stream worksheet (1Q10)

Stream	Stream	Waste	Ttl. Susp.	Hardness	Margin of
(1Q10)	(30Q5)	Flow	Solids	(as CaCO3)	Safety
[MGD]	[MGD]	[MGD]	[mg/l]	[mg/l]	[%]
155.00	224.00	0.75	20	165	50

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	
	Stream	Fish/Aqua. Lif	fe (F & AL) WQC		F & AL- instrear	n allowable	Calc. Effluent Concentration		Huma	n Health Wate	Health Water Quality Criteria *			effluent		
	Bckgrnd.	lab c	onditions	Fraction	ambient o	onditions (Tot)	based or	n F & AL	In-Stream Criteria			Calc. Effluent Concentration **		**	limited	
	Conc.	Chronic	Acute	Dissolved	Chronic	Acute	Chronic	Acute	Organisms	Water/Organisms	DWS	Organisms	Water/Organisms	DWS	case	
PARAMETER	[ug/l]	[ug/l]	[ug/l]	[Fraction]	[ug/l]	[ug/l]	[ug/l]	[ug/l]	[ug/l]	[ug/l]	[ug/l]	[ug/l]	[ug/l]	[ug/l]	ug/l	PARAMETER
Copper (a,b)	1.300	13.739	21.542	0.206	66.570	104.380	6777.82	10703.82	N/A	N/A	N/A	NA	NA	NA		
Chromium III	1.500	111.692	858.646	0.049	2295.318	17645.507	238175.51	1832036.79	N/A	N/A	N/A	NA	NA	NA		Chromium III
Chromium VI	1.500	11.000	16.000	1.000	11.000	16.000	987.17	1506.33	N/A	N/A	N/A	NA	NA	NA		Chromium VI
Chromium, Total	1.500	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	100.0	NA	NA	14759.33	NA	Chromium, Total
Nickel (a,b)	3.600	79.442	715.247	0.180	442.145	3980.808	45537.37	412968.52	4600.0	610.0	100.0	688695.73	90860.73	14445.73		Nickel (a,b)
Cadmium (a,b)	0.200	1.046	2.877	0.185	5.663	15.570	567.32	1596.04	N/A	N/A	5.0	NA	NA	719.30	5.0	Cadmium (a,b)
Lead (a,b)	0.700	4.322	110.900	0.110	39.263	1007.568	4004.52	104546.76	N/A	N/A	5.0	NA	NA	644.63		Lead (a,b)
Mercury (T) (c)	0.050	0.770	1.400	1.000	0.770	1.400	74.79	140.20	0.051	0.05	2.0	0.17	0.02	292.20		Mercury (T) (c)
Silver (a,b,e)	3.806	N/A	7.612	1.000	NA	7.612	N/A	397.09	N/A	N/A	N/A	NA	NA	NA		Silver (a,b, e)
Zinc (a,b)	3.700	180.579	179.114	0.103	1759.298	1745.023	182291.39	180809.25	26000.0	7400.0	N/A	3895114.13	1108214.13	NA	200.0	Zinc (a,b)
Cyanide (d)	0.020	5.200	22.000	1.000	5.200	22.000	537.87	2282.27	140.0	140.0	200.0	20973.68	20973.68	29963.68	230.0	Cyanide (d)
Toluene									15000.0	1300.0	1000.0	2247500.00	194783.33	149833.33	15.0	Toluene
Benzene									510.0	22.0	5.0	76415.00	3296.33	749.17	3.0	Benzene
1,1,1 Trichloroethane									N/A	N/A	200.0	NA	NA	29966.67		1,1,1 Trichloroethane
Ethylbenzene									2100.0	530.0	700.0	314650.00	79411.67	104883.33	4.0	Ethylbenzene
Carbon Tetrachloride									16.0	2.3	5.0	2397.33	344.62	749.17	15.0	Carbon Tetrachloride
Chloroform									4700.0	57.0	N/A	704216.67	8540.50	NA	85.0	Chloroform
Tetrachloroethylene									33.0	6.9	5.0	4944.50	1033.85	749.17	25.0	Tetrachloroethylene
Trichloroethylene									300.0	25.0	5.0	44950.00	3745.83	749.17	10.0	Trichloroethylene
1,2 trans Dichloroethylene									10000.0	140.0	100.0	NA	20976.67	14983.33	1.5	1,2 trans Dichloroethylene
Methylene Chloride									5900.0	46.0	5.0	884016.67	6892.33	NA	50.0	Methylene Chloride
Total Phenois									860000.0	10000.0	N/A	128856666.67	1498333.33	NA	50.0	Total Phenols
Naphthalene								, and the second	N/A	N/A	N/A	NA	NA	NA	1.0	Naphthalene
Total Phthalates									N/A	N/A	N/A	NA	NA	NA	64.5	Total Phthalates
Chlorine (T. Res.)	0.000	11.000	19.000	1.000	11.000	19.000	2284.33	3945.67	NA	NA	NA	NA	NA	NA	n/a	Chlorine (T. Res.)

- a Denotes metals for which Fish & Aquatic Life Criteria are expressed as a function of total hardness.
- b The criteria for this metal is in the dissolved form at lab conditions. The calculated effluent concentration is in the total recoverable form.
- c The chronic criteria for mercury is not converted to dissolved, since it is based on fish tissue data rather than toxicity.
- d The criteria for this parameter is in the total form.
- e Silver limit is daily max if column 8 is most stringent.
- f When columns 7 or 8 result in a negative number, use results from columns 5 or 6, respectively.
- g When columns 12, 13 or 14 result in a negative number, use results from columns 9, 10 or 11, respectively, as applicable.
- * Domestic supply included in river use so pick from columns 7,8,12,13,14,15 or Domestic supply not included in river use so pick from columns 7, 8, 12 or 15.
- ** Water Quality criteria for stream use classifications other than Fish & Aquatic Life are based on the 30Q5 flow.

Note: A copy of this spreadsheet can be found on h:\mfs\pretreat\Pass-through Limits\Spreadsheets\name of Control Authority.xls

September 30, 2019 Updated Cadimum for 2019 F&A WQS update